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Abstract
Mood odor identification, explicit awareness of mood odor, may be an important emotion

skill and part of a complex dual processing system. It has already been shown that mood

odors have significant implicit effects, effects that occur without awareness. This study

applies methods for examining human individual differences in the identification of chemo-

signals for fear and happy, important in itself, and a key to understanding the dual process-

ing of emotion in the olfactory system. Axillary mood odors had been collected from 14 male

donors during a mood induction task. Pads were collected after 12 and 24 minutes, creating

two doses. Sixty -one participants (41 females) identified the mood odor chemosignals. On

a single trial, participants identified 2 doses of fear, 2 doses of happy, and a sterile control.

There were 15 trials. The first analysis (rtt) showed that the population was phenotypically

heterogeneous, not homogeneous, in identification accuracy. It also showed that a mini-

mum of 10 trials was needed for test reliability. The second analysis, Growth Mixture Model-

ing, found three distinct groups of detectors: (1) 49.49% were consistently accurate super

detectors, (2) 32.52% were accurate above chance level detectors, and (3) 17.98% were

non-detectors. Bayesian Posterior Analyses showed reliability of groups at or above 98%.

No differences related to mood odor valence (fear or happy), dose (collection at 12 or 24

minutes) or gender were found. Implications for further study of genetic differences, learning

and function of identification are noted. It appears that many people can be reliable in explic-

itly identifying fear and happy mood odors but this skill is not homogeneous.
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Introduction

Helen Keller wrote “. . . the odor of young men. . ..suggests all the things strong and beautiful
and joyous and gives me a sense of physical happiness.”[1]

Keller may well have had “a sense of physical happiness” when sniffing the odor of a joyous
young man, as mood odors are contagious [2, 3]. The notable aspect of this contagion is not
that it happened, as there are substantial automatic or implicit effects of mood odors, but that
she knew about the mood in an odor. Would her expertise have lent her more social awareness,
as those who can identify the odors of close friends may have [4] or did it interact dynamically
with other emotional processes related to implicit chemosensory communication (for review
see [5])? Even if she were able to smell mood odor, was she a rare variation, her skill influenced
by her blindness and deafness? This study is focused on the objective measurement of individ-
ual differences in identifying fear and happy mood odors. It applies accepted measures from
behavioral genetics and we predict that there will be reliable individual differences in identify-
ing mood odor.

Given that most people are dubious about the claims to sniff emotion, is it in fact rare? Or is
it just not reliable—occurring at a level only slightly above chance? We [6] have shown that
groups of people are slightly better than chance in identifying mood odors but are there indi-
vidual differences with some people well above chance while others do not detect anything?
Individual differences are ubiquitous in the human olfactory system. There are at least 400
active genes for olfactory receptors and each gene has multiple alleles. Humans may be able to
discriminate more than a trillion odors [7].”In humans, genetic diversity will result in percep-
tual diversity. Each individual perceives olfactory stimuli with their personal set of OR s (olfac-
tory receptors)” [8]. In other words, different people may well perceive different odors. In
addition, the olfactory system has high plasticity, showing neurogenesis in the olfactory bulb
[9] and in the peripheral neurons [10]. In this study we adapt accepted methods of analysis for
behavioral genetics to classify phenotypically distinct groups. We examine the individual dif-
ferences in identifying mood from human body semiochemicals taking some account of gen-
der, potential dose of chemosignal, and the mood communicated.

Research on mood odors is providing a new interdisciplinary field, including sensory sci-
ences, neurosciences, behavior genetics, and the psychology of emotion. Several recent findings
illustrate how the implicit identification of mood odors is important and how individual differ-
ences in other social-emotional skills may apply. For example, De Groot and his colleagues
have shown that sniffing body odor from a happy person [2] or from a fearful person [3] has
an implicit effect on the mood of the person who is sniffing. It is possible that a person who
also can explicitly identify the odor might respond differently from one who cannot. Zhou and
Chen [4] showed that “superior skill in identifying social chemosensory information is related
to higher emotional competency.”While the chemosensory information here was the odor of a
person, not mood odor per se, a similar pattern may exist for mood odors with “superior skill”
leading to “emotional complexity “once again. Lubke et al [11] have shown how individual dif-
ferences in social openness are related to implicit effects on brain responses to mood odor.
Implicitly, responses to mood odor were related to at least one kind of behavior. The identifica-
tion of mood odor may be an emotion skill, not unlike the identification of mood in facial
expression and differences in identification may be related to automatic behaviors as well as
socio-emotional expertise (see discussion of dual process in emotion regulation [12].

When asked to identify moods from body semiochemicals [6] people seem to perform
slightly better than chance. This had suggested only a minor role for the olfactory system
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compared to the visual or auditory systems where the moods communicated by smiles or
chuckles or frowns and cries are easily identified. However, this assumption rests on tests of
population means, not on tests of individuals. It also rests on one or two trials for each individ-
ual which is an acceptable approach for classifying purer and easily measured odor com-
pounds. Neither of these methods has provided reliable information about individuals.

