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Com putational methods, especially m olecular docking-based calculations, have become indispensable 

in the modern drug discovery w orkflow . The constantly increasing chemical space requires fast, robust 

but most o f all highly predictive methods to  search fo r new bioactive agents. Thus, the scoring function 

(SF) is a useful and broadly applied energy-based element o f docking software, allow ing quick and 

effective evaluation o f a ligand's propensity to  bind to  selected protein targets. Despite many 
spectacular successes o f m olecular docking applications in virtual screening (VS), the obtained results 

are often far from  ideal, leading to  incorrect selection o f hit molecules and poor pose prediction. In our 

study we focused on docking calculation fo r the selected class A G -pro te in  coupled receptors (GPCRs), 

w ith  experimentally determ ined 3D structures and a suffic ient set o f known ligands w ith affin ity values 

reported in the ChEMBL database. Our goal is to  investigate how  much the energy-based scoring 

function fo r this particular target class changes when changing from  the default to  the re-estimated 
w eighting scheme on the specified energy terms in the SF definition. Additionally, we w ant to  verify if 

indeed more accurate results are obtained when considering d ifferent levels o f the biological hierarchy, 

namely: the w hole class A GPCRs, sub-subfamilies, or just the individual proteins while applying default 

or specifically designed weighting coefficients. The performed calculation and evaluation factor values 

suggest a significant im provem ent o f docking results fo r the designed SF definition. This individual 
approach improves the accuracy o f binding affin ity prediction and active com pound recognition. The 

designed scoring function  fo r classes, sub-subfamilies, o r proteins leads to  a significant im provem ent o f 

molecular docking performance, especially at the level o f individual proteins. Our results show that to  

increase the efficiency and predictive power o f molecular docking calculations applied in classical VS, 

the strategy based on the individual approach fo r scoring function definition fo r selected proteins should 
be considered.

1. Introduction
The application of com m ercially available or in-house specifi­
cally designed com putational m ethods has becom e a routine 
step in the m odern drug discovery process. Such an approach is 
especially helpful in faster potential hit identification, lead  
optimization, and reduction of the hit-to-drug timeline. This, 
as a consequence, can significantly increase the efficiency of a 
novel drug design. One of the com m only used techniques 
during this process is the virtual screening (VS) approach1
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which enables scanning of large libraries of putative ligands 
and ranks active com pounds ahead of inactive ones. The m ain  
outcom e of this m ethod is to select the m axim um  num ber of 
active ligands with a significantly high enrichm ent factor in the 
result set. For this reason, the use of an  effective and highly 
predictive scoring function (SF) in the ligands poses evaluation  
is a key com ponent in a m olecular docking-based VS procedure.

There are three m ain classes of SFs which are routinely 
applied in the available docking software: force field-based, 
knowledge-based and em pirical.2 The first class includes those 
im plemented in AutoDock,3 Dock,4 or Gold (GoldScore)5 and  
estim ates binding free energy by calculating various energy 
term s, for example, electrostatic or van der W aals. The 
‘‘knowledge-based’’ class stands on statistical analyses of pro­
tein-ligand crystal structure complexes and is used in Gold 
(ASP). The last type, ‘‘em pirical’’, relies on binding energies 
calculated as a weighted sum  of every hydrophobic con tact and
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hydrogen bond. The Piecewise Linear Potential (PLP)6 and  
ChemScore7 functions along with the scoring function found 
in Glide can be included in this class. The linear com bination  
of the two or m ore SF com ponents from  the sam e or different 
classes (so-called hybrid scoring function) is a recognized  
strategy,2,8 and dem onstrates the better perform ance of dock­
ing calculations with com parison to single SF use.9-11 Recently, 
with the highly developing artificial intelligence application in 
drug discovery, the m achine-learning-based class of SF was 
additionally introduced.12 Despite the progress in scoring  
function methodologies, the accurate prediction of protein­
ligand binding affinities rem ains a challenge. Benchm ark  
studies have shown th at the calculated binding scores display 
a poor correlation with experim ental affinity.13-15 This can  
result in a high percentage of false-positive com pounds in the 
hit list13,15 and therefore, increase the costs of the drug design 
process. The above m entioned studies14,16 revealed another 
m ajor outcom e: the tested scoring functions are not universal 
enough, thus the perform ance of the entire benchm ark m ay not 
be consistent with the perform ance of individual targets. In 
other words, when the given type of protein has only a few 
representatives in the investigated group, there is a possibility 
th at the obtained results for the whole set do not m atch  the 
outcom e acquired for these several proteins.

