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Abstract: The recent decade has witnessed a tremendous growth of Internet traffic, which is expected
to continue climbing for the foreseeable future. As a new paradigm, Spectrum-sliced Elastic Optical
Path (SLICE) networks promise abundant (elastic) bandwidth to address the traffic explosion, while
bearing other inherent advantages including enhanced signal quality and extended reachability. The
fundamental problem in SLICE networks is to route each traffic demand along a lightpath with
continuously and consecutively available sub-carriers, which is known as the Routing and Spectrum
Allocation (RSA) problem. Given its NP-Hardness, the solutions to the RSA problem can be classified
into two categories: optimal solutions using link-based, path-based, and channel-based Integer
Linear Programming (ILP) models, which require extensive computational time; and sub-optimal
heuristic and meta-heuristic algorithms, which have no guarantee on the solution quality. In this
work, inspired by a channel-based ILP model, we propose a novel primal-dual framework to address
the RSA problem, which can obtain a near-optimal solution with guaranteed per-instance closeness
to the optimal solution.

Keywords: RSA; SLICE; decomposition

1. Introduction

The recent decade has witnessed a tremendous growth of Internet traffic, which
is expected to continue climbing for the foreseeable future. Recently, Spectrum-sliced
Elastic Optical Path (SLICE) networks [1–3] have come to light as a promising solution
to resolve this traffic explosion. In traditional Wavelength Division Multiplexing (WDM)
networks, spectrum resources are coarsely managed at the level of wavelengths (that are
separated from each other with fixed guard-bands). In SLICE networks, a traffic demand is
accommodated with a group of consecutive sub-carriers, and neighboring sub-carriers can
overlap partially in the spectrum domain [1–3]. As a single sub-carrier has a finer granular
than a wavelength and consecutive sub-carriers can overlap without the fixed guard-bands,
SLICE networks can better deliver both sub-wavelength and super-wavelength traffic
accommodation [2]. In addition, SLICE networks have other inherent advantages such as
enhanced signal quality and extended reachability [2].

It remains a challenging but fundamental problem to efficiently allocate lightpaths
in SLICE networks to accommodate traffic demands, which is known as the Routing
and Spectrum Allocation (RSA) problem [4]. The challenges originate from three major
constraints. First, one has to allocate continuously free sub-carriers along a path to fulfill
the demand. Second, the chosen free sub-carriers should as well be consecutive ones in the
spectrum domain (i.e., the sub-carrier consecutiveness constraint). Third, the guard-bands
between lightpaths are not predetermined and have to be decided at run time. The RSA
problem is shown to be NP-Hard [4], and the solutions to the RSA problem can be classified

Electronics 2021, 10, 2809. https://doi.org/10.3390/electronics10222809 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10222809
https://doi.org/10.3390/electronics10222809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10222809
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10222809?type=check_update&version=2


Electronics 2021, 10, 2809 2 of 13

into two categories. First, optimal solutions provided by link-based, path-based, and
channel-based Integer Linear Programming (ILP) models. We note that channel-based
models inherently capture the second and third constraints above explicitly, thus leading
to a compact formulation. Second, sub-optimal heuristic algorithms and meta-heuristic
algorithms. Overall, ILP-based approaches demand prohibitive computational time, which
limits their applicability in reality; and methods that are heuristic in nature lack guaranteed
closeness to the optimal solution.

We seek to avoid the above limitations of existing approaches, and propose a novel
primal-dual solution framework to the RSA problem in this paper. Inspired by a compact
channel-based ILP solution, we explore the relaxation and decomposition of the model
based on the dual variables or Lagrange multipliers of complex coupling constraints, which
leads to an upper bound (UB) of the problem. The dual multipliers obtained from above
are then fed into a Primal algorithm for obtaining a lower bound (LB) of the problem. Our
framework employs these two processes to update the UB and LB iteratively, resulting in a
near-optimal solution with a per-instance guarantee on its closeness to the optimal solution.

The rest of the paper is organized as follows. In Section 2, we present the network
model, the definition, and a compact ILP model of the studied problem. In Section 3, we
explore relaxation and decomposition of the ILP model, and propose an exact solution to
the resulting problem. In Section 4, we present the primal-dual framework. In Section 5,
we evaluate the proposed framework. In Section 6, we review related literature, and we
conclude this work in Section 7.

