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This study characterizes evolution at ≈1.86 million Single Nucleotide Polymorphisms (SNPs) within a natural population of yellow

monkeyflower (Mimulus guttatus). Most SNPs exhibit minimal change over a span of 23 generations (less than 1% per year),

consistent with neutral evolution in a large population. However, several thousand SNPs display strong fluctuations in frequency.

Multiple lines of evidence indicate that these ‘Fluctuating SNPs’ are driven by temporally varying selection. Unlinked loci exhibit

synchronous changes with the same allele increasing consistently in certain time intervals but declining in others. This synchrony

is sufficiently pronounced that we can roughly classify intervals into two categories, “green” and “yellow,” corresponding to

conflicting selection regimes. Alleles increasing in green intervals are associated with early life investment in vegetative tissue

and delayed flowering. The alternative alleles that increase in yellow intervals are associated with rapid progression to flowering.

Selection on the Fluctuating SNPs produces a strong ripple effect on variation across the genome. Accounting for estimation error,

we estimate the distribution of allele frequency change per generation in this population. While change is minimal for most SNPs,

diffuse hitchhiking effects generated by selected loci may be driving neutral SNPs to a much greater extent than classic genetic

drift.
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Impact Summary

Across the millions of polymorphisms that reside within most

species, how much change is typical from one generation

to the next? This is an elementary but important question

for a science named after change (evolutionary biology) and

has implications across biology from species conservation to

medicine (Messer et al., 2016, Rudman et al., 2022, Stearns,

2012). We know the processes that cause allele frequency

change within populations (genetic drift, natural selection,

migration), but remain largely ignorant about the quantita-

tive pace of genome-wide evolution. Here, we use population

genome sequencing to directly estimate the pace of change,

generation-to-generation, at millions of loci in a natural plant

population. Natural selection is strong but frequently changes

in direction. Fluctuating natural selection not only drives loci

affecting fitness, but also has a subtle but pervasive effect on

the entire genome.

The genetic measure of evolution is �p, the per-generation

change in allele frequency. In small populations, �p will be sub-

stantial across the genome owing simply to genetic drift. Many

species, even those with broad geographic distributions, exist as

metapopulations containing many small subpopulations (Wade,

2016, Husband and Barrett, 1992). In large populations however,

the importance of drift is greatly diminished and �p should be

minimal on ecological timescales (ca. 10 generations). In con-

trast, natural selection can generate large magnitudes for �p

in large populations. Strong selection generating significant �p

within populations has been documented for major loci such as

color polymorphisms and inversions (Endler, 1986, Ford, 1971,

Lewontin and Dunn, 1960, Mérot et al., 2020, Joron et al., 2011),

but these examples are often considered atypical given that most

genetic variation is generated by loci with smaller phenotypic

effects. However, accumulating evidence suggests that selec-

tion on hundreds of loci is measurable generation-to-generation

within natural populations (Messer et al., 2016). Statistically
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Figure 1. Top: the sampling design to estimate pt, allele frequency, from generation 0 (year 1998) to generation 23 (year 2021). Bottom:

Examples of SNPs that test positive for Fluctuating (Blue = Chr_ 10, 16339654) and Directional (Orange = Chr_11, 6694754) change versus

a Neutral SNP (Grey = Chr_01, 1015040). The error bars are +/-one standard error.

significant �p at SNPs across the genome has been demonstrated

in insects (Bergland et al., 2014, Machado et al., 2021, Soria-

Carrasco et al., 2014), vertebrates (Therkildsen et al., 2013, Chen

et al., 2019), and plants (Troth et al., 2018, Anderson et al.,

2014, Exposito-Alonso et al., 2019), both within and between

generations.

Genomic scans for selection routinely employ outlier ap-

proaches (Lewontin and Krakauer, 1975), finding loci that

exhibit features significantly deviant from the genome-wide

distribution. In surveys of nucleotide sequence variation, the fea-

tures are typically measures of polymorphism, divergence, haplo-

type structure, or inter-population differentiation (Luqman et al.,

2021, Haasl and Payseur, 2016). In studies of contemporary evo-

lution, selected loci are inferred because they exhibit �p too large

to be generated by genetic drift (Fisher and Ford, 1947, Walsh

and Lynch, 2018). Assuming that most polymorphisms are neu-

tral, the genome-wide distribution for �p can be used to esti-

mate the effective population size (Ne) establishing a null distri-

bution for selection tests. This approach is based on the “standard

model” of population genetics (Messer et al., 2016) which posits

not only that most variants are neutral, but also that their fate is

governed by genetic drift. However, selection on a minority of

loci can have pronounced effects on neutral polymorphisms ow-

ing to processes variously described as hitchhiking (Smith and

Haigh, 1974) or linked selection (Cutter and Payseur, 2013) or

genetic draft (Gillespie, 2000). The effects of rapid adaptive fixa-

tions (selective sweeps (Begun and Aquadro, 1992) and recurrent

deleterious mutation (background selection (Charlesworth et al.,

1995) on closely linked neutral loci are well appreciated, but the

quantitative importance of linked selection (in all its forms) in

determining genomewide patterns of variation remains unclear.

In this paper, we characterize genome-wide �p over 23 gen-

erations (years) within a single large population of the wildflower

Mimulus guttatus (yellow monkeyflower). We estimated allele

frequencies by pooled sequencing of tens of thousands of seeds

collected from adult plants at each of the 11 time points, start-

ing in 1998 and concluding in 2021 (Figure 1). While the ab-

solute number of genomes is very large, effective sample sizes

are smaller because seeds were collected as maternal families,

an average of about 600 distinct families per year (Methods A).

To accurately estimate allele frequency, we developed a proce-

dure using two independent samples from each year. We first ap-

ply Fisher’s (Fisher and Ford, 1947) Arcsine Square root trans-

formation (z = 2 Sin−1(
√

p)) and then examine the distribution

of differences in z (across all SNPs) between paired samples.

The genome-wide distribution for differences is remarkably nor-

mal and homogeneous (Supplemental Figure 3), enabling robust

estimation of the error variance from the data itself. Given this
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characterization of uncertainty, we apply likelihood-based evolu-

tionary models to predict change through time (Methods A-C).

At each SNP, we determined the likelihood of the data under three

competing models: Neutral evolution where true change is min-

imal; Directional selection where frequency changes in a con-

sistent way through time (adapted from Schaffer et al., 1977);

and Fluctuating selection with temporally inconsistent change

(adapted from Fisher and Ford, 1947). SNP trajectories support-

ing each of these models are depicted in the lower panel of Fig-

ure 1. The first major result of this study concerns the outliers

identified from these tests: Strong fluctuating selection is indi-

cated at about 1000 loci distributed across the entire genome. The

second major result concerns the background: The overall pattern

of allele frequency change through time indicates a pervasive ef-

fect of linked selection on neutral polymorphisms.