In the present article, we focus on class A of the G protein­
coupled receptor (GPCR) family, as a selected protein family 
with a well-established druggability profile. GPCRs belong to 
one of the largest transm em brane receptor families th at acti­
vate internal signal transduction pathways. They are activated  
by various agents, for example, ions, neurotransm itters, odor- 
ants, horm ones, lipids, peptides, or proteins.17 Due to their 
abundance in the hum an body and involvement in the etiology 
of m any diseases, they are the target of ca. 30%  of all marketed  
drugs.18 However, in m ost benchm ark studies, they are not the 
primary target of research, and even if they are considered, only 
a few representatives are included in the study. While such sets 
can  be useful to test the overall perform ance of the m olecular 
docking program , they may fail in the case of m ore specific 
proteins. The GPCRs are interesting targets in term s of m ole­
cular docking studies due to the deep binding pocket which 
alm ost completely encloses the small molecule ligands. M ore­
over, the percentage of sequence identity for the binding pocket 
region for some receptors may reach up to 88%  (e.g. M2 and M4 
receptors based on the similarity m atrix generated using  
GPCRdb online server19). For the m entioned reasons, the 
results obtained from  benchm ark studies where GPCRs are 
not the primary target, m ay not apply for those proteins. 
Although several docking experiments were a successful strat­
egy in the drug design,20 the m olecular docking results may be 
often m isleading and questionable, despite a high score.21^2 
The selected AutoDock software is not the top perform ing tool. 
However, exhaustive research work on pose prediction for the 
variety of selected protein-ligand complexes available in the 
PDB, screened additionally against bioactivity data, shows that 
good pose prediction does not always correlate with good  
scoring, irrespective of the software used.23 Moreover, the

comparative studies indicate th at none of the docking tools 
truly outperform s the others and none of the scoring functions 
is universal to correctly predict and/or evaluate the ligand’s 
pose for all types of molecules and protein fam ilies.23,24 In view 
of observations related to an  irregularity in the perform ance of 
scoring functions across various kinds of protein targets, we 
aim  to answer the question of w hether the scoring function in 
AutoDock 4 .2  should be applied in the default mode or shall it 
be re-defined for a particular fam ily/class/protein hierarchy 
level, on the example of class A GPCRs.

In recent years, m ore than 50 different docking software 
packages have been developed. Although they differ regarding 
scoring function types and conform ational space search algo­
rithm s, the lim itations described in the previous section have 
not been overcome to date. Over the last 20 years, m ore than  
30%  of published articles related to docking studies have used  
AutoDock as the docking software.25 This free software (its 
version AutoDock4, available under the GNU General Public 
License) is widely used with approximately 10 000 citations 
since its release in 2009. AutoDock4 was successfully applied 
in the discovery of several potent inhibitors binding to pep­
tides, proteins, or genes.26-28 The used semi-empirical scoring  
function is based on the AMBER force field and consists of five 
weighted energy term s: dispersion/repulsion (a Lenard-Jones 6/ 
12  potential), hydrogen bond (directional hydrogen bond com ­
ponents; based on 10/12 potential), electrostatic (Coulombic 
potential), desolvation (based on the volume of surrounding 
atom s, which shelter the given atom  from  solvent) and entropic 
term  related to the num ber of freely rotatable bonds in the 
ligand.29 In view of observations related to an  irregularity in the 
perform ance of scoring functions across various kinds of 
protein targets, we aim  to answer the question of w hether the 
scoring functions applied in AutoDock 4 .2  should be consid­
ered universal in the default mode or should it be re-defined for 
a particular fam ily/class/protein hierarchy level.