2. Network Model, Problem Definition, and a Channel-Based ILP Model

In this section, we present the network model, problem definition and complexity,
and a channel-based ILP model of the studied problem.

2.1. Network Model

A SLICE network is modeled as a graph G(V, E, S): V consists of nodes of the network;
E contains the set of directional fibers connecting nodes in V; and S is the group of sub-
carriers on each fiber. The set of traffic demands is denoted as D = {di} (i = 1, 2, 3 . . . , |D|),
and Bdi

denotes the required number of sub-carriers for demand di. Figure 1 shows an
example of the SLICE network with six nodes and S = {0, 1, 2, 3} (i.e., |S| = 4) for each
fiber. In Figure 1, the sub-carrier usage of fiber links are only shown for those with partial
sub-carriers occupied (i.e., in shadow). In addition, for this example, there is only one
demand d1 (from node B to node F) in the set D.

0 1 2 3

A

B C

D E

F

Sub-carriers:

0 1c1: 0 1c1:

1 2c2: 1 2c2:

2 3c3: 2 3c3:

c3

D={d1(B to F)}S={0,1,2,3}

Figure 1. An Example of a Six-Node Network.

The sub-carrier consecutiveness constraint requires the allocation of a block of Bd
consecutive sub-carriers for a demand d. This requirement can be explicitly captured with
the concept of channel [5,6]. Note that we exclude the consideration of guard-bands in
this paper since which can as well be treated as part of the channel [4,5]. In Figure 1,
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for example, assuming that the demand size of d1 is 2, one can have three channels of c1,
c2, and c3, with two sub-carriers each. Some of the channels, however, cannot be used to
accommodate demands when sub-carriers within are occupied. For instance, in Figure 1,
for the request d1 of size 2 between B and F along the path B-C-F, only channel c3 can
be allocated.

Definition 1. Channel—A channel is a block of consecutive sub-carriers of size Bd for a request d.

2.2. Problem Definition

The formal definition of the studied problem is stated below.

Definition 2. Routing and Spectrum Allocation with Optimal Revenue (ROR)—given the demand
set D, and a SLICE network G(V, E, S), the ROR problem aims to achieve the maximum revenue
by satisfying requests from D with available channels along the routes of requests.

Note that our general definition leaves the freedom for exact ways of defining the
revenue. Some typical definitions of revenue, however, are addressed in the subsection
below. We further note that the ROR problem is NP-Hard, as shown in Theorem 1.

Theorem 1. The ROR problem is NP-Hard.

Proof of Theorem 1. One can simply reduce a regular RSA problem [4] to the ROR prob-
lem by setting the revenue of each request to be the same. Thus the ROR problem is
NP-Hard.

2.3. A Channel-Based Model for the ROR Problem

Next we adapt the channel-based ILP model from [5] and present it below, which
adopts the following variables/notations.

xd: 0 if demand d is not accommodated, 1 otherwise;
yp,c: 1 for the chosen channel c along the chosen path p, 0 otherwise;
p(d): the path set for demand d;
c(d): the channel set for demand d;
Rd: the revenue factor for accepting demand d;
θp,e: 1 if path p includes e (∈ E) as an edge, 0 otherwise;
rc,s: 1 if channel c contains sub-carrier s, 0 otherwise.

Each demand is associated with a revenue factor Rd, which may reflect the incentive of
accepting demand d. The resulting objective of maximizing the total revenue is expressed
as in Equation (1). We discuss two typical ways of defining Rd. One can set Rd = 1 for
∀d ∈ D, then revenue is reflected as the total number of accepted requests in Equation (2).
Likewise, one can set Rd = Bd ∀d ∈ D, then revenue is reflected as the total volume of
accommodated requests as in Equation (3).