It is possible that there is a subpopulation of super detectors who can identify mood odors
reliably, to whom the moods in body chemosignals are obvious. Equally important, however,
are people who discriminate mood odors easily but who do not label or identify them correctly,
a common problem for odors in general (e.g., [13]). And finally there may be people who are
unable to identify the chemosignals at all. The alternative hypothesis is that there are no dis-
tinct groups, only a normal distribution of people with some range in identification skills.

Testing for phenotypic differences
We will briefly describe two methods for testing the hypothesis that phenotypic groups exist in
a population. These procedures are often used prior to the investigation of genetic differences.
The first (rtt) tests for heterogeneity and indicates the number of trials to establish reliability
[14]. The second (Growth Modeling) provides reliable models for the number of groups
needed to describe a heterogeneous population [15].

Testing for homogeneity. It is reasonable to hypothesize that there are individual differ-
ences in olfaction. There is a large family of genes that encodes odor receptors. This family of
genes [16] is the largest known among mammals in general [17]. Even for humans this is the
largest gene family among the sensory systems. Variability in genomic expression is illustrated
by Keller, Zhuang, Chi, Vosshall, and Matsunami [18], who have shown a connection between
ability to reliably detect the chemosignals of androstenone and androstadienone (AND) and a
specific genetic polymorphism. The original study exemplified a “bottom-up” approach. Using
molecular techniques, the researchers found genetic variation in an olfactory receptor gene.
Genotypic variation correlated with variability in the perception of androstenone. A later study
in a different population [19] was not able to replicate the effects of the same genotypes.
Instead, a different allele affected androstenone perception. It is quite likely that there are
many patterns or pathways to the detection of the chemosignals. Nevertheless, this seminal
work suggested that there are multiple genetic influences involved in the identification of
human chemosensory stimuli and that people differ.

It is possible, therefore, that the identification of mood chemosignals is not homogeneous
but that there are individual differences. Furthermore, individuals may fall into distinct groups
that include both anosmics and super-detectors. A first step in showing further connections
with mood chemosignals and genetic differences is to provide a method and evidence to exam-
ine connections to a wide variety of emerging questions. These range from the relationships
between explicit and implicit reactions to mood odors, to changes in olfactory receptors related
to learning, as well as to the identification of genetic subpopulations.

Homogeneous vs. heterogeneous testing. One classic approach is a standard behavioral
genetics technique using the rtt statistic [14]. Its purpose is to determine whether a population
is phenotypically homogeneous or heterogeneous for a particular behavioral trait. The test is
reliable even if the stimulus is not standardized, as is the case with mood semiochemicals.
(Other tests could be used for standard odor compounds.) In this approach, the participants
repeatedly identify the odors in a series of trials. The series provides sequences of correct or
incorrect responses for each individual. The question is whether there are different types of
response sequences with some individuals reaching asymptote (i.e., super-detectors) fairly
quickly, for example, and other individuals (i.e., non-detectors) never making correct
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identifications or whether there are other patterns. Hirsch and Tryon [14] established the use
of the rtt statistic to describe genetic individual differences associated with behaviors that show
the kind of population distribution that is seen for human mood odors (see [14], for a full dis-
cussion). If, as we predict, the rtt is significant, we will have shown that there are significant
individual patterns in the population worthy of further testing.

Number of trials. Most researchers working on mood odors, including us, have adopted
an approach using just one or two trials to determine whether an individual can identify mood
chemosignals. Obviously, too few trials would result in statistically unreliable results. There are
reasons to avoid too many trials, however. Exposure to fear and happy mood odors [2, 3] may
elicit behavior compatible with feeling fear or happiness. This suggests that moods may be
affected by the chemosignals and the change in moods would possibly affect motivation and
attribution decisions. It is desirable, therefore, to use as few trials as necessary to achieve reli-
able results. The rtt statistic can suggest a minimum number of trials needed for reliable classifi-
cation of individuals.

Modeling to establish phenotypic groups. When there is heterogeneity, a second step can
be taken using longitudinal modeling to determine the number of groups and their characteris-
tics. Such analyses are new to olfactory research although there exist several types and they are
used extensively in other fields (e.g., [20, 21]). The goal is to establish the most reliable model
for predicting individual belongingness to the groups [15].

In longitudinal modeling, the data from all individuals is transformed into a small number
of estimated trajectory curves which correspond to groups of individuals. By Bayesian posterior
probabilities, each individual’s longitudinal or series data can be assigned to a particular trajec-
tory group. This is interpreted as assignments to specific phenotypes. The growth curve analy-
sis allows one to detect the number of phenotypes and to calculate the reliability of assigning
individuals to each phenotype. High reliability further supports the existence of distinct
groups.