2. Methods
2.1 . Preparation of ligands

For selected class A GPCRs, the database of ligands was 
prepared based on the ChEM BL2430 database search. The 
result was downloaded in the SMILES form at. Few restrictions  
of the search were im plem ented. Ligands without the given 
inhibitor constant (Ki) and with m ore than 32 rotational bonds 
were excluded as a consequence of the limitation in AutoDock 
software. Additionally, solvents and ions were removed from  
the ligand’s SMILES representation. The prepared set o f ligands 
was then divided into five baskets based on K  values, namely

• B1 with K  <  1 nM.
• B2 with K  in range (1; 10 >  nM.
• B3 with K  in range (10; 100 >  nM.
• B123 with K  <  100 nM.
• B45 with Ki >  100 nM.
The molecules for which the reported Ki values varied 

significantly and did not allow a straight classification to an
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inactive basket (B45) or one of the active baskets (B1, B2, or B3) 
were rejected. Ligands in the basket-divided set were converted  
to the PDB form at with Open Babel software31 and prepared for 
the docking procedure, using the prepare_ligand4.py script 
(AutoDock tools3). Three sets (training, testing1, and testing2) 
were created using the aforem entioned processed database. 
The training set was utilized to generate new weights for SF in 
AutoDock software and testing1 and testing2 sets to verify the 
designed weighting accuracy. As the quantity of ligands varies 
for individual receptors, to maximize the num ber of examined  
receptors, the B1, B2, and B3 baskets contained four ligands 
and the B45 baskets twenty-four molecules. The B123 basket 
was established by m erging all three active ones (B1, B2, and  
B3). For each set (training, testing1, and testing2) molecules 
were selected random ly and without repetition to ensure the 
diversity of ligands. The ChEMBL codes of selected ligands and  
their distribution within baskets and the three m entioned sets 
are shown in Table S1 in the ESIf file.

calculated weights were selected from  ten separate runs of 
the program  (with random  initial seed) each of which derived 
results from  a fixed num ber of generations (3000) with a 
population size of 20. The testing1 and testing2 sets were used  
to examine the perform ance of new weights to confirm  or deny 
the outcom es received from  the training set.

2.5. Evaluation of the scoring system

Since ligands in the initial sets were originally classified into 
five baskets based on binding affinity values, the top-scored  
poses for each ligand have been also classified into one of the 
baskets, to com pare the perform ance of m olecular docking  
calculations. The AutoDock final score is expressed as binding  
energy in kcal m ol- 1 , and the obtained energy can be converted  
into Ki value based on the following equation:34

(1)

2.2. Preparation of receptors

For each selected Class A receptor, we fetched from  the Protein  
Data Bank32 the structural data of hum an proteins with a 
resolution upper lim it equal to 3.5 À. Com bining this require­
m ent with ligands availability, the set used in the study consists 
of 24 protein structures. The PDB IDs of the receptor structures 
are given in Table S2 of the ESIf file. The fetched protein  
structures were pre-processed using the Protein Preparation  
W izard from  Schrödinger Suite33 and initially prepared for 
docking procedures by ligands and water molecule removal. 
The selected target structures were inspected for steric clashes 
and an appropriate ionization state in pH 7.4. The positions of 
all hydrogen atom s were calculated and added to each struc­
ture. Additionally, all structures were aligned to B2-adrenergic 
receptor coordinates (PDB ID: 2RH1) to facilitate the docking 
calculation and analysis of obtained results. Selected proteins 
were finally prepared for docking calculations using the pre- 
pare_receptor4.py script (AutoDock tools3).

2.3. Molecular docking

All docking calculations were carried out using AutoDock4.23 
software using the Lam arckian Genetic Algorithm. For each  
receptor, a calculation was conducted with the default para­
m eters except for the num ber of genetic algorithm  runs, which  
was set to 50 instead of 10. The centre position, num ber of 
points, and the length of spacing in the grid file were identical 
for each protein. The coordinates of the centre were determined  
based on the positioning of native ligands, and the grid was 
generated using 126 x  126 x  126 points with 0.208 À spacing. 
In all docking analyses, the energy com ponents for poses with 
the lowest energy were taken into further consideration.