MAX ∑
d∈D

xd × Rd (1)

MAX ∑
d∈D

xd (2)

MAX ∑
d∈D

xd × Bd (3)

There are only two groups of constraints in this compact model (and the sub-carrier
consecutiveness constraint is already taken into account implicitly). The constraints of
Equation (4) ensure that demand d is accepted when one and only one channel along
its route is chosen (i.e., yp,c = 1). In addition, Equation (5) is employed to avoid a sub-
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carrier clash, which happens only when two conditions are both satisfied: first, a given
sub-carrier appears in overlapping channels of multiple requests; the given sub-carrier is
over a common fiber link that resides in paths of those requests.

xd = ∑
p∈p(d)

∑
c∈c(d)

yp,c ∀d ∈ D (4)

∑
d∈D

∑
p∈p(d)

∑
c∈c(d)

(rc,s × θp,e × yp,c) ≤ 1 ∀e ∈ E, s ∈ S (5)

One well-known issue with a model that is path-based in nature is the potential
exponential number of path-related variables (i.e., yp,c). Interestingly, with our proposed
framework, we can obtain solutions based on the above model without this issue.

3. Resolve the Channel-Based Model: Relaxation, Decomposition and
Channel-Graph-Based Algorithm

In this section, we apply relaxation, and decomposition in sequence to the channel-
based model, resulting in a simplified model that can be exactly resolved by a Channel-
Graph-based algorithm.

3.1. Relaxation of the Channel-Based Model

Note that the most complex constraints of the channel-based ROR model lie in
Equation (5). We take the dual variables of Equation (5) (i.e., λe,s (≥0)), and apply Lagrange
relaxation to the constraints of Equation (5) (with the aim of simplifying the channel-based
model). The revised objective is shown in Equation (6). The resulting Relaxed model
consists of Equation (6) and Equation (7), and is referred to as the R model hereafter.

MAX ∑
d∈D

xd ∗ Rd + ∑
e∈E,s∈S

λe,s − ∑
e∈E,s∈S

(λe,s × ∑
d∈D

∑
p∈p(d)

∑
c∈c(d)

(rc,s × θp,e × yp,c)) (6)

xd = ∑
p∈p(d)

∑
c∈c(d)

yp,c ∀d ∈ D (7)

It remains to address two issues to resolve the original ROR problem. First, one needs
to find the optimal λe,s for the R model, which essentially solves the dual problem of the R
model and can be addressed with a Sub-gradient algorithm. Second, one needs to resolve
the R model at any given dual variables λe,s, namely the R(λe,s) model, which is further
elaborated below.

3.2. Decomposition of the R(λe,s) Model

It can be observed that, in the R(λe,s) model, for a given demand d, constraints of
Equation (7) are not coupled with that of any other demands. This observation inspires
us to further decompose the R(λe,s) model on a per-demand basis. The resulting model
consists of Equation (8), and Equation (9) as the objective and constraints, respectively.
Note that the term ∑e,s λe,s in the objective of Equation (6) is a constant at any fixed dual
variables, thus it is excluded in Equation (8).

MAX xd ∗ Rd − ∑
e∈E,s∈S

(λe,s × ∑
p∈p(d)

∑
c∈c(d)

(rc,s × θp,e × yp,c)) (8)

xd = ∑
p∈p(d)

∑
c∈c(d)

yp,c (9)

We refer to above Decomposed Relaxed model as the DR model. Note that after
the DR model for each demand is resolved, one can combine the solutions to resolve the
R(λe,s) model.
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3.3. Channel-Graph-Based Algorithm for the DR Model

Now we design a polynomial time algorithm to resolve the DR model based on the
concept of Channel-Graph. A Channel-Graph is a snapshot of the network at a particular
channel, thus there are at most |S| − Bd + 1 Channel-Graphs for a demand d. An example
of the Channel-Graph (CG) construction for the six-node network in Figure 1 is shown in
Figures 2–4. We assume that the demand d1 has a size of 2, which leads to three possible
channels: c1, c2, and c3 in Figure 1, with respective Channel-Graphs shown in Figures 2–4.
As an example, in Figure 2 of channel c1, link A-B, link B-C, and link C-F are removed
from the original network due to the occupancy of sub-carriers of c1 (i.e., Sub-carrier 0 or 1)
on those three links.

A

B C

D E

F

0 1c1:

Figure 2. Channel Graph for c1.

1 2c2:

A

B C

D E

F

Figure 3. Channel Graph for c2.

2 3c3:

A

B C

D E

F

Figure 4. Channel Graph for c3.

