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Societal Impact Statement

Despite comprising a small proportion of global agricultural land use, irrigated agricul-

ture is enormously important to the global agricultural economy. Burgeoning food

demand driven by population growth—together with reduced food supply caused by

the climate crisis—is polarising the existing tension between water used for agricul-

tural production versus that required for environmental conservation. We show that

sustainable intensification via more diverse crop rotations, more efficient water appli-

cation infrastructure and greater farm area under irrigation is conducive to greater

farm business profitability under future climates.

Summary

• Research aimed at improving crop productivity often does not account for the

complexity of real farms underpinned by land-use changes in space and time.

• Here, we demonstrate how a new framework—WaterCan Profit—can be used to

elicit such complexity using an irrigated case study farm with four whole-farm

adaptation scenarios (Baseline, Diversified, Intensified and Simplified) with four types

of irrigated infrastructure (Gravity, Pipe & Riser, Pivot and Drip).

• Without adaptation, the climate crisis detrimentally impacted on farm profitability

due to the combination of increased evaporative demand and increased drought

frequency. Whole-farm intensification—via greater irrigated land use, incorpora-

tion of rice, cotton and maize and increased nitrogen fertiliser application—was

the only adaptation capable of raising farm productivity under future climates.

Diversification through incorporation of grain legumes into crop rotations signifi-

cantly improved profitability under historical climates; however, profitability of
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this adaptation declined under future climates. Simplified systems reduced eco-

nomic risk but also had lower long-term economic returns.

• We conclude with four key insights: (1) When assessing whole-farm profit, metrics

matter: Diversified systems generally had higher profitability than Intensified sys-

tems per unit water, but not per unit land area; (2) gravity-based irrigation infra-

structure required the most water, followed by sprinkler systems, whereas Drip

irrigation used the least water; (3) whole-farm agronomic adaptation through man-

agement and crop genotype had greater impact on productivity compared with

changes in irrigation infrastructure; and (4) only whole-farm intensification was

able to raise profitability under future climates.

K E YWORD S

adaptation, climate crisis, climate emergency, food economic security, grain, infrastructure,
irrigation, water

1 | INTRODUCTION

Irrigated agriculture is enormously important to the global agricultural

economy (D'Odorico et al., 2020). In Australia, irrigated croplands pro-

duce over 25% of agricultural gross value from less than 5% of arable

land area and use 60% of freshwater withdrawals (ABS, 2020a; Tariq

et al., 2020). Increasing global food demand will increase Australia's

grain crop production by an additional 35% between 2020 and 2030

(Kingwell, 2019); such growth will be partly underpinned by a 20%–

30% increase in Australian agricultural water use (Burek et al., 2016).

Increasing demand for water will likely increase tension between

agricultural production and environmental conservation (Fleming

et al., 2022), and this uncertainty will deepen as extreme weather

events such as drought become more frequent with climate change

(Feng et al., 2019; Harrison, 2021, 2021; Hobday & Lough, 2011;

Silberstein et al., 2012). As well, global and local inflationary factors

are exacerbating the ‘cost–price squeeze’ in irrigated farming systems

(Chang-Fung-Martel et al., 2017; Harrison et al., 2012a, 2012b, 2017).

Together, these changes are resulting in reduced stream flow and lake

storage (Hobday & Lough, 2011; Silberstein et al., 2012; Walker

et al., 2021). High water prices in conjunction with the rising prices

for fertilisers, agrochemicals and energy relative to crop commodity

prices borne by COVID-19 and the Ukraine war are key drivers of

recent declines in profitability of irrigated farm businesses

(FAO, 2022; Hughes et al., 2019; Snow et al., 2021). Collectively,

these factors underscore a clear and urgent need for integrated social,

economic and environmental solutions that carefully and strategically

plan sustainable pathways for future profitable irrigated land use

(Harrison et al., 2021; Shahpari et al., 2021).

Past work on agronomic adaptation to climate change has primarily

focused on field-scale interventions such as changes to management

and/or genotype/crop type combinations to improve yield (Ibrahim

et al., 2019; Langworthy et al., 2018; Liu et al., 2021; Liu, Harrison,

Hunt, et al., 2020) such as that aimed at closing yield gaps (Angella

et al., 2016; Bryan et al., 2014; Liu et al., 2015, 2022; Muleke, Harrison,

de Voil, et al., 2022; Pradhan et al., 2015). However, higher crop yields

do not necessarily translate to higher crop profitability, because above

a certain level of inputs, the rate of return from increased inputs dimin-

ishes (Ibrahim et al., 2018). Indeed, economic approaches that account

for whole-farm productivity together with associated economic factors

(input costs and prices) have received much less attention (Ara

et al., 2021; Monjardino et al., 2022). Even though efficient irrigation

technologies are known to represent crucial transformational adapta-

tion to climate change, few studies have directly compared farm-scale

economic performance of irrigation infrastructure in terms of yield and

profitability (Ash et al., 2017; Maraseni et al., 2012; Mupaso

et al., 2014; Mushtaq et al., 2013). Collectively, these observations sug-

gest a clear need for frameworks that integrate and allow scenario test-

ing of productivity and profitability at the whole-farm level.

At the farm scale, irrigated crop growers are faced with multiple

and competing tactical (short-term) and strategic (longer term) deci-

sions (Harrison et al., 2020; Liu, Harrison, Ibrahim, et al., 2020; Liu,

Harrison, Shabala, et al., 2020), and often, forethought and planning of

strategic decisions on irrigation infrastructure can be overlooked (Ara

et al., 2021). An example of such strategic decision is the investment

worth of a flood-based system compared with an overhead lateral or

pivot system. Economic assessments of optimal irrigation infrastruc-

ture options are often fraught with uncertainty as they are at the

nexus of many agronomic, climatic, financial and social factors that are

changing dynamically over time (Harrison et al., 2016; Ho et al., 2014).

Appropriate economic decision support system frameworks and digital

tools that account for these factors may help farmers disentangle and

navigate the solution space for strategic analyses through computa-

tion of long-term profit (i.e., net present value [NPV], return on assets

and investment worth) over the life of the investment (e.g., 20 years).

Currently however, few whole-farm economic decision support sys-

tem tools are available for irrigation farmers to facilitate making such

strategic economic decisions (Ara et al., 2021).