2.4. Genetic algorithm

The training set was used to calculate new weights for five 
energy com ponents applied in AutoDock4.2, with the use of an  
in-house script based on the genetic algorithm  approach and  
the optim al coefficient search. The final solutions of the

This approach was applied in our study to convert the 
calculated energy (obtained based on the designed new 
weights) into Ki, and subsequently, assign the top-scored poses 
of each ligand into the corresponding basket. As the ligands in 
our study were divided and characterized by the Ki range 
baskets, and not by the exact and individual affinity values, 
the obtained new SF (with the new weighting schem e applied) 
as well as the original SF (with the default weights) could not be 
evaluated applying the com m only used ‘Scoring power’ 
m ethod.13 For th at reason, the variation of the enrichm ent 
factor35 (EF) was used, in which instead of the fraction of the 
database, the particular basket was tested:

E(basket) =  —  ■ —
V ' B i  N a

(2)

where H t is the num ber of true positives retrieved for examined  
basket after docking calculations; Bi is the initial num ber of all 
molecules assigned to the basket; N  is the total num ber of 
com pounds; Na is the total num ber of molecules assigned to 
the examined basket after docking calculation. Here we give an  
example of this procedure: when the B1 basket for the 5-HT1B 
receptor is considered, the total num ber of com pounds (N) is 36  
(4 ligands in B1, 4 in B2, 4 in B3, and 24 in B45) and Bi is set to
4. Let’s assum e th at after docking calculations 2 ligands were 
assigned to the B1 basket (Na) of which 1 was true positives

1 36
(Ht). Using this data, the EF is equal to

4 2
: 4 .5 . Apart from

the EF metric, two more parameters were used to evaluate the 
performance of new SF -  the success rate calculated as the 
percentage of adequately assigned ligands in a basket

—t ■ 100%, referred to as %SR^ and the percentage of cor­

rectly classified ligands in the initial basket 

—  ■ 100%, referred to as % A
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3. Results and discussion
To investigate the influence and perform ance ofvarious weight­
ing schem es on the scoring function results, all the selected  
ligands were docked to corresponding targets. For each selected  
receptor, 108 ligands were docked (36 ligands per training, 
testing1, and testing2 sets). To answer the question of whether 
the applied scoring functions should be specifically defined for 
each of the studied targets, the initial protein set was analyzed  
at three levels of biological hierarchy:36 the whole family (class 
A GPCRS), four sub-subfamilies (serotonin, opioid, dopamine, 
and m uscarinic acetylcholine receptors) and individual pro­
teins (Fig. 1).

In total 24 different proteins were exam ined which belonged  
to thirteen various sub-subfamilies of the class A GPCRs. Only 
sub-subfamilies containing at least three experimentally deter­
m ined structural representatives were taken under considera­
tion. Thus, from  the set shown in Fig. 1, seventeen groups were 
analyzed: whole (family level), serotonin, opioid, dopamine, 
and m uscarinic acetylcholine receptors (sub-subfamily level) 
and 5-HT1B, 5-HT2B, 5-HT2C, D2, D3, D4, M1, M2, M4, d , k  and  
NOP receptors (protein level). For each ligand-protein complex, 
five energy com ponents were extracted from  docking results, 
using a script from  the AutoDock tools. Data for sub-subfamily 
and family levels were obtained by com bining the outcom es for 
relevant individual proteins.

3.1. The default weighting scheme results

The EF values for the training set are shown in Table 1. The 
scores of other evaluation param eters (%SR and %A) are shown 
in Table S3 in the ESIf file. Com parison of the data in Table 1 
shows a substantial difference in the EF value for the B1 basket, 
calculated for considered GPCRs at the family level (class A), 
with respect to results obtained for each receptor. For discussed  
proteins (50%  of investigated targets), the value of EF is equal 
to 0 .00 , whereas for all analyzed receptors it reaches a 1.10  
num erical score. Thus, the assum ption can  be m ade that the 
recognized ligands were not evenly distributed between pro­
teins but assigned either to one or few structurally similar

PCCP

Table 1 Calculated EF values for each level o f biological hierarchy: 
protein, sub-subfamily (examined set highlighted in bold), and family 
(examined set in bold capital letters) for original and new weights applied