Based on the channel-graphs, Algorithm 1 provides an exact solution for the DR
model of each demand. Variable i in Line 1 is the index of all possible channels for demand
d (i.e., 1 ≤ i ≤ |S| − Bd + 1). Lines 4 to 7 construct the channel-graph for each channel
(say c), and assign the weight of an edge e as ∑s∈c (λe,s × rc,s). The rational of this weight
assignment is further elaborated below in the proof of Theorem 2. Lines 8 to 12 employ
the Dijkstra’s algorithm for the shortest path over all channel-graphs to decide the best
channel (i.e., Ch) and path (i.e., P f ). Cd represents the weight of the found shortest path.
As shown in Lines 14 to 17, a demand is accepted (i.e., xd = 1, and yP f ,Ch = 1) if Cd ≤ Rd
(i.e., non-negative revenue). As shown in Theorem 2, we claim that Algorithm 1 exactly
resolves the DR model.

Theorem 2. Algorithm 1 resolves DR model of a demand d optimally.

Proof of Theorem 2. For a given demand d, note that the corresponding DR model only
has a single constraint in Equation (9). Equation (9) essentially corresponds to a path and
channel selection for demand d (i.e., yp,c). With the constructed channel-graphs, we can sepa-
rately examine the objective of the model per channel if the weight of the edges in each channel-
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graph is properly assigned. For a demand d, the maximization of the objective is equiva-
lent to the minimization of the term ∑e∈E,s∈S (λe,s ×∑p∈p(d) ∑c∈c(d) (rc,s × θp,e × yp,c)). We
reformulate this term as ∑e∈E,c∈C ∑p∈p(d) (yp,c × θp,e ×∑s∈S (λe,s × rc,s)). This inspires
us to assign weight as ∑s∈c (λe,s × rc,s) for link e on the channel c, thus the minimum
weight path over all channel-graphs of demand d leads to the minimization of the term
∑e∈E,s∈S (λe,s ×∑p∈p(d) ∑c∈c(d) (rc,s × θp,e × yp,c)), and further the optimization of the
DR model.

Algorithm 1 Channel-Graph-Based Algorithm for DR Model of Demand d.

1: i← 1
2: Cd ← Rd
3: for i ≤ |S| − sd + 1 do
4: Make a copy of the original network, namely CGi,d
5: for all Link e ∈ CGi,d do
6: Remove e from CGi,d if Channel i is not available on e, otherwise:
7: we ← ∑s∈i (λe,s × ri,s)

8: end for
9: Obtain the minimum weight path on CGi,d using Dijkstra’s algorithm (assume that

the found path p has weight W)
10: if W ≤ Cd then
11: Cd ←W
12: Ch← i
13: P f ← p
14: end if
15: i← i + 1
16: end for
17: xd ← 0
18: if Cd ≤ Rd then
19: xd ← 1
20: yP f ,Ch ← 1
21: end if

With the exact solution of DR model, we can resolve the R(λe,s) by combining the
results from each demand d ∈ D. It now remains to find the optimal dual variables λe,s to
resolve the original problem, which is elaborated in the next section.

4. The Primal-Dual Framework for the ROR Problem

We present the solution framework in this section, focusing on two major components
of this framework: the Primal algorithm, and a Sub-gradient algorithm. Note that the
Primal algorithm addresses the ROR problem directly (i.e., the primal problem), while the
Sub-gradient algorithm finds the optimal λe,s (which essentially resolves the dual problem
of ROR). We hence refer to the framework as the primal-dual framework.

4.1. The Primal Algorithm

Note that the solution obtained by Algorithm 1 may not be feasible for the ROR
problem as Equation (5) is relaxed. We need an algorithm that directly solves the ROR
problem for a definite feasible solution, which is presented in Algorithm 2, namely the
Primal algorithm. As the solution found by Algorithm 2 is feasible, the associated revenue
is adopted as a lower bound (LB) for that of the ROR problem.
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Algorithm 2 The Primal Algorithm for the ROR Problem.