In an attempt to fill this gap, we developed ‘WaterCan Profit’
(WCP)—a decision support tool designed and refined through iterative

2 MULEKE ET AL.
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participative people-centric methods (e.g., farmer surveys, focus group

discussions and semi-structured interviews) with eight farmer groups

spread across the entire Australian Murray-Darling Basin, from South

Australia, to northern Victoria and southern Queensland (Harrison

et al., 2020). WaterCan Profit comprises a mathematical Optimiser

Application (“Optimiser App”) that allows users to contrast multiple

tactical factors, including crop choice, cropping areas, water price,

water use, expected crop yields, seasonal climatic conditions and his-

torical farm management (e.g., crop rotation) (Muleke, Harrison, Eisner,

et al., 2022). WaterCan Profit also includes an Investment Application

(“Investment App”) that allows strategic analyses through computation

of long-term profit (NPV, return on assets and investment worth) over

the life of the investment (Harrison et al., 2020). This work was con-

ducted in response to a demand-driven need for whole-farm economic

decision support system tools. Specifically, our aims here were to

(1) illustrate the Investment App in WaterCan Profit using a case study

and (2) examine the adaptation potential of whole-farm adaptation and

alternative irrigation infrastructure on profitability under future

climates.

2 | MATERIALS AND METHODS

2.1 | Overview

We examined holistic agronomic systems intervention (via intensifica-

tion, simplification and diversification) and alternative irrigation infra-

structure under historical (1985–2004) and future (2070–2089)

climates. We used a case study farm in the Coleambally region of New

South Wales (NSW) (Figure 1) to examine a factorial combination of

the four agronomic interventions (Baseline, Diversified, Intensified and

Simplified) crossed with four irrigation infrastructure interventions

(Gravity, Pipe & Riser, Pivot and Drip), resulting in the 16 adaptation

scenarios shown in Tables 1, S1 and S2. Biophysical input data for

WaterCan Profit (WCP) were obtained (1) using the farming systems

model APSIM Version 7.10 (Holzworth et al., 2014; Keating

et al., 2003) and (2) using data from existing literature on experimental

trials, for example, ABARES (2021), ABS (2021b), DPI (2018), GRDC

(2020b) and Poole, Straight, and Jones (2020). Economic data were

drawn from Monjardino et al. (2022).

2.2 | Case study farm baseline

An irrigated broadacre farm situated near the Coleambally township

in the Riverina region of NSW, Australia (�34.8016�S, 145.8904�E),

was used as a case study (Figure 1). The region accounts for over

456,000 ha of irrigated farmland (CICL, 2019; Shi & Elmahdi, 2010)

within the Murray-Darling Basin, Australia's largest irrigation zone.

The warm temperate to semi-arid climate with hot summers, mild win-

ters and trend towards drier spring conditions (Harrison et al., 2017;

Harrison, Cullen, & Rawnsley, 2016) mean that use of irrigation is

often necessary to reduce crop water deficit in the Riverina. Soil types

include self-mulching sandy clay loam, red-brown earths and transi-

tional red-brown earths with bulk density of 1600 kg/m3 (0–0.3 m)

and soil water holding capacity of 200 mm to 1.5 m. For the baseline,

we adopted the average broadacre farm size of the region (approxi-

mately 1000 ha; DPI, 2018), with 750 ha of irrigated winter crops

(e.g., canola–wheat–wheat) in rotation with summer fallow. Surface

water supply is diverted from the Murrumbidgee River, ensuring that

most farms have access to a minimum daily flow rate of 14 Ml/day

(CICL, 2021). Most broadacre irrigators in the Riverina use surface/

gravity irrigation methods, including lasered contour bays, bed/furrow

F IGURE 1 Historical (1985–2004) and future (2070–2089)
climates for a case study farm situated in the Riverina of New South
Wales (NSW), Australia

TABLE 1 Description of four holistic systems adaptations
(Baseline, Diversified, Intensified and Simplified) in terms of crop choice,
allocation of irrigation water, area of farm under irrigation and level of
inputs and costs

Adaptation Description

Baseline The current farm system with gravity irrigation as the

historical Baseline (described under Section 2.2). The

Baseline scenario represents the current farm

situation in terms of agronomy and irrigation.

Diversified Diversification of the Baseline system using a grain

legume (faba beans; Vicia faba). This adaptation has

similar average water usage and irrigated farm area

as the Baseline, a greater variety of winter crops

grown within the year—i.e., wheat, canola and a

grain legume—but similar inputs and costs.

Intensified This was designed to be a high-input, high-output

adaptation. Relative to the Baseline, the Intensified

scenario applies higher amounts of water per unit

area and per year and assumes a larger portion of

the farm area is irrigated (i.e., less unirrigated fallow),

higher inputs per unit area and year (e.g., N and

herbicides).

Simplified This was designed as a low-input, low-output

adaptation. Relative to the Baseline, the Simplified

scenario was designed to require less irrigation

water per unit area and year, has more rainfed crops

and reduced inputs per unit area (e.g., N and

herbicides).

MULEKE ET AL. 3
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and some border check; gravity irrigation was assumed as the baseline

in the present study.

2.3 | Historical and future climate data

Historical climate data for daily maximum and minimum temperature,

rainfall and solar radiation from 1 January 1985 to 31 December

2004 were sourced from meteorological archives (Jeffrey et al., 2001).

Historical annual rainfall of the case study location was 423 mm, with

235 mm precipitating in winter and 188 mm in summer (Jeffrey

et al., 2001); precipitation in the region is projected to decrease by

14% by 2070–2080 (see below). Historical average maximum and

minimum daily temperatures were 23�C and 9.9�C, respectively, with

projections suggesting an increase of 13% under future climatic condi-

tions (see text below and Figure 1). All baseline simulations were con-

ducted using an atmospheric CO2 concentration of 380 ppm. We

focused on the more extreme end of potential climate change projec-

tions, noting that near-term climate change estimates are likely to be

less severe than those occurring towards the end of the 21st century.

In adopting a 2080 climate horizon, we were afforded insight into

which adaptations were likely to have greater economic and produc-

tivity efficacy when temperature changes were greater, and distribu-

tions of seasonal rainfall more variable. Future climate scenarios for

each site were developed from 1 January 2070 to 31 December 2089

(median time horizon of 2080) using Representative Concentration

Pathways 8.5 (RCP8.5) (IPCC, 2014; Schwalm et al., 2020), with the

numeral representing a radiative forcing of 8.5 W/m2 by the end of

the century. We adopted RCP8.5 because this scenario most closely

aligns with the existential climate (Bell et al., 2013; Chang-Fung-

Martel et al., 2017; Phelan et al., 2015; Schwalm et al., 2020). Histori-

cal climate data were used to generate future climate data using

monthly ‘change factors’ (CFs) prescribed from global circulation

models (CCIA, 2021) to elicit average monthly changes in temperature

and rainfall between the historical and future periods. Methods

described in Harrison, Cullen, and Rawnsley (2016) were used to

increase the frequencies of drought, heat waves and extreme rainfall

events while preserving monthly average changes in climate. Atmo-

spheric CO2 concentration of all future climate scenarios was set to

850 ppm following Collier et al. (2011).