EF for default w eights E F for new weights
JCiAaiJLJLllJLCU

group B1 B2 B3 B 123 B45 B1 B2 B3 B 123 B45

WHOLE 1.11 1.01 1.07 1.10 1 .09 2 .92 1.69 2.45 1.14 1.12
Serotonin 0.00 1.29 1.17 0.98 0 .99 3 .60 2.70 3 .00 1.33 1.11
5-HT1B 0.00 1.42 1.50 1.11 1 .17 3 .60 3.00 3 .00 1.83 1.42
5-HT2B 0.00 0.00 1.29 1.00 1 .00 4.50 3.00 3 .00 1.64 1.14
5-HT2C 0.00 1.50 0.90 0.75 0 .90 3 .00 9.00 3 .00 1.50 1.16
Dopamine 0.00 0.96 0.64 1.07 1 .07 2 .70 2.57 2.00 1.36 1.13
D2 0.00 1.29 0.00 1.00 1 .00 3.00 3.00 4 .50 1.65 1.41
D3 0.00 1.50 0.56 1.09 1 .07 4 .50 4.50 4 .50 1.93 1.30
D4 0.00 0.00 1.13 1.13 1.13 6.00 3.00 4 .50 1.71 1.23
Muscarinic 0.00 1.50 1.66 1.26 1.15 1 .29 1.42 1.80 1.38 1.45
M1 0.00 1.29 0.90 1.06 1.03 2.25 6.00 2.25 1.38 1.50
M2 0.00 2 .57 1.89 1.15 1 .20 1 .50 4.50 3 .86 1.44 1.50
M4 0.00 0.00 2.00 1.71 1.23 3 .60 4.50 9.00 1.91 1.20
Opioid 0.00 1.50 1.17 1.07 1 .06 1 .64 4.50 2 .57 1.36 1.11
Delta 0.00 3 .60 1.20 1.00 1 .00 3.60 4.50 4 .50 1.91 1.20
Kappa 0.00 0.82 0.82 1.00 1 .00 1 .80 4.50 3 .00 1.41 1.18
NOP 0.00 0.00 1.35 1.23 1.18 2 .70 4.50 9.00 1.50 1.13

Fi9- 1 The biological hierarchy of GPCRs selected for this study. The 
family level is highlighted in yellow, sub-subfamily level in green, and 
protein in blue.

receptors instead. The results analysis for baskets B2 and B3 
leads to a similar conclusion. The calculated values for these 
baskets are in a range from  0 to 3.6. Additionally, the com par­
ison of EF values for three receptors belonging to the same 
sub-subfamily revealed high discrepancies also within the sub­
subfamily. For example, the EF value in the B2 basket for the d 
receptor is 3 .60, whereas for the NOP receptor it is equal to 0.00. 
These observations suggest th at when differentiating very active 
(B1), m edium  active (B2) and weakly active (B3) com pounds, 
one should consider applying different weights for different, 
individually considered targets. The %A and %SR values 
dem onstrate a similar tendency. The obtained %A scores for 
some proteins are very high, and reach even 100%  (for example, 
M 2R in the B3 basket) which m eans th at all initial ligands were 
assigned to this basket. However, there are cases within the 
same sub-subfamily where the obtained %A is four tim es lower 
(i.e. %A = 25%  for the M1R, which belongs to the sam e sub­
subfamily as the above-m entioned M2R). The average values for 
12 analyzed proteins are in a reasonable range, and similar to 
the scores obtained for the whole family (approximately 27%  
and 40%  for 12 proteins and 23%  and 38%  for the whole 
family, calculated for B2 and B3, respectively). The problem  
arises when the level of success rate (%SR) is considered. The 
average values are notably low (ca. 13%  for both B2 and B3 
baskets). It m eans that only 13%  of all assigned com pounds  
reached the calculated Ki in the range of 1 nM to 10 nM (for B2). 
The highest score is obtained for the d receptor in the B2 basket 
and is equal to 40% . However, it is a single case where such a 
high score was obtained, and for m ost investigated proteins it 
was in the range of 0 to 20% . Although the primary goal of 
virtual screening (VS) is to identify possible hits, the more 
com pounds are selected for experimental evaluation, the 
higher the cost of finding a new prom ising hit is. In other 
words, the desired outcom e of VS calculations is the set of 
com pounds characterized by both: a very high %A and %SR.
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The results of m olecular docking with the default SF do not 
fulfil this criterion. The results of the three-evaluation m etrics 
obtained for B123 and B45 were slightly better than for the 
three separated active baskets (B1, B2, and B3). The calculated  
EF values for basket B123 vary between sub-subfamilies, though  
the occurring discrepancies are not as significant as for baskets 
B1, B2, and B3. The EF values are approximately equal to 1, 
except for B123 for M4R, where it is 1 .71. The average %A and  
%SR values are also significantly higher than for active baskets 
(63.89%  and 44.44% , 36.75%  and 71.64% , for B123 and B45, 
respectively). The obtained results suggest that the original 
weights are trustworthy enough to distinguish active and  
inactive com pounds and no differentiation between family or 
sub-subfamily is necessary.