1: for all d ∈ D do
2: for all e ∈ CGc,d, c ∈ c(d) do
3: wd

e,c ← ∑s∈c λe,s
4: end for
5: end for
6: Arrange demands in D in descending order based on the value of xd ∗ Rd − Cd
7: for all d ∈ D do
8: W ← ∞
9: for all Channel ci ∈ c(d) do

10: Obtain the minimum-weight path on the current channel-graph of d using
Dijkstra’s algorithm (assume that the found path p has weight wc)

11: if wc ≤W then
12: W ← wc
13: Pd*← p
14: Chd*← ci
15: end if
16: end for
17: for all Channel-Graph CGc′ ,d′ , c′ ∩ c 6= ∅ do
18: for all e ∈ Pd* do
19: Remove e from CGc′ ,d′

20: end for
21: end for
22: end for

Following the descending order of xd ∗Rd−Cd (i.e., the revenue found by Algorithm 1),
Algorithm 2 sequentially accepts demands in D. In Lines 5–7, we assign the weight (wd

e,c) of
edge e on CGc,d as ∑s∈c λe,s. Note that this weight reflects the extent that the corresponding
constraints are violated after the relaxation. The minimum-weight path found (i.e., path
Pd* along channel Chd*) in Lines 7 to 12 attempts to achieve the least violation of the
original constraints. As Channel Chd* is planned to be reserved along path Pd*, we remove
corresponding edges from other channel-graphs to prevent the related sub-carriers from
being used again in Lines 13 to 15.

4.2. The Sub-Gradient Algorithm for the R Model

The Sub-gradient Algorithm is an iterative process that is guaranteed to converge
to the best dual variable or Lagrange multiplier (i.e., λe,s) [7]. The objective of the found
solution with a Sub-gradient Algorithm is an upper bound (UB) of that of the original
problem [7]. The Sub-gradient Algorithm is reflected in Algorithm 3 (excluding Line 11).
In Algorithm 3, i is the iteration number. The dual variable in Iteration i is denoted as
λi

e,s, and hence the R model of the current iteration is denoted as R(λi
e,s). In Lines 8 to

10, Algorithm 1 resolves the decomposed R(λi
e,s) model (i.e., the DR model), and updates

UB and/or LB (if better UB and/or LB are found). The dual variables are updated in
each iteration by taking the violations of the relaxed constraints of the original model into
account in Lines 12 to 13, where α is a standard scalar [7].

4.3. Summary of the Overall Framework

The Primal-Dual framework presented in Algorithm 3 iteratively maintains an upper
bound and lower bound for the original ROR problem from the Sub-gradient algorithm and
the Primal algorithm, respectively. Line 11 applies the Primal algorithm to obtain a feasible
solution to the ROR problem in each iteration. There are two possible stopping criteria
(i.e., Line 16): the maximum iteration number (i.e., MAX) and the value of ∆ = UB−LB

LB .
The second criteria is reached when the upper bound and lower bound are close enough
(e.g., ∆ ≤ ε, and ε is a small number that can be customized as an input).
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It is worth noting that the proposed framework bears a few important merits. First,
our framework stays away from directly solving any time-prohibitive ILP models (even
though it is derived from a channel-based model). Second, our framework avoids exploring
the exponential number of potential paths. DR model is exactly solved with the simple
Dijkstra’s algorithm following a proper link weight assignment (Line 8 of Algorithm 1).
Likewise, in the Sub-gradient algorithm, only selected paths in the current iteration (i.e.,
for which yp,c = 1) contribute to the updating of the dual variables in Line 13 of Algorithm 3.
Third, with either stopping criteria in Line 16 of Algorithm 3, the obtained solution has a
guaranteed closeness to the optimal solution as shown in Theorem 3 below, where OPT is
the revenue from the optimal solution.

Theorem 3. The framework can obtain a feasible solution with a revenue no less than (1−∆)*OPT.

Proof of Theorem 3. First note that the solution found by the Primal algorithm or the
one with LB updated in Line 10 of Algorithm 3 is always feasible. We have LB ≤ RV ≤
OPT ≤ UB, where RV denotes the obtained revenue from the framework. As OPT−UB+
LB ≤ UB−UB+ LB = LB, we have RV ≥ LB ≥ OPT−UB+ LB = (1− UB−LB

OPT ) ∗OPT ≥
(1− UB−LB

LB ) ∗OPT = (1− ∆) ∗OPT.

Algorithm 3 The Primal-Dual Framework for the ROR Problem.