2.4 | Crop growth and irrigation infrastructure

We used the Agricultural Production Systems SIMulator (APSIM)

v7.10 (Holzworth et al., 2014; Keating et al., 2003) to simulate growth

and development of wheat (Brown et al., 2014; Wang et al., 2003),

canola (Robertson et al., 1999), faba bean (Turpin et al., 2003), maize

(Harrison et al., 2014), rice (Bouman et al., 2001) and cotton

(Hearn, 1994). Following assessments outlined in Muleke, Harrison,

de Voil, et al. (2022), irrigated crops were sown on fixed dates (mid-

May for winter crops and mid-November for summer crops) and dry-

land crops were sown when sufficient autumnal rainfall opportunities

occurred (i.e., 25 mm over 4 days), as shown in Table 2. Soil details

were adopted from the APSoil database (Dalgliesh et al., 2012). Plant

available soil water at sowing and application of irrigation water and

nitrogen (N) fertiliser for the whole-farm adaptations (Baseline, Diversi-

fied, Intensified and Simplified) were set following Monjardino et al.

(2022) (further details are shown below and in Tables 1 and S1). We

adopted four levels of irrigation efficiency (0.7, 0.8, 0.9 and 1;

Brouwer et al., 1985; Maraseni et al., 2012; Monjardino et al., 2022;

Thompson, 2019) for the four irrigation infrastructure types (Gravity,

Pipe & Riser, Pivot and Drip, respectively). Further details of irrigation

infrastructure are shown in Table S1. To estimate maximum yield, we

used optimal flowering periods (OFPs), defined here as the window

that minimises long-term risk of abiotic stress exposure. The OFPs

were computed as the flowering dates corresponding to ⩾95% of the

maximum 15-day running average frost–heat yield according to Liu,

Harrison, Hunt, et al. (2020) and Liu et al. (2021). The OFPs and aver-

age yield modelled in this study (Table 3) are close to results reported

in field and simulation studies conducted adjacent to the case study

region. Our simulated yields align closely with data reported by

Monjardino et al. (2022), Muleke, Harrison, Eisner et al. (2022) and

Muleke, Harrison, de Voil et al. (2022). Experimental field trials con-

ducted at the Finley Irrigated Research Centre (�35.619083�S,

145.584803�E) in southern NSW found yields of irrigated winter crops

(faba beans, canola and wheat) (Poole, Morris, et al., 2020) and maize

(Poole, Straight, & Jones, 2020) that were within one standard deviation

of that modelled in the present study (Table 4). Collectively, alignment

of our results with those in the aforementioned studies lends confi-

dence to the simulated data reported here.

2.5 | Whole-farm systems adaptations

The 16 adaptation scenarios were developed using a factorial combi-

nation of four whole-farm adaptations (Baseline, Diversified, Intensified

and Simplified) and four types of irrigation infrastructure (Gravity,

Pipe & Riser, Pivot and Drip) (Tables 1, 2 and S1, adapted from

Monjardino et al., 2022). Baseline scenarios assumed 750 ha of irri-

gated canola–wheat–wheat in serial rotation, with which each winter

crop followed by a summer fallow (Table 2 and Figure S1). Summer

fallows stored water and nitrogen, incurring weed control costs (0–4

herbicide spray events). Diversified scenarios included a canola–

wheat–faba bean rotation, with each winter crop followed by a sum-

mer fallow (750 ha). Relative to Baseline, Simplified scenarios were

allocated lower irrigation rate and irrigated farm (only 50% of wheat

area; 375 ha); dryland canola was sown on 750 ha of the farm area

(Table 2 and Figure S1). Intensified scenarios were irrigated at higher

rates (Ml/ha), assuming 750 ha for the winter crops (canola and

wheat) and 25% of the farm area (188 ha) for summer crops (maize,

cotton and rice), with the remaining 75% of farm area fallowed in

summer. Nitrogen fertiliser rates for each crop type in the Baseline

scenario were obtained from the case study farmer. We then matched

these fertiliser rates for corresponding crops in the Diversified and

Simplified scenarios. We assumed 50–100 kg N/ha greater application

4 MULEKE ET AL.
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rates for each crop in the Intensified scenario, as our aim for this adap-

tation was to examine the effect of intensification through greater N

application (Table 2). The aim of this work was not to examine crop

responses to N application per se but rather to compare whole-farm

intensification through both increased N application per unit area and

increased farm area under irrigation with that of the Baseline scenario.

TABLE 2 Details of crop type, sowing date, irrigated farm area and level of nitrogen fertiliser input for 16 scenarios combining four whole-
farm adaptations (Baseline, Diversified, Intensified and Simplified) and four irrigation infrastructure types (Gravity, Pipe & Riser, Pivot and Drip)
(adapted from Monjardino et al., 2022, and Muleke, Harrison, de Voil, et al., 2022)

Whole-farm adaptations Irrigation infrastructure Crop Sowing date Irrigated area (ha) N applied (kg N/ha/year)

Baseline Gravity Canola

Wheat

17 May

7 Jun

750

750

100

150

Pipe & Riser Canola

Wheat

17 May

7 Jun

750

750

100

150

Pivot Canola

Wheat

17 May

7 Jun

750

750

100

150

Drip Canola

Wheat

17 May

7 Jun

750

750

100

150

Diversified Gravity Canola

Wheat

Faba bean

17 May

7 Jun

29 Mar

750

750

750

100

150

50

Pipe & Riser Canola

Wheat

Faba bean

17 May

7 Jun

29 Mar

750

750

750

100

150

50

Pivot Canola

Wheat

Faba bean

17 May

7 Jun

29 Mar

750

750

750

100

150

50

Drip Canola

Wheat

Faba bean

17 May

7 Jun

29 Mar

750

750

750

100

150

50

Intensified Gravity Canola

Maize

Wheat

Cotton

Rice

17 May

29 Dec

7 Jun

1 Oct

15 Nov

750

188

750

188

188

150

400

250

300

500

Pipe & Riser Canola

Maize

Wheat

Cotton

Rice

17 May

29 Dec

7 Jun

1 Oct

15 Nov

750

188

750

188

188

150

400

250

300

500

Pivot Canola

Maize

Wheat

Cotton

Rice

17 May

29 Dec

7 Jun

1 Oct

15 Nov

750

188

750

188

188

150

400

250

300

500

Drip Canola

Maize

Wheat

Cotton

Rice

17 May

29 Dec

7 Jun

1 Oct

15 Nov

750

188

750

188

188

150

400

250

300

500

Simplified Gravity Canola (dry)

Wheat

10 May

7 Jun

750

375

100

150

Pipe & Riser Canola (dry)

Wheat

10 May

7 Jun

750

375

100

150

Pivot Canola (dry)

Wheat

10 May

7 Jun

750

375

100

150

Drip Canola (dry)

Wheat

10 May

7 Jun

750

375

100

150

MULEKE ET AL. 5
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Readers are directed to other works (Bilotto et al., 2021; Mielenz

et al., 2016; Rathnappriya et al., 2022; Robertson & Lilley, 2016) for

sensitivity effects of nitrogen on crop growth.