Results and Discussion
The study population is located on Iron Mountain (IM) in the

Cascade mountains of Oregon (Latitude: 44.402217, Longitude:

−122.153317). IM is an outcrossing, annual population with a

life cycle restricted to a few months between snow melt and sum-

mer drought (Troth et al., 2018, Willis, 1993, Fishman and Kelly,

2015). Seeds were collected each year after all plants had ceased

flowering. After DNA extraction and sequencing of two pools per

year, we applied stringent filters to putative variants (Methods A)

and then estimated the allele frequency trajectory for 1,857,010

SNPs. We estimated the census size of IM (the number of plants

that flower) at N ≈ 300,000 in the 2013 field season (SI Ap-

pendix 1). This number oscillates but the number of flowering

plants greatly exceeds 100,000 in most years. Assuming that most

SNPs are neutral, we can estimate the effective population size

(Ne) from the overall divergence in allele frequency from 1998

to 2021. Accounting for estimation error (Methods B), our pro-

cedure yields Ne = 11,790. This is much smaller than the census

size (discussed below), but we apply this Ne to establish conser-

vative significance thresholds for our directional and fluctuating

selection tests.

Minimal change is expected for neutral polymorphisms in a

large population over 23 generations and most SNPs are consis-

tent with this expectation. Imposing a False Discovery Rate of

5%, we find that 1796 SNPs are significant for fluctuating se-

lection (Supplemental Table 1A), while only 40 SNPs are signif-

icant for directional selection (Supplemental Table 1B). Visual

inspection of the trajectories confirms that reversals in the direc-

tion of change are the rule at SNPs significant for the Fluctuating

test. Some of the significant SNPs are closely linked. We calcu-

lated Linkage Disequilibrium (LD) among the SNPs in the time

series using 165 fully genome-sequenced lines derived from the

IM population (Troth et al., 2018). LD measured as r2 (Hill and

Robertson, 1968) averages 0.3 to 0.4 within genes, but declines

to near zero at inter-SNP distances of 50kb (Supplemental Ta-

ble 2), consistent with previous estimates from IM (Puzey et al.,

2017). To avoid double counting in the analyses described be-

low, we thin each list to the most significant SNP per gene. This

yields 994 “Fluctuating SNPs” and 35 “Directional SNPs”. The

Fluctuating SNPs are distributed evenly across chromosomes—

there is strong positive linear relationship between the number of

genes per chromosome and the number of genes that have a Fluc-

tuating SNP (Supplemental Figure 1). After thinning, the average

distance between Fluctuating SNPs adjacent on chromosomes is

254kb.

If the IM population experienced severe bottlenecks within

the 23-year timeseries, then drift alone could have generated

greater fluctuations in some intervals than others. However, this is

not a viable explanation for the significance of Fluctuating SNPs.

A bottleneck will elevate the magnitude of �p across the genome.

A year-to-year analysis of change at the whole genome scale pro-

vides no support for such outlier years (Appendix S2). The fluc-

tuating SNPs that emerge as significant in the likelihood ratio

tests exhibit much greater change than the genomic background

over all intervals. More importantly, drift-driven changes at neu-

tral SNPs should be uncorrelated between unlinked loci and com-

pletely unrelated to the biological attributes of alternative alle-

les. As shown below, the overall pattern of change at Fluctuating

SNPs is remarkably non-random in both regards (Figures 2–5).

First, many of the Fluctuating SNPs appear to be respond-

ing in parallel (synchronously) to selection. At any SNP, we can

calculate change within each of the 10 intervals between time-

points (1998-2007, 2007–2010, 2010–2011, etc.). At Fluctuating

SNPs, the allele that increased from 2010 to 2011 usually also

increased from 2015 to 2016 (r = 0.33 in Figure 2A, left). How-

ever, this same allele tended to decline from 2016 to 2017 (r =
−0.24 in Figure 2A, right). The time series for different SNPs are

sufficiently synchronized that we can classify intervals into two

categories (“green” or “yellow”) that predict change across loci.

Figure 2B reports all significant correlations between changes of

Fluctuating SNPs between each pair of non-adjacent intervals.

Intra-category comparisons (yellow versus yellow or green ver-

sus green) exhibit positive correlations, while inter-category con-

trasts are negative (Figure 2B). In fact, this pattern of correla-

tions defines intervals as green or yellow. The color labels are

based on features of the alleles that tend to increase in each sort

of interval. The data presented below suggests that alleles that in-

crease in green intervals are associated with early life investment

in vegetative tissue and delayed flowering. Yellow alleles are

associated with more rapid progression to flowering (more yel-

low flower tissue relative to green leaves). The exemplar SNP for

fluctuating selection (the blue trajectory of Figure 1) matches the
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Figure 2. All calculations were performed on transformed frequencies: z = 2Sin−1(
√
p). (A) The contrast of change between two yellow

intervals (left) and between a yellow and a green interval (right) for change inminor allele frequency. The lines are orthogonal regressions

using the ratio of observed variances for the ratio of error variances. (B) Each significant Pearson correlation (r) of changes between non-

adjacent intervals is reported for the 994 Fluctuating SNPs (p< 0.05; ns= not significant). (C) The average change in transformed frequency

of minor (blue, n = 994) and perennial (orange, n = 393) alleles is reported for each interval. Average changes are statistically different

from zero except those in 2010-2011 and 2013-2014.

green/yellow classification perfectly: The scored allele increased

in each green interval and declined in each yellow interval. This

is not true of all fluctuating SNPs and not all yellow-yellow inter-

val contrasts are significantly non-zero (Figure 2B). For interval

correlations, we excluded adjacent intervals because the shared

parameter estimate induces a statistical correlation between esti-

mates. Non-adjacent intervals are based on entirely distinct data

and should exhibit no correlation under drift.

Second, the pattern of change at Fluctuating SNPs is

predictable from the properties of alternative alleles, specif-

ically their frequency within the IM population, their distri-

bution among populations of M. guttatus, and their associa-

tion with phenotype. Minor alleles (the less common variant)

tend to increase in green intervals but decline in yellow in-

tervals (blue bars in Figure 2C). Only two intervals, 2010–

2011 and 2013–2014, fail to exhibit a significant change in
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Figure 3. The change inmean polygenic score of leafwidth across

each of the 10 intervals is predicted from the mean change in

�z(perennial) for that interval (Fig 2C). The observed covariance

of changes (3.55E-04) was greater than 99.96% of permuted cases.

The point labels refer to the start year of each interval.

minor allele frequency. For characterizing patterns across in-

tervals, it is useful to calculate a simple index of change

for each SNP: Cg = (Sum of changes in green intervals) −
(Sum of changes in yellow intervals).