The communicated mood, gender and dose of chemosignal
In this study of mood odors, the classification of individuals using behavioral genetics
approaches may show that there are groups within the population who differ in their ability (a)
to identify a particular mood chemosignal, i.e., fear or happy or (b) to identify a chemosignal
collected after a longer exposure time from the donor rather than a shorter time. There may be
(c) gender differences to consider as well. These are important secondary considerations and
there is an exploration of each issue in this study

In this study we will test mood chemosignals collected from donors who have been in two
mood induction conditions—fear and happy. A growing literature indicates that humans can
detect fear chemosensory signals [4, 22, 23]. Fear semiochemicals augment the startle response
[24], enhance cognitive performance [25], activate the amydala [26], effect the perception of
ambiguous facial expressions [26, 27, 28] and affect facial responses for fear [3].

Similarly, humans may identify and respond to happiness chemosensory signals [2, 6, 22].
Less is known about related behavioral or neurological effects but both non-human pleasant
odors (e.g., [29]) and human odors have effects on nonverbal behaviors. (For review, see [30,
31].)

The body of research and evolutionary implications for fear mood chemosignals versus
happy ones suggests that fear signals may be more readily identified than happy emotion sig-
nals. Our study does not directly test this hypothesis as the mood chemosignals are not tested
separately; however, post-hoc analyses will be used to indicate the direction of possible
differences.

Phenotypes in Detecting Chemosignals
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It is important to have sufficient chemosignal information for it to be identified. There are
no standards for this presently. The excellent tests for establishing threshold levels in odor or
taste detection (e.g., the staircase method, triangular bag method) usually require known quan-
tities of pure chemicals to produce a series of measured concentrations. We address this by col-
lecting the samples after a short period (12 minutes) and a long period (24 minutes). The
longer exposure to the mood induction for the donors might increase the signal value of the
chemosignal product on the axillary pads. If this is correct, the 24-minute pad has “more”
semiochemical information and the detectors will have a higher rate of success in identifying it.
This may be incorrect because the mood of the donor is more variable over time and thus “lon-
ger” exposure might give a more ambiguous signal, rather than a clearer signal.

The process may be even more complex as a recent study by De Groot, Smeets & Semin[32]
showed. Receivers’ implicit responses were stronger to the rapidly produced chemosignal than
to a chemosignal collected later. Their explanation is that these are distinct chemosignals. Until
more is known about the composition of the chemosensory signals, it is wise to consider not
only that the time course of the fear mood odor may vary but also that the time courses of dif-
ferent moods may also vary. The stronger response for fear mood odors may be rapid and
stronger response for happy or other moods such as anger may be slower. In our case, the
higher dose contains both the rapid and slow signals, as defined by De Groot et al. [32]. This
may still provide a signal with greater explicit information for the identification of a fear signal
and may still function as a type of “threshold” test.

The evidence for gender differences in decoding emotion cues tends to be relatively consis-
tent across ages and cultures [33] and may be adaptive [34]. Women surpass men in this capac-
ity with studies generally showing an effect size of about .20. This greater sensitivity to emotion
cues may extend to mood odors. There also is evidence that women are more accurate detectors
of odors in some instances [35] and particularly in the cognitive evaluation of irritating odors,
though there is little evidence overall for differences in threshold sensitivity [36]. Therefore,
comparisons between men’s and women’s accuracy in mood odor identification will be made.
The prediction is that women will be more accurate, if there are any differences.

The variability in human genomic profiles supports an argument in favor of individual dif-
ferences in human mood odor identification. We predict heterogeneity such that a small sub-
group of individuals will be highly accurate though others may not detect differences. Further,
the evolutionary implications for fear mood chemosignals suggests that fear signals may be
more readily identified than happy emotion signals. Therefore, we predict that fear mood che-
mosignals are more reliably detected. Additionally, the amount of time that a donor (of axillary
chemosignals) is exposed to a mood stimulus could be expected to have significant impact on
the chemosignal. We predict that mood odors collected for a longer period of time will be more
likely to be identified. Finally, given the body of research suggesting that women have an emo-
tional recognition advantage, we predict that women would be more likely to be in the sub-
group of detectors than men.

Materials and Methods

Sample preparation and participant selection
Chemosignal collection. In this study the mood odors were collected from 14 healthy

male undergraduate nonsmokers. For a 7-day period prior to the sample collection, the donors
only used the provided odor-free deodorant and cleansing products. The donors were
instructed to shower (using the soap provided) the morning of sample collection approxi-
mately 6 hours prior to sample collection. They were also given a list of prohibited “spicy” and
other odorous foods and did not eat them during the 24 hours prior to the collection.

Phenotypes in Detecting Chemosignals
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Axillary samples were collected during two video mood inductions, one day apart. The fear
mood and happy mood induction videos were 12-minute standardized videos (see [6, 22]).
Video mood induction is highly reliable (for review see [37]). The videos were shown twice to
the subjects for a 24-minute induction. The videos have multiple facial displays for fear (or
happy). There is no narrative theme. This reduces the likelihood that repetition of the 12 min-
ute video would decrease the impact of the video.