2.6 | Prices and costs

Commodity prices in Table 3 were drawn from ABARES (2021), GRDC

(2021) and ABS (2021a, 2021b) for the historical period. Historical

real prices were adjusted for inflation using the consumer price

index (CPI).

Capital and overhead costs for irrigation infrastructure in

Table S3 were based on data sourced from a broad range of existing

literature, including Hogan et al. (2006), Khan et al. (2009), Petheram

et al. (2016), Roth et al. (2005) and Thompson (2016). Capital costs

associated with irrigation infrastructure comprised installation pur-

chases for pumps, electrical works, earthworks and storage. Other

upfront costs included machinery for new irrigated crops and motor

vehicles (or workshops) attributable to irrigation. A key assumption

here was that capital costs were incurred in the first year and all irriga-

tion infrastructure were considered brand-new investments. Over-

head (fixed) annual costs included outgoing payments related to

irrigation operation and maintenance such as power consumption for

pumping, repair and maintenance (R&M) of irrigation systems, vehicle

running costs and additional labour. Overhead costs were assumed

constant throughout the analysis for each scenario under historical

and future climatic periods, as shown in Table S3. Annual variable

costs were sourced from ABARES (2021), GRDC (2020a), Ash et al.

(2017), Harrison et al. (2020), McKellar et al. (2013), NRE (2021),

PIRSA (2021) and DPI (2021). Variable costs included expenses asso-

ciated with sowing, seed, fertiliser, chemicals (herbicides and fungi-

cides), field operations (i.e., cultivation, fallow management, spraying,

casual labour, fuel and repairs), irrigation water use, harvesting

(i.e., stripping, windrowing, packaging and freight) and other selling

expenses (i.e., crop insurance and levies). Water prices were derived

from ABS (2020b), BoM (2021) and Westwood et al. (2021) based on

a 30-year historical distribution. Irrigation water costs ($/Ml) were

computed as the product of the average real price of water and

application rates of irrigation water (Ml/ha) derived from APSIM simu-

lation. Nitrogen fertiliser rates were adopted from Muleke, Harrison,

Yanotti, et al. (2022); N fertiliser costs were estimated as the N rate

per crop by N fertiliser price (Table S3). In the present study, we

examine only the impact of (and potential adaptations to) the climate

crisis, rather than simultaneously assessing effects of changes in both

future climates and markets, as the latter would add significant uncer-

tainty to our analysis. As such, we depict only variability associated

with seasonal and inter-annual changes in climate in our results.

2.7 | Modelling whole-farm economic returns
using WaterCan Profit

We input crop yields and water use generated from APSIM together

with economic inputs into the Investment App of WaterCan Profit

(https://watercanprofit.com.au/; Figures S2 and S3). This framework

allowed computation of NPV, investment worth, internal rate of

return (IRR) and payback period for the historical and future climate

periods. The Investment App includes the following:

• Scenarios: productive life of the investment, discount rate, capital

costs of investment, overhead costs and water costs (Table S3).

• Crops: crop rotation and area sown (Table 2 and Figure S1); vari-

able costs, crop price, irrigation water application rates and crop

yields at OFP (Tables 3, 4 and S4).

• Calculation: the Investment App computes a discounted cash flow

analysis based on simulated crop yield, costs, grain price, produc-

tive life of investment and discount rate under historical and future

climates.

Irrigation investments with NPV larger than the present value of costs

(i.e., NPV > 0) were deemed viable. To examine the value of adapta-

tion across irrigation scenarios and climatic periods, we computed the

net benefit of adaptation as the difference between the NPV of

historical Baseline (gravity-based irrigation) and the NPV of each

adaptation scenario (e.g., Table 5). System profit do gap for the

whole-farm adaptations and irrigation infrastructure was determined

as the difference between the largest net value of all scenarios consid-

ered in this study and the Baseline under historical and future climatic

conditions.

3 | RESULTS

3.1 | Crop yields and water use under historical
climates

Across irrigation infrastructure and crop types, average long-term

yields and water use were highest for the Intensified adaptation

(8.8 t/ha and 6.1 Ml/ha, respectively) and lowest for the Simplified

adaptation (4.2 t/ha and 1.8 Ml/ha, respectively; Table 4 and

Figure 2). The Diversified adaptation had higher mean yields and water

TABLE 3 Average prices ($/t and $/bale) for crops across a range
of Australian irrigated cropping regions. Price ranges are from
ABARES (2021) and ABS (2021b).

Crop Low Median High

Canola 560 708 1086

Cotton seeda 290 329 695

Cotton linta 201 448 619

Faba bean 311 484 677

Maize 273 418 528

Rice 272 425 815

Wheat 332 448 596

aPrice for cotton seed is given in $/t and cotton lint in $/bale.
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TABLE 4 Simulated average crop yield, irrigation water use and fertiliser N rate for the 16 scenarios comprising four whole-farm adaptations
and four types of irrigation infrastructure under historical (H; 1985–2004) and future (F; 2070–2089) climates

Whole-farm
adaptation

Irrigation
infrastructure Crop

Crop yield

(t/ha or bale/ha)

Water use (Ml/ha/

year)