Cg will be positive if the reference base tends to increase

in green intervals but decline in yellow, negative if the alter-

native base follows this pattern. The distribution of Cg among

Fluctuating SNPs is clearly bimodal (Supplemental Figure 2),

but SNPs that do not follow the green/yellow pattern yield Cg

close to zero. We find a strong, negative relationship between

Cg and the average frequency of the reference base within IM

(r = −0.38, p ≈ 10−38). When the reference base is less com-

mon than the alternative base, it is usually green. It is typically

yellow when the major allele. This does not imply that selection

is inherently frequency dependent, just that there is a strong asso-

ciation between current population frequency and the pattern of

change since 1998.

The SNPs present IM are polymorphic within other popula-

tions across the species range (Monnahan and Kelly, 2017). M.

guttatus occurs in both annual and perennial forms. Populations

exhibit adaptive genetic differentiation associated with this differ-

ence (Hall and Willis, 2006), but there is clear evidence of ongo-

ing gene flow between annual and perennial populations (Lowry

and Willis, 2010, Colicchio et al., 2020). To identify loci distin-

guishing annual and perennial ecotypes, Gould et al. (2017) col-

lected plants from 47 perennial and 50 annual populations and

then sequenced a pooled DNA sample for each group. We here

remapped the sequence data from the annual and perennial pools

to the current M. guttatus reference genome and then estimated

allele frequency within the pools for the time series SNPs (see

Methods D). Among the 994 Fluctuating SNPs, 963 have at least

20 sequence reads in both Annual and Perennial samples and thus

can be used to obtain a rough estimate of allele frequency. Among

these, 393 SNPs exhibit sufficient divergence between pools to

label one allele as perennial and the alternative as annual. Con-

sidering this classification in relation to the time series, we find

that perennial alleles tend to increase in green intervals and de-

cline in yellow intervals (orange bars in Figure 2C). Next, we

calculated the simple difference in transformed allele frequency

(perennial pool minus annual pool for all 963 SNPs). We find a

highly significant positive association between Cg and this differ-

ence (r = 0.14, p ≈ 10−5), confirming the pattern evident from

the 393 SNPs with high divergence (Figure 2C). The responses of

perennial alleles and minor alleles are distinct but not indepen-

dent. The perennial allele is the minor allele in 248 of 393 cases

(63%).

Next, we tested whether the phenotypic effects of alleles pre-

dict their fluctuations through time. The association of allelic

features with direction of change (Fig 2) indicates an effect of

natural selection, but not how fitness differences are generated.

We can estimate the association of Fluctuating SNPs with phe-

notypes using data from the genome-wide association study of

Troth et al. (2018). We first remapped the sequence data from

the 165 homozygous lines with greenhouse phenotype data to

the current genome assembly. The sequenced lines are all de-

rived from IM and we find that allele frequency within the lines

is very strongly correlated with the mean allele frequency from

the time series (r = 0.97 at Fluctuating SNPs), which indi-

cates the lines are a representative sample of the IM population.

We next re-estimated SNP effects on traits (two phenology statis-

tics and 11 measures of plant/flower size) using a linear mixed

model (Methods E). This produced an estimate (and standard er-

ror) for the additive effect of Fluctuating alleles on each trait. We

could then calculate a year-specific mean “polygenic score” for

each trait: P̄t = ∑

i
2pi,tαiwi , where i indexes SNPs, pi,t is the

frequency of the reference allele at SNP i in generation t of the

timeseries, αi is the additive effect of this allele, and wi is an SNP-

specific weight determined by the standard error on αi. If additive

effects were estimated without error, P̄t would be the contribu-

tion of Fluctuating SNPs to the mean breeding value (and thus

mean phenotypic value) of the trait (Walsh and Lynch, 2018).

However, all the traits are highly polygenic (Troth et al., 2018)

and estimation error on per-locus effects is significant. Thus,

P̄t averages across SNPs using generalized least squares giving

greater weight to SNPs with more accurate estimates (Meth-
ods E). These weights do not change with time so differences

in P̄t though time are driven entirely by changes in allele fre-

quency.

We find a strong and highly significant association between

the change in mean score (�P̄) of Leaf width and whether an

interval is green or yellow (Figure 3). We used the change in
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Figure 4. The average of T1 and T2 in each quartile group of SNPs. SNPs within each group are in the same quartile for standardized link-

age disequilibrium calculated on a gene specific basis. The error bars are +/- one standard error (the standard deviation of the bootstrap

distribution).

Perennial frequency (Fig. 2C) as a continuous measure of

green/yellow, but equivalent results are obtained if minor allele

change is used instead (Supplemental Table 3). Across Fluctuat-

ing SNPs, alleles that increase leaf size increased (on average) in

green intervals and declined in yellow. The same pattern is ob-

served for phenology and flower size measures, although permu-

tation tests proved only marginally significant (0.01<p<0.05) or

marginally non-significant (0.05<p<0.10) for these traits (Sup-

plemental Table 3). Critical here, leaf width and flower size

were measured on the day plants first flowered. Previous ge-

netic studies of the IM population demonstrated a genetic trade-

off between development rate and size at reproduction (Troth

et al., 2018, Kelly, 2008). Genotypes that delay flowering usu-

ally have greater above-ground biomass (both leaves and flow-

ers) when they do flowering. Genotypes that progress to flower

more rapidly are typically smaller plants at this stage. At the loci

mapped in their study, Troth et al. (2018) showed that “small/fast”

alleles are usually more frequent than the alternative “large/slow”

alleles within IM. Consistent with this, we here find that minor

alleles tend to increase in green intervals and decline in yellow

intervals (Figure 2C) and that green alleles are associated with

within increased vegetative mass when plants reach flowering

(Fig 3).

THE MAINTENANCE OF POLYMORPHISM WITH

FLUCTUATING SELECTION

SNP variation within IM is sampled from the M. guttatus

metapopulation (the same polymorphisms segregate in other pop-

ulations (Monnahan and Kelly, 2017)); a fact immediately rel-

evant to the maintenance of polymorphism. We identified 20x

more Fluctuating SNPs than Directional SNPs, which is unsur-

prising given that strong directional selection eliminates poly-
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Figure 5. The per generation distribution of dz is reported: blue = the ASHR model fit to the real data (2010-2017), orange = genetic

drift with Ne= 11,790. The bin intervals of +/− 0.01 (0 includes values between −0.01 and 0.01, 0.02 contains values from 0.01 to 0.03,

etc). Orange bars for Abs(dz) > 0.03 are less than 10-5 (below the y-axis minimum). The y-axis is on a log scale.

morphism rapidly – they cease to exist when the favored allele

fixes. Single locus population genetic models predict fairly strin-

gent conditions for balanced polymorphism (Hedrick, 1976), but

multi-locus models indicate that fluctuating selection can greatly

elevate the genetic variance if novel variants are occasionally in-

troduced into the population (Bürger and Gimelfarb, 2002, Kon-

drashov and Yampolsky, 1996, Wittmann et al., 2017). These

models posit mutation as the input of new variation, but gene

flow is the principal source of novel alleles into IM (Puzey et al.,

2017). While immigration is not high in an absolute sense (IM ex-

hibits Fst ≈ 0.1 with neighboring populations (Monnahan et al.,

2015)), it delivers variation at a rate that is orders of magnitude

higher than mutation.