3.2. New weighting schemes

To investigate whether the individual weights for the energy 
com ponents in a scoring function may influence the perfor­
m ance of m olecular docking calculations, new weights were 
calculated for all selected twelve proteins as well as four sub­
subfamilies and whole class A, separately. New weighting 
coefficients were com puted in two rounds: (1) for baskets B1, 
B2, and B3 and (2) for B123 and B45. The second round was 
introduced due to different observations of EF values for the 
default weights (see Table 1). The perform ed calculations, 
however, are based on param eter training, using limited-sized  
sets, hence few restrictions were im plem ented. To avoid over­
training of the obtained SFs, the num ber of recognized com ­
pounds belonging to the B123 basket was set to a m inim um  of 
50%  of all molecules in th at basket (%A m in. 50% ). Such an  
approach ensured th at the scoring function is not too specific 
and hopefully will be transferable to ligands th at are structu­
rally different from  those in the training set (testing1 and  
testing2 sets). As shown in Table 1, the calculated values of 
EF for new param eters are, in m ost cases, higher than the 
corresponding ones obtained with the default weights. The only 
three exceptions are observed in the B45 and B2 baskets for 
m uscarinic acetylcholine sub-subfamily. Usually, the purpose 
of VS is to identify the active ligands and not inactive com ­
pounds. Thus, only value for the m uscarinic sub-subfamily 
worsened after applying newly designed SF. The differences 
in EF values calculated for the new and the default weights are 
m ore noticeable for baskets B1, B2, and B3 than B123 and B45. 
To examine the im pact of new weights, the ratio of EF for new 
and original SF was calculated. The values above 1 .00 indicate 
th at the new SF perform ed better than the original one. For the 
cases where the ratio could not be calculated as EF for original 
SF was equal to 0, only EF for new SF was considered. As it can  
be shown in the example of baskets B1, B2, and B3 (Fig. 2), the 
use of the new, specifically designed weights significantly 
improved the perform ance of the scoring function.

The initial purpose of this study was to elucidate if the 
im provem ent of the m olecular docking perform ance requires 
th at the scoring function is individually designed for each class, 
family, or target, separately. From  EF values for the original 
weights, no definitive conclusions could be drawn. However,

Fi9- 2 The calculated ratios EFnew/EForiginal for B1 (yellow triangles), B2 
(green squares), and B3 (blue circles) baskets. The average values for each 
basket are shown as dotted lines colored correspondingly to the applied 
basket coloring. For cases where EForiginal was equal to 0 only EFnew for 
SF was considered.

data analysis of results for baskets B1, B2, and B3 obtained for 
the training set with new weights indicated several interesting  
conclusions (Fig. 2). First of all, the average ratio EFnew/ 
EForiginal is 3. The m ost significant difference can be identi­
fied for receptor D3R, basket B3, where the new EF is eight 
tim es higher than the corresponding one obtained for the 
original SF. The dopamine receptors (D2, D3, and D4) show  
one of the highest EF ratios, i.e. for D3R it is 4 .50 , 3 .00, and 8.00  
for B1, B2, and B3 baskets, respectively. The rem aining recep­
tors in the dopamine sub-subfamily also have, in m ost cases, 
evaluated rates greater than or equal to the average value. W hat 
is m ore, the new EF values for D2, D3, and D4 receptors are 
higher than the ones for the dopamine sub-subfamily (Fig. 3). 
This trend is also noticeable for other sub-subfamilies, 
although it is not as evident as in the above-m entioned exam ­
ple. For alm ost all proteins, EF values for the individual