Total irrigation applied

(Ml/year)
N rate applied
(kg N/ha/year)H F H F H F

Baseline Gravity Canola 2.7 2.5 1.5 2.6 1159 1971 100

Wheat 6.9 6.2 4.0 4.7 2974 3501 150

Pivot Canola 2.7 2.5 1.2 2.0 901 1533 100

Wheat 6.9 6.2 3.1 3.6 2313 2723 150

Drip Canola 2.7 2.5 1.1 1.8 811 1380 100

Wheat 6.9 6.2 2.8 3.3 2082 2451 150

Pipe & Riser Canola 2.7 2.5 1.4 2.3 1014 1725 100

Wheat 6.9 6.2 3.5 4.1 2602 3063 150

Diversified Gravity Canola 4.5 4.4 3.2 4.2 2379 3143 100

Faba bean 11.3 10.5 4.0 4.9 2998 3647 50

Wheat 7.3 6.5 3.5 4.4 2653 3284 150

Pivot Canola 4.5 4.3 2.5 3.3 1851 2444 100

Faba bean 11.3 10.5 3.1 3.8 2331 2837 50

Wheat 7.3 6.5 2.8 3.4 2063 2554 150

Drip Canola 4.5 4.3 2.2 2.9 1666 2200 100

Faba bean 11.3 10.5 2.8 3.4 2098 2553 50

Wheat 7.3 6.5 2.5 3.1 1857 2298 150

Pipe & Riser Canola 4.5 4.3 2.8 3.7 2082 2750 100

Faba bean 11.3 10.5 3.5 4.3 2623 3191 50

Wheat 7.3 6.5 3.1 3.8 2321 2873 150

Intensified Gravity Canola 5.1 5.3 2.0 2.8 1537 2103 150

Corn 21.0 24.0 12.4 14.0 2339 2628 400

Cottona 4.1; 10.7 5.7; 13 7.3 10.5 1379 1974 300

Rice 14.0 13.2 18.1 21.5 3408 4043 500

Wheat 5.0 4.4 1.9 2.2 1424 1670 250

Pivot Canola 5.1 5.3 1.6 2.3 1218 1688 150

Corn 20.9 23.6 9.6 10.7 1804 2011 400

Cottona 4.1; 10.7 6.0; 13.0 5.5 7.7 1037 1457 300

Rice 14.0 13.2 14.3 17.0 2692 3187 500

Wheat 5.0 4.4 1.5 1.8 1156 1313 250

Drip Canola 5.1 5.3 1.6 2.1 1181 1538 150

Corn 20.5 23.9 8.4 9.6 1589 1808 400

Cottona 4.1; 10.7 5.9; 12.4 4.9 7.0 924 1323 300

Rice 14.0 13.2 13.2 15.3 2476 2871 500

Wheat 5.0 4.4 1.4 1.6 1018 1177 250

Pipe & Riser Canola 5.1 5.3 1.8 2.5 1345 1855 150

Corn 20.1 23.9 10.7 12.1 2015 2270 400

Cottona 4.0; 10.5 6.1; 13.6 6.4 9.0 1196 1687 300

Rice 14.0 13.2 16.3 18.9 3064 3552 500

Wheat 5.0 4.4 1.7 1.9 1275 1437 250

Simplified Gravity Canola (dry) 1.7 1.8 0.0 0.0 0 0 50

Wheat 5.6 5.5 3.3 4.5 1706 2365 100

Pivot Canola (dry) 1.7 1.5 0.0 0.0 0 0 50

Wheat 5.6 5.4 2.5 3.5 1327 1840 100

(Continues)
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use (7.5 t/ha and 3.0 Ml/ha) than the Baseline (5.4 t/ha and 2.6 Ml/ha,

respectively). Relative to the Baseline, long-term yield gains were

attained for the Intensified (mean 68%) and Diversified (mean 36%) sce-

narios. Simplified scenarios yielded less on average than the Baseline

(mean �14%; Figure S4). In contrast, average long-term yields were

similar between irrigation infrastructure in each agronomic adaptation

(Figure 2). Intensified Gravity and Intensified Pipe & Riser scenarios had

the highest mean water use (7.3 and 6.4 Ml/ha) whereas the Simplified

Drip had the lowest water use of all scenarios examined (1.5 Ml/ha;

Figure 2). The high yield attained by irrigated maize was the main

driver of profitability in Intensified (Table 4 and Figure 3).

3.2 | Crop yields and water use under future
climates

For all adaptations, future climates reduced mean yields across whole-

farm adaptations except for the Intensified scenario. Average water

use across adaptation scenarios increased by 1.4 Ml/ha relative to the

historical period (Table 4 and Figure S5). Intensified scenarios had the

largest increases in irrigation water application (mean 2.7 Ml/ha); high

water use and fertiliser N rates in these scenarios more than counter-

balanced detrimental impacts of climate change, resulting in large

yield gains (mean +1.2 t/ha), as shown in Figure 2. Whereas surface

irrigation methods (Gravity and Pipe & Riser) of the Intensified scenario

resulted in higher water application rates under future climates, mean

yield gains were relatively invariant across irrigation infrastructure

(Figure S5), demonstrating that whole-farm adaptation had greater

impact on biophysical and economic indicators compared with irriga-

tion infrastructure per se.

3.3 | Profitability under historical climates

Across whole-farm adaptations and irrigation infrastructure, mean

profitability and investment worth were highest per unit of land for

Intensified and largest per unit of water for the Diversified scenario

(Table 5 and Figures 4–6 and S6). The Simplified scenario was gener-

ally less profitable than the Baseline. Due to the combination of low

capital irrigation infrastructure combined with modest irrigation effi-

ciency, Pipe & Riser irrigation infrastructure systems were typically

more profitable per unit land, whereas the highly water-efficient infra-

structure (e.g., Drip) was more profitable per unit water. The least

water-efficient Gravity system attained lowest mean profitability per

unit land and water across adaptation scenarios.

In general, positive NPV for all scenarios indicated that the irriga-

tion investments were profitable (Table 5). Driven by differences in

yield, crop type and irrigation use, NPV varied substantially across the

scenarios, from $2.3 M for the Simplified Gravity scenario to $24.4 M

for the Intensified Pipe & Riser. The Baseline Gravity system had mean

profitability of $5.0 M. The net value of adaptation per unit land ran-

ged from �$115/ha/year for the Simplified Gravity system to $972/

ha/year for the Intensified Pipe & Riser (Figure 5). Annualised equiva-

lent benefit per unit water varied from �$55/Ml/year (Simplified Grav-

ity) to $342/Ml/year (Diversified Drip). The annual equivalent benefit

per unit area aligned with annualised equivalent benefit per unit water

for all scenarios expect for the Intensified adaptations (Figure 6), sug-

gesting that intensification would be more suited to farmers targeting

area-based returns, whereas diversification is best suited for farmers

with limited water and/or higher water prices.