Considering quantitative variation, the size/speed tradeoff

evident within IM is also evident among populations. Most

populations, particularly those at lower latitudes and elevations,

have longer growing seasons than IM. This allows greater invest-

ment in vegetative growth prior to flowering. In areas where the

ground remains wet year-round, M. guttatus is often perennial.

Reciprocal transplant experiments between annual and perennial

populations of M. guttatus have demonstrated divergent selection

with early flowering favored in the annual habitat and delayed

flowering (combined with greater vegetative mass at the time

of flowering) in perennial habitats (Hall and Willis, 2006). In

this way, the intra-population green/yellow distinction identified

by the time series data matches the annual/perennial divergence

pattern – perennial alleles tend to increase in green intervals

(Figure 2C) and green alleles exhibit the phenotypic tendencies

of perennial populations.

A chromosomal inversion on chromosome 8 segregates

within M. guttatus and the derived orientation tends to predomi-

nate in perennial populations (Lowry and Willis, 2010, Twyford

and Friedman, 2015). This inversion occurs only at very low

frequency at IM, if at all (Monnahan and Kelly, 2017). How-

ever, many SNPs within this section of the genome segregate

within IM and exhibit allele frequency difference between an-

nual and perennial orientations (Monnahan and Kelly, 2017).

About 40 of the Fluctuating SNPs occur in the inverted section

of chromosome 8. The Kirkpatrick and Barton (2006) model

predicts that selection can favor inversions if they impede re-

combination between linked loci subject to geographically vary-

ing selection; in this case between habitats allowing prolonged

growth versus those that require rapid progression to flowering.

Of course, the great majority of Fluctuating SNPs are not in

the inversion region of chromosome 8. For this reason, the An-

nual/Perennial classification used for Figure 2C should be con-

sidered a marker of life history variation among populations.

Small/fast alleles at loci across the genome are likely to be at

higher frequency in annual populations than perennial popula-

tions given the highly polygenic basis of variation (Troth et al.,

2018).

THE GENOMEWIDE EFFECT OF FLUCTUATING

SELECTION AND THE PACE OF CHANGE

The fluctuating SNPs provide a clear indication of selection on

individual loci, but we expect that selection on many loci to

have diffuse effects on polymorphisms throughout the genome
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via linked selection (Gillespie, 2000, Barton, 2000). Buffalo and

Coop (2020) developed a method to evaluate linked selection in

time series data by partitioning the variance in total change into

components. Considering transformed allele frequency (z), the

relevant equation is:

Var [zt − z0] = ∑
i Var [�zi] + ∑

i

∑
j �=i Cov

[
�zi,�z j

]

= T1 + T2

where �zi is change within a particular interval (say 2007 to

2010) and the summations are taken over all intervals. T1 is the

sum of variance for changes within intervals. T2 is the sum of co-

variances for all pairwise comparison between distinct intervals.

Perhaps the most fundamental feature of evolution by ge-

netic drift is that the direction and magnitude of �p in the current

generation is unaffected by change in past generations. Change in

the present has no effect on future generations. For these reasons,

T2 should be zero under drift. In contrast, hitch-hiking of neu-

tral alleles linked to selected loci can generate correlations across

generations (Robertson, 1961). Cov[�zi,�z j] will be positive if

the same selected allele increases in each interval. With fluctu-

ating selection however, we expect that Cov[�zi,�z j] will be

variable and often negative. After accounting for estimation er-

ror (Methods F), we find that Var [zt − z0] = 0.00104 across all

SNPs in our time series. Partitioning this variance, T1 = 0.00551

and T2 = −0.00446. T2 is significantly negative with a 95% con-

fidence interval (−0.0048, −0.0042) clearly bounded away from

zero.

The significantly negative T2 implies that the average SNP,

which presumably has little or no effect on fitness, exhibits a

slight but highly significant inter-generation covariance. Change

in the current generation tends to cancel changes in previous gen-

erations. Consequently, there is less total change in frequency

over the full span of 23 generations than expected from the mag-

nitude of single-generation changes (characterized here by T1).

Considering the specific contrasts between intervals (the compo-

nents of T2), most contrasts are significantly different from zero

(correcting for bias introduced by estimation error in allele fre-

quency, see Methods F). They fluctuate from positive to negative

depending on the contrast (Supplemental Table 4). As a com-

parison to the calculations made using all SNPs, we calculated

Cov[�zi,�z j] specifically for the Fluctuating SNPs for all time

intervals. As expected, there is a positive relationship between co-

variances based on the Fluctuating SNPs and the whole genome,

but the magnitudes are much larger for Fluctuating SNPs (Sup-

plemental Figure 4).

Hitch-hiking of neutral variants with selected loci should be

most pronounced when there is reduced recombination (Barton,

2000). Recombination rate varies across the Mimulus genome

(Flagel et al., 2019) and we here use local LD estimates as a

proxy for local recombination rate. For each gene, we calcu-

lated a standardized measure for LD which accounts for the

variation in inter-SNP distances within genes (Methods E). Next,

we calculated T1 and T2 specific to each gene. Standardized

LD exhibits a highly significant positive association with T1

(r = 0.050, p<0.001) and a highly significant negative associ-

ation with T2 (r = −0.047, p<0.001). Figure 4 illustrates this

association by subdividing genes into four quartiles (lowest link-

age disequilibrium to highest) with an equal number of SNPs in

each group. The amount of change per generation (T1) as well

as the extent of canceling between generations (T2) are greater

in genomic regions that have stronger associations between

alleles.

The overall distribution of allele frequency change per gen-

eration can be inferred from our time series by separating es-

timation error from true differences in allele frequency. This

is impossible for any particular SNP, but feasible for the en-

tire distribution. We obtained a reliable standard error for each

SNP/interval via the paired sample design (Figure 1), and given

these, Stephens’ (2016) empirical Bayesian approach (ASHR)

can be used to extract the underlying distribution for “true ef-

fects.” Here, true effect is the change in transformed allele fre-

quency at an SNP over one generation (dz = zt − zt−1; Meth-
ods F). We exclude multigeneration intervals, for example, 1998–

2007, because of the non-independence of change across genera-

tions (Figure 4).