1: for all e ∈ E, s ∈ S do
2: λ0

e,s ← 0
3: end for
4: UB← Revenue of accommodating all demands
5: LB← 0
6: α← 1
7: i← 0
8: repeat
9: Apply Algorithm 1 to resolve the decomposed R(λi

e,s) model, and update the UB if
needed

10: if The solution in the above step is feasible then
11: Update the LB if needed
12: end if
13: Apply the Primal algorithm, and update the LB if needed
14: for all e ∈ E, s ∈ S do
15: λi+1

e,s ← [λi
e,s + α ∗ (∑d∈D ∑p∈p(d) ∑c∈c(d) rc,s × θp,e × yp,c − 1)]+

16: end for
17: i← i + 1
18: α← 1

i
19: until i == MAX or ∆ is small enough

5. Performance Evaluation

In this section, the proposed framework is evaluated and analyzed. The NSFNET
network is used as the network topology with |S| = 40. The demand set D consists
of a demand from each node-pair, with Bd as an integer number uniformly distributed
within [1, x] (x is an integer number) for each demand d. For each experiment, average
performance based on hundreds of instances (at the same setting) are collected and reported
below. Furthermore, the proposed framework does not require an ILP solver such as ILOG
CPLEX [8] as a polynomial-time algorithm (i.e., Algorithm 1) is proposed to address the
DR model.
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5.1. The Impact of the Stopping Criteria

As we discuss above, we have two stopping criteria: the maximum iteration number,
and the closeness of the current solution (i.e., ∆). We investigate the impact of these two
criteria to uncover some insights on the choice of these two parameters.

We first investigate the impact of parameter of ∆ on computational time in Figure 5
where the X-axis is the ∆ value and the Y-axis is the computational time needed to achieve
the respective ∆. Clearly, with the increase of ∆, the required computational time decreases
as the larger ∆s correspond to lower revenues. Approximately, to achieve ∆ = 0.05,
700 iterations are consumed while less than 100 iterations are needed to achieve ∆ = 0.1.
The best ∆ achieved in Figure 5 is 0.05. One question arises is: Do more iterations lead to a
further decrease in ∆?. We investigate this problem below.

0

200

400

600

800

0.05 0.06 0.07 0.08 0.09 0.1

T
im

e 
(s

)

∆ < 100 iterations

~ 700 iterations

Figure 5. ∆ and Computational Time.

Figure 6 plots the trend of computational time (i.e., the Y-axis) as the number of
iterations (i.e., the X-axis) grows. Evidently, it reveals an almost linear increase of time
with the growth of the number of iterations. This observation is to be expected. Note
that, however, an increasing number of iterations does not lead to definite performance
improvement based on the labeled ∆ value in Figure 6. When the number of iterations is at
the lower end, its increase leads to an evident increase in performance (i.e., the decrease in
∆). When the number of iterations reaches a larger value (e.g., 700 in Figure 5), a further
increase does not lead to revenue increase as λe,s already converges to the optimal value.
Based on the above discussion, in reality, depending on time-sensitivity and the solution
quality requirement, one can trade-off along these two dimensions.
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5.2. Performance in Revenue

We further study the performance of the proposed framework by examining the
achieved revenue, and the SPSR (Shortest Path with Maximum Spectrum Reuse) and
BLSA (Balanced Load Spectrum Assignment) algorithms (which are commonly adopted
as benchmark algorithms in the literature) from [4] are used for comparison. The major
difference between SPSR and BLSA lies in the routing: the shortest-path routing is used in
the former; and load-balanced routing is used in the latter. The maximum iteration number
(i.e., MAX) is set to be 700. The performance comparison is shown in Figure 7 where the
X-axis of Figure 7 corresponds to x or the maximum value for demands between node-pairs
and the Y-axis shows the revenue by setting Rd = Bd for each demand d. In Figure 7,
PD(n) represents the proposed Primal-Dual framework when setting ∆ ≤ n. UB refers
to the upper bound that is obtained by the Sub-gradient algorithm (while LB matches
the respective revenue from PD(n) solution). From Figure 7, with a light traffic load (e.g.,
x ≤ 8), all schemes demonstrate a similar performance as all requests are accommodated
with all schemes. With the increase of the load, the proposed schemes achieve higher
revenue than that of BLSA and SPSR. The performance difference even enlarges with the
further increase of traffic load. The PD(0.05) scheme apparently outperforms the PD(0.1)
scheme in most cases at the expense of a possible longer computational time.
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Figure 7. Revenue Comparisons.