IRR on investment was highest for the Intensified Gravity scenario

at 55% with a lower payback period of 2 years, whereas the Simplified

Pivot scenario had the lowest IRR at 4% and the highest payback

period of 13 years (Table 5), suggesting that investing in high-cost irri-

gation infrastructure (e.g., Pivot) would not be viable for low input sys-

tems. Overall, the Intensified scenarios accrued higher benefits per

unit of land from large gross margin gains per unit of area; this consis-

tently offset high production costs (e.g., water costs), whereas Diversi-

fied scenarios had higher return per unit of water due to the more

diverse income sources, mitigated economic risk (Table 5).

3.4 | Profitability under future climates

Across irrigation adaptations and infrastructure, future climates

reduced average profitability and investment worth per unit water

(�37% and �52%, respectively; Table 5 and Figures 4–7, S6 and S7)

than per unit land (�17% and �39%). The Baseline system had the

highest revenue reductions on an area and water basis and was most

negatively impacted by future climatic conditions, suggesting that the

cost of no adaptation to climate change would be greatest. Relative to

historical climates, Intensified scenarios increased returns and

TABLE 4 (Continued)

Whole-farm
adaptation

Irrigation
infrastructure Crop

Crop yield

(t/ha or bale/ha)

Water use (Ml/ha/

year)

Total irrigation applied

(Ml/year)
N rate applied
(kg N/ha/year)H F H F H F

Drip Canola (dry) 1.7 1.5 0.0 0.0 0 0 50

Wheat 5.6 5.4 2.3 3.2 1194 1656 100

Pipe & Riser Canola (dry) 1.7 1.5 0.0 0.0 0 0 50

Wheat 5.6 5.4 2.8 3.9 1493 2070 100

aCotton is split into cotton seed (t/ha) and cotton lint (bale/ha).
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investment value per unit area by +11%, whereas Diversified scenarios

resulted in the highest mean profitability and investment worth per

unit water ($401 and $330/Ml/year, respectively) but were also

accompanied by larger reductions (�37% and �41%; Figures 4 and 5).

These results suggest that Intensification would be most climate resil-

ient per unit land owing to larger gains in profit that counterbalance

higher production costs, whereas Diversification will be most profitable

per unit water, but highly vulnerable to climate change. Gravity sys-

tems had the highest reduction in mean profitability per unit land and

water (�23% and �41%, respectively; Figure 4), whereas Drip systems

attained the lowest declines (�13% and �34%) under future climates,

indicating that returns for less water-use-efficient infrastructure

(e.g., Gravity) would result in greater economic impact under climate

change compared with more water-efficient infrastructure. Intensified

Pipe & Riser systems generated the highest annualised net value gains

per area of irrigated land (343%; Table 5 and Figures 3 and 5),

whereas Diversified Drip systems achieved superior performance in

terms of value gains per unit water (182%) under future climates.

TABLE 5 WaterCan Profit analysis of 16 adaptation scenarios combining whole‐farm adaptation and irrigation infrastructure for a case study
farm in the Riverina region of New South Wales (NSW), Australia, under historical (blue rows) and future (yellow rows) climates

Agronomic

adaptation

Irrigation

infrastructure

Net
present
value

($M)

NPV per year

Net value of

adaptationa
Investment

worth Internal
rate of
return

(%)

Payback
period

(years)

Gross
margin

($/ha)

Net
cash
flow

($/ha)

($/ha/

year)

($/Ml/

year)

($/ha/

year)

($/Ml/

year)

($/ha/

year)

($/Ml/

year)

Baseline Gravity 5.0 331 106 0 0 206 66 15 7 755 406

Pivot 6.4 426 176 95 39 201 83 10 9 857 522

Drip 6.5 435 199 103 47 160 73 7 11 897 534

Pipe & Riser 7.0 468 172 137 50 293 107 15 7 810 574

Diversified Gravity 16.2 1083 305 752 212 958 270 53 2 1678 1329

Pivot 17.9 1113 432 861 312 968 351 32 3 1798 1463

Drip 17.7 1130 475 849 342 905 365 26 4 1812 1449

Pipe & Riser 18.2 1214 391 883 284 1039 335 42 2 1724 1488

Intensified Gravity 22.2 1185 162 854 117 1060 145 55 2 1803 1454

Pivot 22.9 1219 214 888 156 994 175 31 3 1833 1498

Drip 23.9 1271 247 940 183 996 194 27 4 1925 1562

Pipe & Riser 24.4 1303 202 972 151 1128 175 43 3 1837 1601

Simplified Gravity 2.3 216 92 −115 −55 91 43 8 10 616 267

Pivot 2.9 276 139 −55 −33 51 31 4 13 676 341

Drip 3.4 325 172 −6 −4 50 34 14 4 764 401

Pipe & Riser 4.5 396 137 95 51 151 82 14 7 759 523

Baseline Gravity 2.4 157 39 −174 −43 32 8 1 12 544 195

Pivot 3.6 242 77 −89 −28 17 5 2 14 632 297

Drip 4.7 311 109 −20 −7 36 13 3 14 744 381

Pipe & Riser 5.0 332 94 1 0 157 44 10 9 642 406

Diversified Gravity 12.5 837 186 505 113 712 158 41 3 1377 1028

Pivot 14.2 945 271 614 176 720 206 26 4 1495 1160

Drip 14.1 940 299 609 194 665 211 20 5 1516 1153

Pipe & Riser 14.7 982 250 651 166 807 205 35 3 1440 1204

Intensified Gravity 24.5 1308 147 977 110 1183 133 57 2 1958 1609

Pivot 25.6 1363 198 1032 150 1138 165 34 3 2011 1676

Drip 24.8 1324 213 993 160 1049 169 28 4 1987 1624

Pipe & Riser 27.5 1465 189 1134 146 1290 167 47 3 2036 1800

Simplified Gravity 1.6 155 49 −176 −56 30 10 1 12 541 192

Pivot 2.5 238 97 −93 −38 13 5 2 14 629 294

Drip 3.0 290 131 −41 −19 15 7 2 15 720 357

Pipe & Riser 3.2 302 109 −29 −10 68 24 8 10 606 370

aNet value of adaptation relative to the Baseline Gravity system.
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F IGURE 2 Effect of whole-farm
adaptation and irrigation infrastructure
on crop yield and water use under
historical and future climates. Boxplots
represent long-term crop yield. Black
circles represent means for crop yield
(averaged across irrigation infrastructure
and crop types). Red diamonds represent
average annual irrigation water use.

F IGURE 3 Average annual cash flow
of each crop on area and water bases for
historical and future climatic periods.
Stacked columns represent cumulative
crop cash flow per unit area and water
for each of the 16 adaptation scenarios.
The annualised cash flow is computed in
the Investment App of WaterCan Profit

and excludes capital cost for irrigation
infrastructure.