ASHR estimates the distribution for dz as a mixture of nor-

mal density functions (Supplemental Table 5). For this dataset,

most of this mixture is SNPs with no change (33%) or very little

change (44%); the latter category having a standard deviation of

0.004 for dz. For the full distribution, about 82% of SNPs have an

absolute dz < 0.01 per generation (Figure 5). For untransformed

allele frequency (p), this corresponds to a change of less than

0.005 from an initial p of 0.5. If we consider our estimate that Ne

= 11,790, pure genetic drift will produce an absolute dz < 0.01

about 88% of the time, which is only slightly greater than the

82% from ASHR. The remaining 23% of SNPs in the estimated

mixture distribution for dz have larger standard deviations (about

0.035 on average). These SNPs generate heavy tails in the dis-

tribution (Figure 5). About 9% of the observed distribution has

Abs(dz)>0.03, an outcome that occurs only once every 250,000

generations within neutrality.

Charlesworth (1996) argued that one of the major objectives

remaining for evolutionary genetics is to characterize the distri-

bution of selective effects on mutations. Figure 5 is a related but

distinct entity. The distribution of dz (allele frequency change) is

the realization of selection and drift (and immigration in popula-

tions where it occurs at a sufficient rate). While the distribution

for selection coefficients is often treated as a set of constants (one

value for each locus), dz is not constant within loci. The change

at locus may have a fixed expectation in some cases, for exam-
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ple in a closed population with no selection (the mean is zero),

but the actual change per generation will always vary through

time. In this dataset, we find that the variance of estimated dz is

remarkably uniform over allele frequency (Supplemental Figure

3), which reflects the effectiveness of Fisher’s Arcsine Square

root transformation in reducing heteroscedasticity. Importantly,

this study excluded SNPs where the minor allele was ≤0.05 in

frequency. There are a very large number of rare-allele polymor-

phisms within IM (Brown and Kelly, 2020) and the distribution

of selection coefficients on these loci (as well as the distribution

of change) must be quite distinct from the corresponding distri-

bution for intermediate frequency variants. At least for interme-

diate variants however, our tests indicate that selection cannot

be effectively characterized by a single constant coefficient per

locus.

Outstanding Questions
What environmental agents generate fluctuations in selection?

Synchronous changes in allele frequency could be driven by bi-

otic or abiotic factors (Rudman et al., 2022, Decaestecker et al.,

2007, Lively, 2010). Our timeseries for a SNP is a multi-normal

vector, and therefore, it is straightforward to test environmental

variables as predictors of change. In this study, power is limited

by the small number of intervals (10 per SNP). This can be ad-

dressed through more intensive sampling of a single population

or by considering multiple populations simultaneously (Machado

et al., 2021). Direct manipulation of environmental variables, fol-

lowed by fitness measurements on individuals or monitoring of

entire populations within experimental evolution studies, may be

required to establish causality of selective agents (Rudman et al.,

2022, Mitchell-Olds and Shaw, 1987, Rennison et al., 2019). Res-

urrection studies provide a powerful means to exploit “natural

experiments” to understand the phenotypic response to selection

(Kooyers et al., 2021, Franks et al., 2016).

How many loci are under selection in the IM population?

We identified about 1000 genes that contain significant Fluctuat-

ing SNPs. In most regards, our procedures are conservative. For

example, we considered only bi-allelic SNPs, excluded any SNP

that deviated between individual and pooled sequencing, and ex-

cluded all inter-genic SNPs (Methods A). Selection on intergenic

variants would be detected only if the loci were in strong LD

with genic SNPs. Counter to these arguments, there are several

ways that selection on a few hundred loci could potentially gen-

erate significant tests in 1000 genes. Considering hitchhiking, we

found minimal LD among our Fluctuating SNPs, but that was

estimated from sequenced lines that are >6 generations of self-

fertilization removed from the sampled field plants (Troth et al.,

2018). Recombination in the first few generations of line forma-

tion could have eliminated moderate LD among loci that are not

closely linked (Gompert et al., 2022). Diffuse LD is generated as

a direct result of selection on a quantitative trait and also when

immigration introduces divergent haplotypes into a population.

A more subtle explanation for excess significance is our null hy-

pothesis that neutral SNPs are evolving by genetic drift. The co-

variance of changes across generations (Figure 4), an indicator

of linked selection, undermines the null likelihood model which

assumes independent changes with each generation. To some ex-

tent, the effects of linked selection are absorbed into our estimate

for Ne and the Fluctuating SNPs are outliers relative to the distri-

bution of change generated by this Ne estimate. Also, hitchhiking

arguments do not explain why the biological attributes of alterna-

tive alleles, such as their effects on phenotype (Figure 3), predict

patterns of change at fluctuating SNPs.

Beyond Mimulus, we suggest that the distribution of allele

frequency change (e.g., Figure 5) should be a target for empiri-

cal characterization within natural populations of many species.

In this study, the amount of change at most SNPs was not large

in absolute terms, but still greater than what one would ex-

pect given the large number of plants flowering in the popu-

lation. The genomewide effect of linked selection may explain

why Ne estimated from allele frequency change (11,790) is an

order of magnitude lower than the observed number of repro-

ductive plants. Perhaps more obviously, about 1000 loci across

the genome exbibit evolution that clearly stands out from this

background of drift and linked selection. The study of contem-

porary evolution certainly has limits. The zero bin of Figure 5

contains not only neutral SNPs but also those under weak se-

lection. Weak selection may be indistinguishable from drift on

ecological time scales but still yield very distinct evolution-

ary outcomes over long time periods (Ohta, 1976). However, a

scale up of the method employed here (in number of popula-

tions, number of individuals sampled per generation, and num-

ber of generations scored) could provide an increasingly pre-

cise characterization of evolutionary forces in a great diversity of

taxa.

Materials and Methods
A. SEED COLLECTIONS, SEQUENCING, AND VARIANT

IDENTIFICATION

Each field collection was conducted after flowering had ceased at

the site and all adult plants were desiccated (in July or August).

Among all plants that had produced fruit, a random sample was

harvested with all seeds from each plant collected into an enve-

lope. The number of maternal families varied from year-to-year

and are reported in table.
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Year Total Maternal families
1998 494
2007 1500
2010 340
2011 777
2012 713
2013 752
2014 215
2015 400
2016 478
2017 571
2021 500

Except for 2021, these collections were conducted as part

of other studies (Fishman and Kelly, 2015, Kelly, 2008, Fishman

and Willis, 2008, Lee et al., 2016, Nelson et al., 2019). To make

sequencing libraries, we randomly sorted maternal families into

two groups within each year (Samples 1 and 2 in Figure 1). We

took an approximately equal sample of seeds from each envelope

(maternal family) within a year to form the seed pools. We sam-

pled ca. 20 seeds per envelope from years with high fecundity, but

only 10 per envelope in years with lower mean fecundity. This

adjustment ensured a more nearly equal contribution per family

within each year. This difference might have inflated the estima-

tion error for allele frequencies in years with 10 instead of 20

seeds per family, but as shown below, other factors proved more

important.