6. Related Work

The Routing and Spectrum Allocation (RSA) problem shares similarity with the
Routing and Wavelength Assignment (RWA) problem in WDM networks. The latter has
been extensively studied in the literature (see, e.g., [9–14]), however, the solutions to RWA
problem cannot be applied to RSA due to two major reasons. First, in RWA, a traffic
demand is typically accommodated as a lightpath at the granular of individual wavelength.
In SLICE networks, however, one may have to allocate a group of consecutive sub-carriers [2].
Second, RWA problem is guard-band-oblivious since guard-bands are predetermined and
fixed in WDM networks. In the RSA problem, however, guard-bands between lightpaths
have to be determined at run time [4].

After being introduced by a group of pioneering work [2,4,15,16], there have been
extensive studies on the RSA problem [17]. We classify those solutions based on two
different criteria. According to the nature of the adopted methodologies, those solutions
can be broadly classified into two categories. First, optimal ILP-based approaches that
provide exact solutions to the RSA problem, which can be further divided into three types:
link-based models [4], path-based models [15], and channel-based models [5]. ILP models
typically are limited to small size RSA problem instances due to the prohibitive computa-
tional time. Second, non-optimal solutions to the RSA problem, which include heuristic
algorithm and meta-heuristic algorithms. Non-optimal solutions typically divide the rout-
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ing and spectrum allocation process into two sub-problems (i.e., routing sub-problem,
and spectrum allocation sub-problem) and solves the two problems in sequence [4,18].
Meta-heuristic approaches employ varieties of methodologies including tabu-search [19],
differential evolution [20,21], ant colony optimization [21], bee colony optimization [22],
Genetic algorithm [18], as well as AI/ML (Artificial Intelligence/Machine Learning) tech-
niques (e.g., [23,24], and see [25] for a comprehensive discussion). The main drawback of
heuristic/meta-heuristic algorithms is the lack of a guaranteed closeness to the optimal
solution. These limitations of existing approaches partially motivated this work.

Alternatively, we can classify the RSA problem based on the employed physical
constraints, resulting in many variations of the RSA problem. When the modulation level
of the signal is introduced to RSA, the resulting problem is referred to as the RMLSA
(Routing, Modulation Level, and Spectrum Allocation) problem [26–28]. The study in [29]
in fact further incorporated the consideration of signal regeneration in RMLSA (as well as
survivability). When physical layer security (e.g., eavesdropping) is taken into account,
the resulting RSA problem adds in security-awareness [30]. The RSA problem can also
consider the physical layer power spectral density [31]. With the emerging of Space Division
Multiplexing (SDM) technologies, the RSA variant further addresses the assignment of
fiber cores, which is referred to as the Routing, Modulation, Spectrum, and Core Allocation
(RMSCA) problem in this context [32–34]. RSA can also be studied under other assumptions
including: RSA for multi-cast traffic [35], RSA allowing delayed decision [36], and RSA
with the presence of multiple fibers [37], to name a few. It is worth mentioning that the RSA
problem overlaps with the Optical Virtual Network Embedding (OVNE) problem in SLICE
networks [6,38–40]. The OVNE problem contains an instance of the RSA problem in the
link mapping process where bandwidth requests between virtual nodes are instantiated as
lightpaths of SLICE networks. The framework presented in this work mainly addresses the
baseline RSA problem, and extensions to the above variations of the RSA problem will be
explored in the future.

7. Conclusions

It is important to study the fundamental Routing and Spectrum (RSA) problem in
Spectrum-sliced Elastic Optical Path (SLICE) networks. Despite extensive literature on this
topic, the search continues for a solution that avoids the extensive computational time in
Integer Linear Programming (ILP) models and addresses the lack of guarantee on solution
quality in heuristic/meta-heuristic solutions for RSA. In this paper, we propose a novel
primal-dual solution framework to the RSA problem. Our framework iteratively maintains
an upper bound (UB) (based on the relaxation and decomposition of a channel-based model)
and a lower bound (from a proposed Primal algorithm) for the problem, resulting a near-
optimal solution with a per-instance guarantee on its closeness to the optimal solution. In our
future work, we plan to extend the proposed framework to take other important aspects
of a SLICE network design such as the modulation level/signal reachability, survivablity,
and network virtualization into account.
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