F IGURE 4 Impact of climate change on net present value (NPV) per unit area (a) and per unit water (b) for a range of whole-farm and
irrigation infrastructure adaptation scenarios. Green and red columns represent mean NPV under historical climates and future climates,
respectively; blue columns depict change in NPV between historical and future climates. Scenarios are ranked in ascending order from left to right
in each panel.
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Intensified systems had the highest net value per unit land, which sur-

passed historical Intensified scenarios by +36%, whereas Diversified

systems had the largest average return per megalitre of water but

were significantly lower than historical Diversified scenarios (�118%

decline).

3.5 | System profit gap under historical and future
climates

Our probabilistic analysis showed that the magnitude of profit gap on

an area basis increased under future climates by 29%, from $19.5 M to

$25 M for Intensified Pipe & Riser, whereas water-based profit gap

decreased by �30% from $5.5 M to $3.9 M (Table 5). The main drivers

of high profitability per unit area and water for Intensified scenarios

were maize and canola, respectively, whereas inclusion of faba bean in

Diversified scenarios increased returns per unit area and water relative

to Baseline and Simplified scenarios for both climatic periods (Figure 3).

4 | DISCUSSION

The aim of this study was to illustrate the capability of WaterCan

Profit by exploring how whole-farm intensification/simplification/

F IGURE 5 Impact of climate change on annualised equivalent benefit per unit area (a) and per unit water (b) for a range of whole-farm and
irrigation infrastructure adaptation scenarios. Purple and orange columns represent mean net value of adaptation under historical climates and
future climates, respectively. Grey columns show the change in average net value of adaptation between historical and future climates. Scenarios
are ranked by mean net value of adaptation under future and historical periods for graphs (a) and (b), respectively.

F IGURE 6 Net present value (NPV)
per unit area and per unit water for
16 adaptation scenarios under historical
and future climates. Squares depict the
historical period, whereas triangles
indicate future climates. The dashed line
indicates equal profitability per hectare
and per megalitre of water.
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diversification and alternative irrigation infrastructure impacted on

profitability under future climates. We showed that the Baseline had

the highest revenue losses on an area and water basis (�38% and

�53%, respectively; Table 5 and Figure 4), demonstrating that farmers

with gravity-based irrigation and relatively simple crop rotations will

likely incur the greatest economic impacts of the climate emergency

in the absence of adaptation. Even for most adaptations, productivity

and profitability declined under future climates due to (1) higher evap-

orative demand consuming more water, (2) faster crop lifecycles due

to greater growing degree-day accumulation, (3) lower mean rainfall

and (4) more frequent drought periods. This suggests that careful

agronomic and economic management will be needed to overcome

the detrimental impacts of existential climate crisis in the region.

The Intensification scenario was the only adaptation that

improved average yields and profit declined under future climatic con-

ditions. This result was attributed to higher proportion of farm area

under irrigation and higher rates of irrigation, higher N usage and a

more intense cropping system rotation that included high yielding

maize and rice (Figures 3–5). This suggests that whole-farm intensifi-

cation can be used to overcome the impacts of climate change. Inten-

sification increased average returns and investment worth per unit

area under future climates by up to 11% under future climates irre-

spective of irrigation infrastructure, whereas the Diversified scenario

was most profitable per unit water but characterised by precipitous

declines under future climates (�41%; Figures 3–7 and S6). The Sim-

plified was the least profitable adaptation under future climates. The

Intensified system offset high input costs including additional water

use to generate higher returns per area of irrigated farm, whereas

Diversification was superior in mitigating economic risk due to higher

returns per megalitre but was a poor climate change adaptation. For a

study of climate change adaptation of dairy systems, Harrison et al.

(2017) similarly found that the Intensification option was least

impacted under the 2040 climate change trajectories (�0.08% change

in profitability) across three sites in South Australia. It is however

worth noting that our scenarios were modelled at the farm scale: If

numerous farms applied Intensification at the regional scale, it is possi-

ble that nitrogen leaching into ground water and regional irrigation

requirements would increase, suggesting a need for more regional

studies that take into account interactions between farms at the land-

scape scale (e.g., Shahpari et al., 2021).

We also found that in comparing the relative profitability across

adaptations, metrics matter. We found greater climate-induced eco-

nomic losses per megalitre of irrigation water (�37%) than per area of

irrigated farm (�17%) under all adaptation scenarios. This indicates

that farm returns per unit water are more vulnerable to the detrimen-

tal impacts of climate change relative to income per unit land. Under

future climates, water application rates increase (e.g., by +1.4 Ml/ha;

Figure 4) to compensate for high soil moisture deficit at increased

temperature (+13%; Figure 1) and decreased rainfall (�14%). The high

application rates increase water costs and the resulting variable costs

(Table S2). Such high input costs relative to income (i.e., decline in

terms of trade with inflation) are the key drivers for the substantial

whole-farm profit losses per megalitre of water. As part of this, we

showed that whereas large gains in returns per hectare are achievable,

economic returns per unit water saturate beyond a certain point

(Figure 6), suggesting that under future climates, it may be more diffi-

cult to make a profit in cases where water (rather than land area) is

limiting.

In contrast to whole-farm adaptation, changes in irrigation infra-

structure had relatively little effect on productivity of profitability.

Across adaptations, surface irrigation (Gravity) attained the highest

net losses per unit land and water (�23% and �41%, respectively;

Figure 5) in future climates, whereas the pressurised Drip infrastruc-

ture had the lowest declines (�13% and �34%) under future climates.

These results align with those of Narayanamoorthy et al. (2018), who

found that drip irrigation was more profitable (+54%), water saving

(+40%) and cost-effective than conventional gravity/flood irrigation.

Maraseni et al. (2012) assessed the economic trade-offs associated

F IGURE 7 Change in area-based
annualised cash flow caused by climate
change across adaptation scenarios.
Colours represent adaptations:
blue = Baseline, green = Diversified,
purple = Intensified and red = Simplified.
Points represent irrigation infrastructure:
triangles = Gravity, diamonds = Pivot,
squares = Drip and circles = Pipe & Riser.
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with adoption of more water-efficient and energy-intensive irrigation

technologies in Australia using an integrated assessment framework

and suggested that conversion to water-efficient pressurised infra-

structure (e.g., drip) generated highest profitability per unit area

($9065/ha/year) and water savings ($4613/Ml) in addition to reduc-

tion of greenhouse gas (GHG) emissions. Together, these observations

suggest that water-use-efficient irrigation infrastructure such as pres-

surised Drip would likely be more economically feasible compared

with less water-efficient irrigation infrastructure (e.g., Gravity) under

climate change. Indeed, other empirical studies (e.g., Fader

et al., 2016; Frisvold & Deva, 2013; Mushtaq & Maraseni, 2011) view

investment in highly efficient irrigation infrastructure as a fundamen-

tal adaptation to climate change. However, farm-level financial con-

straints associated with high initial capital investment costs (e.g., in

Table 5) are often critical barriers for growers to invest in such

improved efficiency irrigation infrastructure.