Allele frequency within each sample is the average across

maternal families. The DNA from each Mimulus seeds is pre-

dominantly embryo (Elen Oneal, personnel communication),

equally composed of maternal and paternal contributions. The

maternal contribution is from a single diploid genome while the

paternal may be a mixture of multiple genomes depending on

the extent of multiple paternity. Given random sampling of plants,

the average across families provides an unbiased estimate of al-

lele frequency. However, the magnitude of estimation error is

more difficulty to specify a priori. The error variance depends

now only how many maternal families are sampled and the num-

ber of seeds per family, but also on how many sires are sampled

per family and on how evenly seeds contribute DNA to the pool

(always a factor with pooled sequencing). Given uncertainty on

these latter processes, we apply a non-parametric procedure (de-

scribed below) in which the data itself estimates the error vari-

ance. This procedure requires only two independent samples of

the same population.

We extracted DNA from each seed bulk by pulverizing the

seeds on liquid nitrogen in a mortar and used the Nextera DNA

Flex kit to make genomic libraries. In addition, we grew 48

individual plants from the 2021 collection and extracted DNA

from each. We made a sequencing library from the DNA of

the individual plants using the Swift 2S Turbo DNA Library Kit

and sequenced each library with Illumina PE 150 reads. All se-

quencing was done as part three distinct S4 Novoseq runs at

the University of Kansas medical center genomics core. For all

samples, we cleaned and trimmed the paired reads using fastp

(Chen et al., 2018) with these settings: –cut_mean_quality 30, –

cut_window_size 2, and –length_required 50. We then mapped

reads to the V5 reference genome using the bwa (v0.7.17) mem

command (Li, 2013) and to sorted resulting bam files using sam-

tools version 1.9. Next, we used picard tools (https://github.com/

broadinstitute/picard) to remove duplicates and add read groups,

and indexed the output bams using samtools (Li et al., 2009). On

the full collection of samples (the pooled seed libraries, the in-

dividuals from 2021, and the pooled samples from Gould et al.

(2017)), we called variants using bcftools (version 1.9) mpileup

with the output piped to bcftools call (Li, 2011). SNP calling

was run in parallel applied to each 100kb section of the Mimulus

guttatus reference genome (https://phytozome-next.jgi.doe.gov/

info/MguttatusTOL_v5_0). These steps were implemented us-

ing the programs clean.split.fqs.py, map.split.fqs.py, merging.py,

rmdups.index.py, and call.snps.bcf.py in sequence. These pro-

grams were written in Python 2.7 as were those described be-

low. All programs are contained in Supporting Information S1.

We concatenated the VCF files and retained all bi-allelic

SNPs with a minimum mapping quality (MQ) of 20 and a min

QUAL score of 20. Next, we classified all SNPs as “genic”

(within a gene of the v5 annotation) or “intergenic” and de-

termined the count of reads at each SNP in the population

pools for each category. The median depth for genic SNPs

(12,246) was much greater than for intergenic (6,095). This

difference is unsurprising given previous sequencing studies of

M. guttatus showing that read mapping is routinely unreliable

outside of genic regions (Troth et al., 2018, Monnahan et al.,

2021). For this reason, we focused all subsequent analyses

on genic SNPs. We used the AD field of the vcf to estimate

reads carrying the reference and alternative base, respectively.

Given these counts, we extracted the read depth (m) and trans-

formed allele frequency (z) for each SNP with minor allele

frequency ≥ 0.05 (based on an average of untransformed al-

lele frequency estimates across all pools), and a total depth

(across samples) between 9500 and 16000. These steps were

conducted using the programs clean.vcf.py, vcf.readcounts.py,

bulk.depth.py, and m_and_z.genic.py.

Next, we calculated υ, the null variance (Kelly and Hughes,

2019) for each pair of samples (Figure M1). This is based on

averaging the observed values for (z1 − z2)2, noting the pre-

dicted read depth variance for each SNP ( 1
m1

+ 1
m2

). We first used
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the set of υ values for each pair of samples to identify outlier

SNPs. We suppressed SNPs that exhibit excessive divergence

between paired samples of the same population because each

sample is estimating the same true allele frequency. Under our

model, this divergence should be normal with mean zero and vari-

ance (υ + 1
m1

+ 1
m2

). If we square the (difference /standard devi-

ation) within each year, and then sum across years, the result-

ing quantity should follow a chi-square distribution with degrees

of freedom equal to the number of years (paired samples). We

performed this test on each SNP and excluded any SNP with a

p-value < 0.01.

We also extracted the mean and standard error (SE1) of z

from the 2021 pools to compare to the individual genome se-

quences of plants from that year. We calculated z from the

individual samples and a standard error (SE2) on this esti-

mate and calculated a t-statistic based on these numbers: t =
(zpool −zindividual )√

SE2
1 +SE2

2

. We suppressed any SNP where ABS(t)>3.0. Af-

ter imposing all these filters, we recalculated the null vari-

ances on the remaining SNPs. These steps were implemented

using the programs Null.var.estimation.py, outlier.snps.py, Re-

duce.snpset.v2.py, and z.per.year.v2.py, in sequence. The esti-

mated υ from each year is reported in the table below. The ef-

fective number of genomes is the sample size with perfectly even

contribution of each genome to the pool (= 2/υ).

Year υ Effective number of diploid
genomes

1998 0.00857 233
2007 0.00612 327
2010 0.00619 323
2011 0.00294 680
2012 0.00215 931
2013 0.00343 584
2014 0.01071 187
2015 0.00896 223
2016 0.00627 319
2017 0.00469 426
2021 0.00533 375

This table illustrates that sampling fewer seeds per family in

low fecundity years (2010, 2012, and 2021) did not unduly inflate

estimation error. The highest values for υ are observed in years

with lower numbers of maternal families (2014 and 2015).