Samples were collected onto cleaned Kerlix8 brand sterile gauze. Prior to mood induction,
donors were given 2 pairs of gauze strips (each strip 3cm x 8cm) in separate plastic enclosed
bags labeled “right” and “left” arm. They placed one pair in each left/right axilla. At 12 minutes
into the mood induction, the film was paused and donors removed one pair (1 left and 1 right)
of axillary pads. Donors placed each pad into its labeled plastic zipper bags. All air was forced
from the bag prior to sealing. The second pair of pads was collected in the same manner after
24 minutes. All samples were placed in a minus 80C° freezer within 2 hours of collection.

Preparation of odor samples. To minimize effects not related to mood condition, we
combined mood odors from seven donors to make a test sample. Pads from the same donors
were combined to make matching samples for fear-12, fear-24, happy-12, and happy-24. This
minimizes the possibility that one donor dominates or has an “aberrant” chemosignal. A set of
seven cleaned pads was used for the control. (See S1 Text for more detail.)

Odor detectors. Sixty-one university students and staff (41 females and 20 males) ranging
in age from 18 to 28 (M age = 21, SD = 1.85) served as detectors. Detectors were nonsmokers
and did not use any fragranced product on the day of the study. We did not test for general
anosmia. Anosmics are improbable among a population of young adults who volunteer for an
odor study. Previous testing had never revealed an anosmic detector, as expected, since smell
identification performance peaks in early adulthood [38].

The entire study was approved by the Institutional Review Board of Rutgers–The State Uni-
versity of New Jersey. All donors and participants signed written consent forms.

Procedure
Test trial. Participants (detectors) were tested individually in dedicated testing rooms

approximately 8’x8’. The detector and the experimenter sat across from each other with a table
between them. On each trial the experimenter placed five identical sample jars from one set of
(7) donors on a plastic tray on the table, shuffled them, and presented the tray of jars to the
detector. S/he was instructed to sniff the jars as many times as necessary and in any order. The
detector identified the odors by setting each jar on its label (fear 12, fear 24, happy 12, happy
24, control) on a place-mat. To avoid position effects, half of the detectors had fear labels on
the left side of the place mat and half of the detectors had them on the right side of the place
mat. Participants were not given feedback on test trials about correct or incorrect identifica-
tions, i.e., there are no explicit training trials. A second set then would be brought forth, etc.

Exposure to label task. After each test trial (except the final one) the experimenter pre-
sented a set of 2 fear (or happy) samples. The experimenter explained, “These are fear (or
happy); which is 12 and which is 24?” The detector made the judgment and was told if s/he was
correct. This was repeated with the other mood sample. Although the task of labeling was inter-
jected between each test trial, the result of the labeling task–labeling the dose of the samples–is
analyzed separately from the identification of mood data. The purpose of the labeling task
question is to have the participants attend to the mood odors in a consistent manner, always
doing the same task, while being exposed to labeled odors. In no case were the fear and happy
mood odors presented together for comparison and the order of presentation of the fear or
happy was counterbalanced. It was important to provide the labeling task so that participants
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who could discriminate the samples would have a correct label (e.g., [39]). If some participants
can discriminate the samples but do not correctly identify them initially, then simple exposure
with labels may correct the problem.

Block. There were five trials testing the mood odor in a block. Between blocks participants
took a 5-min break. They walked into the enclosed corridors around the testing rooms and
were allowed a drink of water. There were three blocks of five trials for a total of 15 trials.

Statistical approaches
Scoring. In the main analysis each of the 15 test trials was scored as correct or incorrect.

To be correct both fear stimuli (collected after 12 and 24 minutes from the same donors) had
to be identified as fear, both happy stimuli (collected after 12 and 24 minutes from the same
donors) had to be identified as happy, and the control stimulus had to be identified as the con-
trol. Any other response set was scored as incorrect. The 12 and 24-minute samples only had
to be correct for mood identification, not for dose. (The labeling task that asks only for 12 and
24 minute discrimination is examined separately in the post-hoc analyses–see below.)

Conservative scoring. Requiring multiple correct choices within a single trial has a lower
probability of a false positive than either a single yes/no trial or a single triangular-choice trial
[40]. The detectors correctly identified two fear odors, two happy odors and a control on each
trial. This results in one scored “correct” trial. This provides a very low probability of false posi-
tives. Although the participants also identified which pads were collected after 12 and 24 min-
utes, the trial was scored correct as long as they identified the moods.

Description. First, we provide descriptive data to indicate the proportion of the tested
population who were accurate on the first trial without exposure trials and who continued to
be correct on most subsequent trials. We predict that there is a small subset of the population
who can do this.

rtt. Second, we use the Hirsch-Tryon analysis method to show whether there is population
heterogeneity or homogeneity [14, 41, 42]. We predict heterogeneity. If there is heterogeneity,
this analysis will also indicate how many trials were necessary to establish reliable individual
patterns with these mood odor stimuli. (See S2 Text for formula and further description.)