Fi9- 3 The EF scores for the new SF for B1 basket, divided into three 
evaluated levels of biological hierarchy: family (blue circle), sub-subfamily 
(green squares), and individual protein (yellow triangles). The average 
EFnew value for basket B1 is shown as a dashed red line.
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receptors are greater than or equal to EF for corresponding sub­
subfamilies. Only in the case of the serotonin receptor (5- 
HT2CR) for the m ost active ligands in the B1 basket, the EF 
score is lower than for sub-subfamily. The observed tendency is 
not observed when shifting from  class A to sub-subfamily. For 
example, the m uscarinic acetylcholine receptor sub-subfamily 
has lower values in all three baskets (1.29, 1 .42, and 1.80) 
com pared to class A (2.92, 1 .69 , and 2.45 for B1, B2, and B3, 
respectively), whereas the serotonin (3.60, 2 .70 and 3.00) recep­
tor sub-subfamilies perform  better than class A for each basket.

A similar analysis can be carried out considering the differ­
entiation between active (B123) and inactive (B45) molecules. 
Only in two cases, the EF values for new weights appeared to be 
lower than the corresponding ones for the default weights (for 
M4 and NOP receptors in the inactive basket). Receiving inferior 
values is not an  optimal result. However, m ost scientists use 
docking to search for active, not inactive com pounds, and  
therefore, the obtained result is an  acceptable outcom e. The 
values obtained for B123 reveal the significant influence of the 
uniquely designed scoring function. While for original weights, 
the EF values range from  0.75 to 1.71 with average values equal 
to 1 .10, for new SF the m inim um  value is higher than the 
average for original SF (1.14 for the whole GPCR family). The 
transition from  family to sub-subfamily as well as from  sub­
subfamily to selected receptor significantly improves the VS 
calculations. For example, for the m uscarinic acetylcholine 
receptors sub-subfamily the EF is equal to 1.38 and for the 
receptors belonging to this sub-subfamily is 1 .3 8 ,1 .4 4 , and 1.91  
for M1, M2, and M4 receptors, respectively. Apart from  an  
increase in the EF scores, the application of the new weights 
can  also influence the values of %A and %SR. For all the groups 
in the B1 basket, the new %A is at least 7% , whereas, for the 
original weights, values not equal to 0 are obtained only for the 
whole class A. The average %A in B1 is equal to 54.17%  and  
the average scores for the other baskets rem ain at the same 
satisfactory level. At the sam e tim e, the average values of %SR 
significantly increase from  0.00% , 12.95% , 12.53% , 36.75%  and  
71.64%  to 37.08% , 50 .00% , 50.10% , 55.05%  and 85.30%  for B1,

B2, B3, B123 and B45 baskets, respectively. In a few cases, the 
%SR is even equal to 100%  (e.g. B3 basket for M4 receptor). 
Considering initial restrictions on ligands abundance in the 
resulting set, the obtained values are very prom ising towards 
new potential hit identification.

3.3. Testing sets

To ensure that the perform ance of calculated scoring functions 
can be reproduced, two different testing sets were applied 
(testing1, testing2). The num ber of com pounds and docking 
calculations param eters were the sam e as for the training set. 
The resulting values (for original weights) for the testing sets 
are com parable to the ones in the training sets (see Tables S3, 
S4, and S5 in the ESIf file). For m ost receptors, the EF scores for 
the m ost active ligands in the B1 basket are equal to 0.00, 
similar to the training set. The m ost significant difference 
between those three m entioned sets is noticeable for the 
m axim um  EF value. For the training set, it is equal to 3.60  
(for dR in B2 basket), while for the testing set it is obtained for 
m uscarinic acetylcholine receptors (4.5 for M1R in B2 for the 
testing1 set and 9.0 M4R in B1 for the testing2 set). The highest 
value for the training set is 2.5 tim es lower than for testing2. 
The value obtained for M4R in B1 for the testing2 set is the 
highest possible and indicates th at all ligands assigned to the 
basket B1 correspond to K  not greater than 1 nM. The results 
confirm  th at m olecular docking calculations carried out with 
AutoDock software are transferable and consistent for various 
databases of ligands. However, the EF values for new SF are 
only slightly worse. For 9 cases in testing1 and 11 in testing2 
sets, the obtained scores for new weights are lower than for the 
original SF. Despite slightly w orsened EF values for new SF, the 
trends observed for the training set are still noticeable.