The majority of previous studies have focused either on reducing

yield gaps (i.e., the difference between actual and potential yields; Bell

et al., 2015; Hatfield & Beres, 2019; Hochman et al., 2012; Khan

et al., 2021; Lobell et al., 2009; Pasuquin et al., 2014; Rattalino Edreira

et al., 2021), even though eternal increases in grain yield do not nec-

essarily result in higher whole-farm profitability. To overcome this lim-

itation, we quantified both productivity and profitability. Under future

climates, the system-level profit gap increased on an area basis by

29% for Intensified Pipe & Riser scenario and decreased by �30% on a

water basis for Diversified Drip (Table 5). These results again demon-

strate that it may be more difficult to make a profit in contexts with

limited irrigation water or when water price is higher. More broadly,

these observations indicate that plausible pathways for farmers to

close the area-based profit gap under future climates would be to

intensify the irrigated systems in tandem with investing in low capital

cost irrigation infrastructure, whereas crop rotation diversification

combined with high-efficiency infrastructure, cost-effective subsidies

and other farmer-tailored risk aversion strategies (e.g., appropriate

crop mix) would potentially help narrow profit gaps associated with

water use or use efficiency.

The strong financial performance per unit area and water for

Intensified scenarios in the present study was driven by the high net

revenue gains of maize and canola, respectively (see Figure 3). Incor-

poration of faba bean in Diversified scenarios increased returns per

unit area and water relative to Baseline and Simplified scenarios. The

economic viability of Intensified and Diversified scenarios, indicated by

the higher IRRs and shorter payback periods, was in part attributed to

profitability of crop mix in the rotations, as shown in Figure 3. Under

future climates, inclusion of profitable water-intensive crops such as

rice, cotton and maize would increase returns per unit farm area for

Intensified rotations; however, the high water requirements will likely

predispose the profitability to climate-induced penalties if climate

change reduced regional water allocated to individual farms. The rela-

tively low water requirement crops such as faba bean and canola have

the potential to sustain high return per unit of irrigated water in both

Diversified and Intensified rotations. A promising risk aversion strategy

for irrigators here would be to increase climate-smart profitable crop

options, for example, mung beans or chickpeas, in the sequence of

diversified and intensified crop rotations.

Although the focus of this study was primarily on biophysical and

economic aspects, assessments of other variables may change the key

conclusions drawn (viz., Harrison et al., 2019). For example, although

we showed that Intensified adaptations were most promising in an

economic sense, pressurised irrigation infrastructure systems

(e.g., centre pivot sprinklers) can be more energy intensive, and

greater nitrogenous fertiliser use can lead to higher nitrous oxide

emissions (Bilotto et al., 2021; Christie et al., 2018; Christie

et al., 2020; Rawnsley et al., 2019), which is a potent GHG. Alterna-

tively, greater irrigation use (e.g., in the Intensified system) could lead

to improved carbon sequestration and storage (Farina et al., 2021;

Henry et al., 2022; Sándor et al., 2020), reducing farm-level emissions

if irrigation was maintained over the longer term (Ara et al., 2021;

Phelan et al., 2018; Taylor et al., 2016). Although cross-disciplinary

assessments are often more holistic, they require greater resources to

elicit and, as such, were beyond the scope of the present study.

Indeed, the next step in the present research programme is to investi-

gate how the holistic systems adaptations modelled here impact on

carbon storage and net GHG emissions.

The modelling framework used here cannot distinguish between

intensification due to fertiliser or irrigation, because we modelled bun-

dled holistic adaptations that intensified existing systems by changing

both fertiliser and irrigation use. Mueller et al. (2012) demonstrated

that globally, intensification can considerably close yield gaps (the dif-

ference between actual and potential yields in a given region) with

appropriate, contextualised changes in fertiliser use and irrigation.

Mueller et al. (2012) contended that global production could be

increased by 45%–70% for most major crops, particularly in Eastern

Europe and Sub-Saharan Africa, with East and South Asia also having

substantial intensification opportunities owing to their vast arable

land areas and geographic variability in yields and yield gaps. Mueller

et al. (2012) found that regions with high fertiliser application rates

are concentrated in high-income and some low- and middle-income

countries, whereas irrigation zones were mainly concentrated in South

Asia, East Asia and parts of the United States, with spatial variability

in management explaining 60%–80% of global yield variability for

most major crop types. Given these findings, plus the fact that pur-

chasing fertiliser and/or irrigation infrastructure requires significant

financial outlay (Ara et al., 2021; Monjardino et al., 2022), practi-

tioners may be forced to choose between either fertiliser or infra-

structure (or other investment; Snow et al., 2021), rather than

simultaneously investing in all the interventions in the Intensified

scenario.

5 | CONCLUSIONS

We invoke the digital framework WaterCan Profit to examine impacts

of climate change on profitability and productivity for several holistic

adaptations and irrigation infrastructure scenarios. Our results indi-

cate that climate change induced greater economic losses per unit
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water (approximately �37%) compared with per land area (approxi-

mately �17%). We also showed that low-cost and moderate to high-

efficiency irrigation infrastructure types would be best suited to

farmers targeting area-based income; high-efficiency and high-cost

infrastructure would be preferable for farmers focused on revenue

per unit water. We conclude that in the context of global climate

change, (1) intensification of irrigated systems with greater farm areas

under irrigation, more diverse crop types and greater N use was more

beneficial in terms of productivity and profitability; (2) whole-farm

adaptation had much greater effect than changes in irrigation infra-

structure; (3) when assessing farm profit, metrics matter: Diversified

systems generally had higher profitability than Intensified systems on a

per unit water basis, but not a per unit land area basis; and (4) gravity-

based (surface) irrigation systems were generally the highest users of

irrigation water, followed by Pipe & Riser and Pivot (sprinkler) systems,

with Drip irrigation having the lowest use of irrigation water. Perhaps

most importantly, the cost of no adaptation to climate change will be

greatest, suggesting that proactive farmers who adapt now will bene-

fit financially in the decades to come.
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