Growth mixture model (GMM). Third, as one purpose of the study is to establish unique
groups, we used a GMM approach. This is a statistical method that provides several key pieces
of information: (1) An estimated number (K) of homogeneous sub-groups; (2) For each sub-
group, a polynomial of order at most three (with a random error term) that describes the esti-
mated outcome measure at a fixed set of time points and estimates the random error; (3) Bayes-
ian posterior probabilities (BPPs) for each individual that indicate the probability that the
individual belongs to each of the K sub-groups; (4) An estimate of the proportion of individuals
in the study that belong to each of the K subgroups. Also, the GMMmethod provides a value
called the Bayesian Information Criterion (BIC) that enables us to establish the best estimate of
K, the number of homogeneous sub-groups, which is not known a priori. Using the BIC, we
can test the null hypothesis: H0: K = 1 (Data come from one group, i.e., there is homogeneity)
vs. Ha: K> 1 (Data come from multiple groups, i.e., there is heterogeneity). Finally, for any
specified sub-group of interest, we may use the BPPs corresponding to that subgroup as pheno-
types in association studies. (In text we provide a fictitious example which clarifies how we use
GMM.)

Post-hoc analyses. Fourth, we provide post hoc analyses. Both factor analyses and non-
parametric, related samples analyses are used to describe further differences in each group. We
use multivariate analysis of variance (MANOVA) to test the prediction that women have
higher scores. We use the non-parametric, related samples analyses to test the prediction that
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all groups have higher scores on the 24 minute exposure samples, the higher dose. We use the
same method to test the prediction that all groups will have higher scores on the fear samples
than on the happy samples. The statistical program SPSS is used for these post hoc analyses.

Results

Descriptive analysis
We predicted that a small number of participants would identify mood odors consistently
without any exposure/labeling experience. Eight participants (out of 61) appeared to be in this
group since they were correct on the first test trial. Only two of the eight were subsequently cor-
rect on 14/15 test trials (highest score was 14/15). There were, therefore, 2/61 (3.2%) partici-
pants who correctly and consistently identified the mood odors without any exposure to
labeling. Another four (6.42%) of the eight were mostly correct, having 9 to 11 of the next 14
trials correct. This still describes a very high level of accuracy and probable ability to identify
mood odors reliably without exposure trials. This percentage of about 10% describes a small
portion of the sample, as expected. Two were inconsistent on subsequent trials even though
they were correct on the first trial.

It is clear that there are some people who can identify mood odors and who do so consis-
tently. It is also clear that some people may be mis-classified if only one or two test trials are
used. In the next section we analyze all the participants.

rtt statistic
Heterogeneity. The rtt analysis (with 15 trials, rtt = .90) supports the hypothesis that the

population sampled is not homogeneous but tends towards heterogeneity (see Table 1 below).
It suggests that people do have reliable patterns and they differ from each other.

Number of trials. The rtt statistic predicts the probability of determining heterogeneity in
the tested population. As can be seen in Table 1, two trials (rtt = .50) clearly do not provide suf-
ficient evidence for the reliable identification of detectors vs. non-detectors using our
paradigm.

Table 1. rtt Statistic.

Trials rtt

1

2 0.50

3 0.53

4 0.69

5 0.73

6 0.75

7 0.80

8 0.82

9 0.84

10 0.85

11 0.86

12 0.87

13 0.88

14 0.89

15 0.90

doi:10.1371/journal.pone.0154495.t001
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Even after 5 trials it is only .73. The trajectory is near asymptote by trial 10. At least 10 trials
are needed to establish heterogeneity in identification for these mood chemosignals.

GMM. Growth mixture models were used to fit the series of 15 test trials to estimated tra-
jectory curves. We conducted the growth mixture model statistics using the Bayesian Informa-
tion Criterion (BIC) to determine empirically the number of trajectory groups. Since the data
are binary we used a logistic model. The BIC score for K = 3 sub-groups was optimal; therefore,
the three group solution is chosen as the best fitted model. (The BIC for a 1-group solution is
BIC = -607.15; for a 2-group BIC = -485.57; for a 3-group BIC = - 480.88; for a 4-group BIC =
-481.09. The 5-group failed critical assumptions, meaning one of the five polynomials did not
have a significant value and had high standard error.)

The use of GMM indicates that the participants can be divided into three distinct groups.
The trajectory groups were named super- detectors (49.49%), detectors (32.52%) and non-
detectors (17.98%).). As shown in Fig 1, the super-detector group shows a rapid rise in the
number of correct trials within the group, becoming essentially perfect in the last five trials.
The non-detector group shows no change in the number of correct trials, almost never having
correct trials. The detector group has correct trials at above chance levels but little change over
trials.

The probability of correct assignment of individuals using the 3-group model is very high.
All the non-detectors belonged to their group with a BPP of at least 0.98. Only two super-detec-
tors fell below the .99 probability of assignment to their group; one person had .92 probability
and one person had .86 probability. In both instances the alternate group assignment was to
the detector group. Only two detectors fell below the .99 probability of assignment to their
group; one person had .89 probability and one person had .71 probability. In both instances
the alternate group assignment was to the super-detector group.

The four group solution was almost as likely to be a good model as the three group solution.
In the four group model, five participants from the super-detector group were reassigned to a
4th group. They differed from others in the super detector group in that they were less accurate
in the last block of 5 trials rather than being more accurate. This suggests adaptation or mood
interference after 10 trials. Examining the probability of belonging to a particular group in the
4th group model does not decrease the number of individuals who are assigned to a group at
.99 or better probability.