The average EF for all active baskets (B1, B2, and B3) are 2.64  
and 3.03 for testing1 and testing2, respectively. Like in the 
training set, the im provem ent related to designing individual 
weights for the class, sub-subfamily or receptor is explicitly 
visible for the basket B123 (Fig. 4). In some cases, the new EF  
values are even around 2.5 tim es higher for receptors than for

Fig. 4  The distribution o f EF values calculated for new SF for B123 in testing1 (left) and testing2 (right) sets divided into three levels of biological 
hierarchy: family (blue circles), sub-subfamily (green squares), and protein (yellow triangles).
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adequate sub-subfamily (e.g. opioid sub-subfamily in the test- 
in gl set or dopamine sub-subfamily in the testing2 set, see 
Tables S4 and S5 in the ESIf file). Overall, the results obtained  
for testing sets confirm  th at individually designed SF weights 
perform ed at the same level for all three exam ined sets.

4. Conclusions
In this research work, the perform ance of individually designed 
scoring functions for class A GPCRs, four sub-subfamilies, and  
twelve receptors was com pared with the original scoring func­
tion applied as default in AutoDock4.2. Calculations were 
perform ed for a set of 108 ligand-protein complexes, dividing 
ligands for each receptor into three sets: training, testin gl, and  
testing2. Protein structures were fetched from  the Protein Data 
Bank and ligand-protein binding affinity values were obtained  
from  the ChEMBL database. Only the top-ranked pose per 
com plex was examined.

The investigation presented here is highly relevant to the 
field of com puter-aided drug discovery. It is because there is no 
m eticulous research to determine the perform ance of the 
scoring function on different kinds of protein targets, whereas 
m ost virtual screening calculations are carried out for one or a 
few specific targets. In this study, we focused on twelve proteins 
of class A GPCRs which belong to four different sub­
subfamilies. To ensure the diversity of the ensem ble, another 
l 2  receptors from  the sam e class but different sub-subfamilies 
were considered. Newly designed scoring function coefficients 
were calculated for each selected target as well as sub-subfamily 
and whole class A. The com parison of the calculated evaluation  
factors: EF, %A, and %SR for all obtained data, showed a 
significant im provem ent in the docking results com paring to 
the default SF settings. In particular, the accuracy of binding 
affinity prediction tends to be increased when individually 
designed weighting coefficients are applied. Additionally, the 
active com pounds recognition success rate increases by nearly 
a factor of 2. The m ost im portant finding is th at the design of a 
specific scoring function for class, sub-subfamily, or protein  
(three different levels of biological hierarchy) leads to a sig­
nificant im provem ent in m olecular docking perform ance.

Notwithstanding the prom ising results of this m anuscript, 
we also see the need to further improve and expand our 
research. In the future studies, different activation states of 
the receptors should be still taken into consideration and  
carefully evaluated as it may significantly influence the shape 
and size but also electrostatic potential of the active binding 
site. Additionally, prediction of ligands binding to allosteric 
sites of the GPCRs rem ains a challenge but could be an  
interesting direction of our study. Both above-mentioned  
effects could affect the definition of the scoring schem es. 
Despite these aspects, the presented results clearly show that 
the individual approach for scoring function calculation in 
virtual screening strategy can lead to a higher probability of 
hit molecule identification. Thus, considering the chosen  
receptor-ligand system, the estim ation of weights for the

scoring function would be beneficial before VS calculations. 
Even though this approach requires increased com putational 
tim e, the calculations of new and individually designed weights 
for the force field scoring function can decrease the num ber of 
failures and in consequence, reduce the costs of identifying and  
exam ining the lead m olecule.
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