METHODS B: EFFECTIVE POPULATION SIZE

ESTIMATION

There is a considerable literature on estimation of Ne from al-

lele frequency time series (reviewed in Ch 4 of Walsh and Lynch

(2018)). Here, we use a robust estimation procedure based on

transformed allele frequencies from the first (1998) and last

(2021) samples. We applied Fisher’s angular transform to allele

frequencies, both for Ne estimation and tests for selection (Meth-
ods C) because it greatly simplifies all analyses. For all SNPs,

the change from beginning to end (z̄2021 − z̄1998) is normally dis-

tributed with mean zero and variance:

Var[z̄2021 − z̄1998] = t

2Ne
+ Var[z̄1998] + Var[z̄2021]

Here, t = 23 and Var[z̄2021] and Var[z̄1998] are known constants

for each SNP (Methods A). It is simple to calculate the aver-

age estimation error variance, σ2
x , across all SNPs. We can then

use the overall distribution of (z̄2021 − z̄1998) to infer Ne. While

the distribution is remarkably normal in general (Supplemental

Figure 3), the variance could be inflated by outlier loci under se-

lection. For this reason, we estimate Var[z̄2021 − z̄1998] from the

interquartile range (IQR) of the distribution, which is less sensi-

tive to outliers. It follows that N̂e = t
2b , where b = ( IQR

1.34896 )
2

- σ2
x . The resulting calculation yields N̂e = 11790 and was per-

formed using the program Ne.robust.estimation.py.

For this analysis, we used data only from the first and last

samples to estimate Ne , a choice based on the specific features of

this dataset. Intermediate samples in a time series can be incorpo-

rated into Ne estimation (e.g. (Jónás et al., 2016) and references

therein), but here the great majority of the signal for Ne comes

from 1998 to 2021. These samples were sequenced at greater

depth than intermediate samples and thus have lower σ2
x . Also,

the drift signal for this contrast, 23
2Ne

, is much greater than for most

consecutive intervals. In fact, for a couple of intervals, the diver-

gence IQR is very slightly less than predicted by estimation error

alone, which yield N̂e = ∞. Still, a robust z-based estimator for

full time series is useful objective for future method development.

METHODS C: MODELS OF ALLELE FREQUENCY

CHANGE

We implement the “Fisher–Ford” test (see Walsh

and Lynch (2018), pp 272–275) after revising the

procedure to take data from two pooled samples per year. Testing

for allele frequency change is straightforward since the vector

of z̄ j values for a SNP (j indexes year) are multi-normal and the

(co)variance matrix for this vector is a set of known constants.

The variance for sample i is:

Vii = ti
2Ne

+ Var[z̄i]

where ti is the number of generations from time 0 for sample i,

Ne= 11790, and Var[z̄i] was determined for each SNP in Meth-

ods A (Figure M1). The covariance between sample i and a later

sample j is:

Vi j = Vji = ti
2Ne
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The likelihood of the data under drift versus selection depends on

how the E[z̄ j] are specified. If evolution occurs by genetic drift

E[z̄ j] = μ0 for all j (a single parameter to be estimated from

the data). μ0 is the true population value for z at t = 0. Changes

in z̄ j through time are accommodated by the variance/covariance

matrix. Under the most general alternative model, which is our

Fluctuating selection model, each sample is characterized by its

own parameter: E[z̄ j] = μ j . Since we have 11 time points, the

Fluctuating selection model has 10 more parameters than the drift

model and so the likelihood ratio test has 10 degrees of freedom

(df).

The Directional test, proposed by Schaffer et al. (1977), is a

special case of the Fisher-Ford test. Selection is admitted by es-

timating a constant for beginning (μ0) and end (μ23) of the time

series and positing that the mean changes linearly with time be-

tween these two points. This model has two parameters and thus

the likelihood ratio test (directional versus drift) has 1 df. The

MLE for parameters have analytical solutions for all three models

(Walsh and Lynch, 2018) so calculations are very fast. Both tests

were applied to all SNPs with data in all 11 years of the time se-

ries using the program linear.and.fluctuating.tests.py. As a check

on the validity of our p-values from these tests, we performed

forward simulations with drift acting independently on all ≈1.86

million SNPs. The sample sizes and read depths per SNP matched

the actual study. We performed 1000 replicate simulations using

the program simulate.drift.two.tests.py, and then extracted the p-

values at each simulated SNP within each replicate. Next, we

determined the mean number of tests per replicate to pass suc-

cessively smaller p-value thresholds and aligned these numbers

to the actual p-value distribution from the real data. This estab-

lishes an empirical False Discovery Rate (Supplemental Table 6).

The FDR cutoffs obtained by this method are nearly identical

to those from the standard Benjamini-Hochberg Procedure (Ben-

jamini and Hochberg, 1995). The latter was obtained by applying

the p.adjust() function in R directly to the p-values obtained from

tests on real data. Given p-value thresholds for 5% FDR for each

test tests, we identified the most significant per gene for each

test to produce the lists of Fluctuating and Directional SNP lists

for downstream analyses (programs: python SNP.to.gene.py, Sin-

gle.test.per.gene.py). The drift simulations were applied to each

SNP independently (no linkage) because the tests are applied this

way. While test outcomes may be correlated for closely related

SNPs, this should make the thresholds conservative (Benjamini

and Yekutieli, 2001).

METHODS D: CORRELATIONS BETWEEN INTERVALS

FOR CHANGE IN MINOR AND PERENNIAL ALLELES

Given z̄ j from 11 time points for each Fluctuating SNP, we cal-

culated 10 dz intervals polarized so that change refers to the mi-

nor base. These values were used for Figure 2 with correlations

calculated using the scipy stats package (within the program Mi-

nor.allele.change.Fluctuating.py). The average change and stan-

dard error (blue bars in Figure 3) were also obtained from this

program. For the Perennial Allele analyses, we extracted the raw

fastq files from the SRA archive (accessions in (Gould et al.,

2017)) and then mapped these reads and called variants with same

tools/settings applied to the IM pools and individuals (Meth-
ods A). At each Fluctuating SNP, we calculated the allele fre-

quency in each pool as simply the reference count divided by

the total count (requiring at least 20 reads to perform the calcu-

lation). We scored one of the bases as Perennial if the z in the

Perennial pool was 0.4 greater than in the Annual pool. The pro-

gram Peren.allele.change.Fluctuating.py performs the same cal-

culations as Minor.allele.change.Fluctuating.py, except with alle-

les polarized as annual/perennial instead of major/minor (orange

bars in Figure 3). Both programs calculate the Cg statistic and test

for associations with allele frequency.

METHODS E: REMAPPING OF INBRED LINE

SEQUENCE DATA, CALCULATING ADDITIVE EFFECTS,

ASSOCIATION MAPPING, AND LD CALCULATIONS

Because the Illumina sequencing data on inbred lines from Troth

et al. (2018) ascertained polymorphisms using a previous genome

assembly, we here remapped the sequence data to the current M.

guttatus reference genome for the 165 lines with phenotypic data

from the greenhouse experiment. We used the same read mapping

and SNP calling algorithms for these data as for the field popula-

tion samples (Methods A). We then extracted all SNPs that were

identified in the time series within the line vcf file. Requiring

that each SNP is biallelic and that the same nucleotides segre-

gate, we were able to score 1,765,940 of the time series SNPs in

the lines (95%). These operations were executed using the pro-

grams bam.to.fastq.py, call.snps.by.section.py, relevant.snps.py,

simplify.vcf.py, and order.snps.py.