Over all, the size of the super- detector group is larger than predicted. Nearly half the tested
population was able to discriminate and correctly identify mood odors consistently after expo-
sure to labeled samples. There is also an unusually high level of probable assignment to the
groups, further supporting the hypothesis that the groups are phenotypically distinct.

Model confirmation and gender analysis. The model indicates the population has three
groups. A repeated measures ANOVAwith the 3 groups (super-detector, detector, and non-detec-
tor) and gender as independent variables and the 3 test blocks of 5 trials each (early, middle, late)
as the repeated measure shows that there is a main effect for group, as expected (F(2) = 154.22,
p< .000, eta = .849). Using LSD post-hocs, each group is different from the other (p< .000). Con-
trary to prediction, there is no main effect for gender (F(1) = .099, ns). There is a significant inter-
action between group and the test block indicating that the trajectories of the changes are
different, as expected (F(4) = 5.213, p< .001, eta = .159); see Fig 1. This analysis confirms the
model of phenotypic groups but shows only a trend for gender differences

Post-hoc analyses of mood and dose
Chemosignal mood. In order to test the hypothesis that the participants would identify

the fear chemosignal more often than the happy chemosignal, we tested each group (super-
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detector, detector, and non-detector) separately comparing the errors for each mood odor that
resulted from incorrectly identifying it as control. We reasoned that if one of the mood odors
was more difficult to detect and identify, it would be confused with the non-odorous control.
Since the super-detector group makes few errors, the chance of finding any difference in the
ease of identifying one mood chemosignal over another is diminished. The detector and non-
detector groups have the largest number of incorrect trials so analyzing these separately pro-
vides a better opportunity to detect trends or differences. Using the related samples Wilcoxen
signed rank test, there were no significant differences between the identification of fear and
happy (vs. control) in any of the groups (p> .268 in all cases). If the group could identify fear
(vs. control), it could equally well identify happy (vs. control). Therefore, we reject the hypoth-
esis that the fear chemosignal is more likely to be identified in this mode of testing.

Fig 1. Estimated GMM Trajectories for a 3-group Solution. Fig 1 shows how individuals in each group conform to a particular
trajectory. The super- detectors reach asymptote by about trial 10, becoming near perfect; detectors perform above chance; non-
detectors seldom have correct trials.

doi:10.1371/journal.pone.0154495.g001
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In addition, we analyzed the possibility that some participants would not be able to identify
the control, that is, that they could not identify any human axillary chemosignal in comparison
to a sterile pad. Using the same test, there were no differences for the non-detector group in
identifying the control and either mood odor (p> .373). The super-detectors are more likely to
identify the control compared with either mood odor (p< .000), as are the detectors (p<
.001). While the control (sterile pad) generally is more easily identified than the mood chemo-
signals, the non-detectors are not reliable in identifying it. The non-detectors not only cannot
discriminate and identify the chemosignals, they also cannot identify the control.

Dose. Axillary body odors were collected from the donors after 12 and after 24 minutes.
The hypothesis was that chemosignals collected for a longer time would be easier to identify.
All tests used the Wilcoxen test for related samples. As above, each detector group was tested
separately. For the fear chemosignals, there was a difference for the detector group (p< .048)
but not for the non-detector (p< .715) nor for the super-detector (p< .152) groups. The detec-
tor group mean for identifying fear collected after 12 minutes was 5.67 correct and after 24
minutes was 4.39 correct. There were no significant differences for any group for happy (non-
detectors, p< .108; detectors, p< .098; super-detectors, p< .729) but the trends result from
slightly higher accuracy for the 12-minute collections. Our prediction that a longer collection
time would increase accuracy is not supported.

A separate analysis was performed on the data from the exposure-to-the-label task. In this
task either the happy or fear chemosignals were presented and the participant was asked which
was collected early and which late. Participants were given feedback. It was possible that partic-
ipants would learn which chemosignal was early or late and this would demonstrate that they
were discriminable. A repeated measures ANOVA with gender as an independent variable,
happy and fear trials as within variables, and blocks (3) of trials as the repeated variable pro-
duced no significant differences for gender (F(1) = .793, ns) nor for mood variable (F(1) = .466,
ns) nor for blocks of trials (F(2) = .531, ns). This test indicates that participants did not learn to
identify the 12 and 24 minute samples.

Discussion
The results of this study show that chemosignals can be explicitly identified by many people as
a signal for mood. It may not be a literary hyperbole that the detective hero entering a dark
alley whispers, “Stay back. I smell fear, there is danger ahead.” A surprising number of people
should be able to do this. This study successfully developed a method to examine individual
differences in the identification of human mood using axillary chemosignals, called mood
odors. We used statistical approaches adapted from behavioral genetics not used in this field
previously. The model had unusually high reliability. The rtt statistic first showed there was het-
erogeneity in the population. Secondly, GMM identified three distinct groups. The largest
group (49.49%) was super-detectors, capable of consistent identification of both fear (anxiety)
and happy (safety) chemosignals. The smallest group (17.98%) seemed anosmic for axillary
odor under these conditions. They did not reliably identify either chemosignal or the sterile
pad. The remaining group (32.52%) was slightly above chance levels in identifying moods. Lon-
gitudinal analyses (GMM) showed very high reliability for the placement of individuals within
the three groups.

This is the first time that mood odor identification has been shown to be a reliable skill but
it is not the first example of an unexpected body odor identification skill. Each of us has a
unique odor signature that can be identified by ourselves more than 90% of the time [43] or by
our near relatives [44] also with great reliability. The range of human olfactory skills is being
expanded, as this study shows. The recent discoveries lead to many new questions, of course.
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The focus of the present study is on explicit or “slow” and effortful processing of mood
odor. It is not clear how it will impact our understanding of the rapidly growing research on
implicit or “fast” processing [5] or on research pertaining to olfactics, that is, human olfactory
communication [31]. That the brain responds without awareness (implicit processing) to
odors was first clearly demonstrated by Pause [45, 46]. Her research has been the impetus for
and has continued to support the position that awareness of body odor is not necessary for
responses. It also shows that there are different brain processes for body odors than for com-
mon odors. The present study, in conjunction with prior research, has raised the question of
whether there are separate roles for implicit and explicit processes in human mood odor com-
munication or whether they interact or even whether the identification of mood odor is so
effortful as to be seldom used.

The importance of dual processes, explicit and implicit, is apparent even outside olfaction
and some of the concepts that apply in other areas may apply here as well. Kahneman [47] has
reviewed extensive research on what he calls “slow” and “fast” processing from many disci-
plines. He notes that the interaction of explicit (akin to slow) and implicit (akin to fast) pro-
cesses is complex and dynamic. Explicit responses may become implicit with practice as occurs
with experts; that is, a response that has to be reasoned out initially or that requires effort may
become automatic with practice. Neurological changes may even occur. Some implicit
responses may be hard-wired and yet still show developmental changes and be affected by
experience. Here, cultural expectations may be important. Ethnographers such as Low [48]
show that in some cultures people are more aware of scent and even have terms for “scent iden-
tity.”Hall [49] noted that those of us in modern North America may be an extreme example of
a scent deprived and scent ignorant culture. Knowledge of explicit mood odor, as well as iden-
tity body odor may be more difficult to detect in such cultures. In the area of olfactory process
these hypotheses have hardly begun to be explored. One impediment has been the lack of
methods to approach some aspects of explicit process and the consequent lack of information
about individual differences. This study provides the groundwork for studying dual processing
of mood odors.

There are a few studies that suggest explicit responses to body odor interact with other
socioemotional behaviors. For example, Zhou and Chen [4] showed that “expert” explicit iden-
tification of roommate’s odor was related to socioemotional skills. Based on this study we
might predict that “experts” or “super-detectors” for mood body odors have similar socioemo-
tional expertise. On the other hand, it may be the case that explicit identification weakens some
behaviors. Li, et al [50] found that odor only affected judgments of facial likeability when the
odor was subliminal. When the odor was consciously detected, it had no effect. These studies
leave open the question of whether a person who can identify a fear or happy mood odor is
more likely to be sensitive to the contagious moods of others or is more likely to establish
boundaries and be less affected.

Secondary Analyses
The present study is one of the few to include semiochemicals collected from donors in happy
mood inductions. There is a long history in studying negative emotions such as fear both in
humans and other animals (for review [51]) and a smaller, but growing, literature on positive
emotions (e.g., [52, 53]). Recent evidence has shown that both fear and happy mood odors are
contagious [2, 3]. We had predicted that in explicit identification, fear would be more easily
identified. The secondary analyses showed that the fear mood odors and the happy mood
odors were equally distinguishable from the control. This suggested that we should reject the
hypothesis; nevertheless, there is a possibility that the presentation of fear, happy, and control
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on each trial allowed for the participant to “know” either the fear (or the happy) as well as the
control, leaving happy (or the fear) appearing to be “known” only by default. Different meth-
ods of presentation are needed to provide a more direct test before we conclude that each is
separately easily identified. However, it is worth noting that both are distinguished from the
non-body odor control by detectors, but not by non-detectors.

We had predicted that more women would be likely to identify the mood odors than men.
As the task involved both a verbal report (labeling) and sensitivity to emotional differences,
this seemed probable. However, there was only a trend for differences on this task. The task
may well be one relying almost wholly on odor sensitivity and here there is less likelihood of
differences. If the research were extended to varied social contexts, gender differences might be
apparent [33]. Also, further studies with chemosignals collected from female donors may reveal
some as yet unknown interactions.