Given the full genotype matrix, we calculated LD between

SNPs at different levels of physical distance. We first calculated

pairwise LD, and from this and allele frequencies, the r2 between

all SNPs pairs within genes. We excluded any SNP pair where

both loci were not called in at least 50 of the 165 lines. The av-

erage r2 at different levels of physical distance (bp between the

two SNPs) were compiled for Supplemental Table 2. Next, we

calculated LD by comparing each SNP in each a gene to all other

SNPs in a distinct gene. This operation was first applied to neigh-

boring genes and then to gene pairs separated by greater distance

(from 50kb to 1mb within chromosomes). Finally, we randomly

paired each gene to one on another chromosome and performed

all pairwise comparison of SNPs (bottom row of Supplemental

Table 2). Finally, we calculated the standardize LD for each gene
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(used for Figure 5 and associated tests) by first determining the

average r2 between SNPs within genes at different inter-SNP dis-

tances. We calculated means for six distance categories: <100bp,

100–199, 200–499, 500–999, 1000–1999,2000-4999, and > =
5000bp. Given the whole genome means for each category, we

determined the residual for each category within each gene (neg-

ative values indicating lower r2 for a given distance, positive val-

ues indicating higher r2). The standardized LD for each gene is

a weighted average these residuals, which the weights equal to

the number of inter-SNP contrasts in that distance category. Di-

viding genes into quartiles provides the categories for Figure 4.

These calculations were performed using LD_within_gene.py,

LD_between_genes.py, and standardized_LD_per_gene.py.

Troth et al. (2018) determine the mean value for 13 traits

using large greenhouse experiments on the 165 sequenced lines.

There were two phenology measures, days to germination and

days to flower. At the day of flowering, the 11 other traits were

scored. Most traits are flower size dimensions (Anther Length,

Corolla Length, Corolla Width, Stigma Length, Throat Width,

Tube Length, flwrPC1, flwrPC2 -- the last two are principal com-

ponents based on the first six). flwrPC1 is essentially a measure

of overall flower size while flwrPC2 is determined by the width

of corolla tube relative overall flower size. Fishman et al. (2002)

provide a key for these dimensions. Troth et al. (2018) also scored

the node producing the first flower, height from the ground to this

first node, and the widest leaf. The widest leaf is a very strong

positive predictor of total above-ground biomass on the date that

an IM plant flowers (Kelly, 2008).

Prior to association mapping, we used Beagle v5.4

(Browning et al., 2018) to impute missing genotypes and then

reformatted the output using Make.gemma.gfile.py to make a

bimbam input to Gemma (Zhou and Stephens, 2012). Next, we

used Gemma to make a centered relatedness matrix from the full

genotype matrix for the 165 lines, which was subsequently ap-

plied with a linear mixed model fit for each SNP to each trait.

The [trait].assoc.txt output from Gemma provides the estimate

and standard error for the average effect of each SNP on each

trait. We then extracted the Fluctuating SNPs and determined

the mean polygenic score for each year for each trait. Finally,

we calculated the changes in these mean scores and compared

them interval by interval to the changes in mean minor allele

frequency and mean perennial allele frequency (Figure 2). Af-

ter recording the covariance from real data (Table S3), we per-

muted the gene-specific effect estimates across SNPs. This en-

forces the null hypothesis (no relationship between genotype to

phenotype effect with change through time) and we recalculated

the covariance after 10,000 permutations. The p-value is the frac-

tion of permuted covariances that exceed the observed value in

absolute value (programs: gemma.effect.versus.greenness.py and

polygenic.scores.fluctuators.py).

METHODS F. TEMPORAL COVARIANCE

CALCULATIONS, BOOTSTRAPPING, AND THE

DISTRIBUTION OF CHANGE

The inputs to calculate the distribution of change and T1 and T2

are the transformed frequency and standard error (zt and st ) at

each SNP at each time point (Figure M1). Var[�zi] in T1 is cal-

culated as the raw variance in (zy − zx) minus the estimation error

variance (s2
y + s2

x ), where x and y are the time points for interval

i and the calculations are performed over all SNPs. This calcu-

lation is applied to each time interval and the results summed to

obtain T1. Cov[�zi,�z j] in T2 is the raw covariance plus an ad-

justment for estimation if the two intervals share a time point.

Considering adjacent intervals where �zi = zy − zx and �z j =
zx − zu, the expected value for the raw covariance is the covari-

ance of true values minus s2
x . Thus, we add the average estimated

s2
x to the raw covariances for all adjacent intervals. T2 is the sum

across the values for all interval contrasts. As noted by Buffalo

and Coop (2020), bootstrapping of genomic windows can be em-

ployed to place confidence bands on T1 and T2. We resampled

50kb windows of the genome in each bootstrap replicate of the

current dataset, a value large enough to insure minimal LD be-

tween SNPs in distinct windows (Supplemental Table 2). For

these calculations, we randomly assigned the “scored allele” –

it was the reference base for half the SNPs and alternative base

for the other half.

To create Figure 4 and associated results, we calculated

the components of T1 and T2 for each gene. These values

were then correlated to gene-specific values of standardized

LD (Methods E). The testing of whether correlations were

non-zero was also based on bootstrapping of 50kb windows

(not treating each gene as independent). We also partitioned

each bootstrap replicate to divide genes into the four LD cat-

egories of Figure 4 and recorded the category-specific mean

values of T1 and T2. The standard deviations of these values

across 1000 bootstrap replicates provide the bands for Figure

4 . We wrote the programs temporal.covariance.all.py, tempo-

ral.covariance.bs.py, temporal.covariance.by.gene.py, and tempo-

ral.covariance.by.gene.bs.py to perform these calculations.

We applied ASHR to delta_z values from all single genera-

tion intervals from 2010–2017. The input for each SNP/interval

is the estimated delta_z and the p-value for the test on

whether this value is non-zero. With only two samples, the

Directional and Fluctuating tests collapse to the same sim-

ple likelihood ratio test and the p-value is obtained from the

chi-square distribution with 1 df. The collection of estimates

obtained here was also used to establish that the absolute mag-

nitude of change is almost completely independent of allele

frequency (Figure S3). The calculations were performed us-

ing Delta_z.unpolarized.py and change.versus.maf.py. We imple-

mented the R commands in ASHR using ashr1.r (this r script is
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contained in Supporting Information S1) that outputs the mixture

distribution for change. Our results depend only on the fraction

of SNPs in each distribution (π) and the standard of the effect for

each of these distributions.
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Supplemental Figure 3. The arcsin squareroot transform effective normalizes allele frequency change.
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