We predicted that odors collected from donors after a longer period would be more easily
identified than those collected for a shorter period. Within the boundaries of this study, che-
mosignals collected after 12 minutes were sufficient for identification and, generally, identifica-
tion accuracy was the same for 12 and 24 minute periods. Exposure for a longer time period
did not lead to more people being able to identify them. There was one instance in which the
shorter period seemed more reliable. The detector group actually performed better with the
12-minute fear sample than the 24-minute sample. This result is congruent with research on
implicit effects from fear mood odor [32]. As DeGroot and colleagues suggest, early collection
may benefit from an adrenalin related process for the fear mood odors that produces more
effective implicit responses. It is worth noting, however, that there was a trend for the happy
mood odor early collection to also be easier to identify. It is possible that the longer video lost
some effectiveness. It is also possible that participants became more effective in mood manage-
ment over time and experienced other moods as a result.

The short exposure period presents some intriguing problems in gene regulation. Twelve
minutes seems too short of a time for proteins (or modified proteins) to be made de novo and
released from the skin cells. This implies that the proteins are “prepackaged” and only need to
be “activated” or released (analogous to neurotransmitters). Studies at the cellular level may
need to await isolation of active components of an emotional chemosignal response.

The issues with understanding threshold or intensity in the field of mood odors reminds us
that further study is needed in understanding the production of the mood odors and their com-
position. It is possible that there is more than one combination of chemical product that can
produce such effects, of course, and therefore there may be individual differences in the pro-
duction of chemosensory signals as well as individual differences in the detection or identifica-
tion of them. It is also possible that there are “suites” of chemicals used within groups of
genetically-related individuals and that appropriate matches of related individuals would affect
identification accuracy. It is clear that relatives can identify each other from body sweat and
perhaps this extends to other communication [43].

Methodological issues and future research
Long-term reliability of the phenotypic classification. It is possible that there is a genetic

relationship supporting the phenotypically distinct detector groups, but it is also possible that
the group differences are due to experience. The potential to train people who initially appear
to be either inconsistent or unable to detect any mood odor still exists. The phenotypic model
allows such individuals to be selected for training. The participants in this study were not given
feedback on their choices of mood chemosignals so they were not likely to learn to identify the
moods. We were only testing the existing skills in the population, not the potential for change.
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Providing motivation or a reward also may influence some individuals who appear to be non-
detectors. It is also still important to test whether those who appear to be non-detectors in a
labeling task are less responsive implicitly to mood odor. Though this initial study of individual
differences provides significant new information, it leaves many questions.

In the next phase of research on individual differences in mood odor detection, it is impor-
tant to determine if the individual differences shown in this study are stable over weeks or lon-
ger and how different contexts or chemosignals from different donors affect reliability. This is
one more step in moving from an understanding of how phenotypic differences may reflect
genetic or experiential differences in the population.

Establishing number of trials for reliability. There is an obvious advantage to using the
rtt statistic when heterogeneous population results are anticipated. This study demonstrates
that repeated testing is needed to establish reliable individual differences for mood chemo-
signals. Whenever identification skills are meaningful in a research program, we recommend
using the method shown here or another one that solves the same problem to establish reliabil-
ity; we cannot assume that one or two trials are sufficient to identify individuals who may or
may not be detectors. Even though in this study, about ten trials produced reliability, it also
cannot be assumed that this is a standard. Each chemosensory stimulus may require its own
analysis for homogeneity and trials needed for reliable identification of individuals.

Whereas multiple trials may be necessary to establish reliable phenotypes for mood odors,
there may also be a disadvantage to using multiple trials in mood odor research. The mood
odors are contagious [2, 3]. The longitudinal analysis in our study presented a four-group
model that was almost as good as the three-group model that we discussed in more detail. The
four group model indicated that a small part of the super-detector group deteriorated on the
late trials. We may have induced moods by exposing participants to mood chemosignals and
that induction may have affected the identification processes. This is a caution for future
research and indicates a need for contextual controls.

GMM- Establishing phenotypic groups. To our knowledge this is the first use of longitu-
dinal analysis in olfactory research. Hierarchical linear and empirical Bayesian models have
emerged in several fields including genetics [15, 54, 55]. Such models classify heterogeneous
data into discrete growth trajectory curves. It is useful to know the number of phenotypic
groups in designing genetic research or to use groups to extend the information about an
explicit reaction to the many implicit reactions that are already known for mood odors. There
are also applications in environmental health assessments or applications for fragrance indus-
tries where people who may be super-detectors or highly sensitive may perform differently
from non-detectors. The longitudinal modeling also obtained estimates for each individual
showing the probability for belonging to each of the groups. In this case the degree of fit of
individuals to the groups is very high. Almost all individuals were classified with at least a 98%
probability of fit to one of the groups. Again, the statistical approaches provided by behavioral
genetic modeling provide many advantages for olfactory research with surprisingly high
reliabilities.

The methods from behavioral genetics that were used in this study may provide advantages
for any testing of semiochemicals. They may be used to expand our understanding of dual pro-
cessing of human odors. Broadly, testing may include consumer/industrial applications or
mental health assessment, as well as a variety of medical issues of aging or physical illness. The
results of the study, showing that there are phenotypically different groups in their ability to
identify mood odors, may have far reaching effects.
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