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Tannerella forsythia and Porphyromonas gingivalis target distinct virulence factors bearing
a structurally conserved C-terminal domain (CTD) to the type IX protein secretion system
(T9SS). The T9SS comprises an outer membrane translocation complex which works in
concert with a signal peptidase for CTD cleavage. Among prominent T9SS cargo linked to
periodontal diseases are the TfsA and TfsB components of T. forsythia’s cell surface (S-)
layer, the bacterium’s BspA surface antigen and a set of cysteine proteinases (gingipains)
from P. gingivalis. To assess the overall role of the bacterial T9SS in the host response,
human macrophages and human gingival fibroblasts were stimulated with T. forsythia and
P. gingivalis wild-type bacteria and T9SS signal peptidase-deficient mutants defective in
protein secretion, respectively. The immunostimulatory potential of these bacteria was
compared by analyzing the mRNA expression levels of the pro-inflammatory mediators
IL-6, IL-8, MCP-1 and TNF-a by qPCR and by measuring the production of the
corresponding proteins by ELISA. Shot-gun proteomics analysis of T. forsythia and P.
gingivalis outer membrane preparations confirmed that several CTD-bearing virulence
factors which interact with the human immune system were depleted from the signal
peptidase mutants, supportive of effective T9SS shut-down. Three and, more profoundly,
16 hours post stimulation, the T. forsythia T9SS mutant induced significantly less
production of cytokines and the chemokine in human cells compared to the
corresponding parent strain, while the opposite was observed for the P. gingivalis
T9SS mutant. Our data indicate that T9SS shut-down translates into an altered
inflammatory response in periodontal pathogens. Thus, the T9SS as a potential novel
target for periodontal therapy needs further evaluation.
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INTRODUCTION

Oral health is characterized by the symbiotic interaction between
the oral microbiota and the human host. Its disturbance by
environmental or genetic factors leads to microbial dysbiosis and
increases the risk of oral diseases, particularly periodontitis
(Marsh and Zaura, 2017). Periodontitis is an inflammatory
biofilm disease of the tooth-supporting tissues characterized by
a dysbiotic state and the prevalence of the “red complex” of
Gram-negative, anaerobic pathogens-Porphyromonas gingivalis,
Tannerella forsythia and Treponema denticola (Holt and
Ebersole, 2005; Socransky and Haffajee, 2005; Griffen et al.,
2012). One of these bacteria, P. gingivalis, is considered as a
keystone pathogen and can subvert the host immune response,
disrupting the host-microbe homeostasis in the oral cavity and
promoting a dysbiotic state, even when present at low quantities
(Hajishengallis and Lamont, 2012).

The “red complex” bacteria interfere with metabolic and
physiological functions of the host through virulence factors
(Lasica et al., 2017; Gorasia et al., 2020). P. gingivalis and T.
forsythia secrete distinct virulence factors across the outer
membrane (OM) using the type IX secretion system (T9SS),
which is regarded as an essential determinant of pathogenicity in
periodontal diseases (Tomek et al., 2014). The T9SS seems to be
characteristic of the Fibrobacteres–Chlorobi–Bacteroidetes
superphylum to which T. forsythia and P. gingivalis are
affiliated (Lasica et al., 2017). The T9SS machinery is
composed of at least 18 essential protein components, of which
orthologs exist in P. gingivalis and T. forsythia (Lasica et al., 2017;
Lauber et al., 2018). These components build up a complex that
translocates proteins possessing a structurally conserved
carboxy-terminal domain (CTD) via the OM. The “classical”
CTD is composed of 40-70 variable amino acid residues that
possess an Ig-like fold (de Diego et al., 2016). The 3D structure of
the CTD serves as a recognition element of proteins for the T9SS.
After protein translocation to the surface, CTD-cleavage is
catalyzed by a C-terminal signal peptidase named PG0026
(PorU) and Tanf_02580 in P. gingivalis W83 and T. forsythia
ATCC 43037, respectively (Tomek et al., 2014; Lasica et al.,
2016), components of the attachment complex built of PorQ,
PorU, PorV and PorZ (Nguyen et al., 2007; Veith et al., 2009;
Sato et al., 2013; Lauber et al., 2018). T9SS cargo proteins are
either released to the environment (Lasica et al., 2017) or stay
associated with the bacterial surface, predictably anchored into
the OM by a glycoconjugate of so far unknown structure that is
attached to the C-terminal residue (Veith et al., 2020).

In P. gingivalis, the gingipains-RgpA, RgpB, and Kgp-are
intensely investigated cysteine proteases carrying a “classical”
CTD for secretion via the T9SS; they have a myriad of roles in
periodontitis. Gingipains cause hypo-responsiveness of several
components of innate immunity like epithelial cells,
macrophages, and neutrophils (Stathopoulou et al., 2009;
Wilensky et al., 2015; Sochalska and Potempa, 2017), resulting
in impaired bacterial clearance and a dysbiotic state.
Furthermore, they degrade host cytokines and chemokines
resulting in downregulation of the host response in the form of
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reduced inflammation (Stathopoulou et al., 2009; Stathopoulou
et al., 2010). While gingipains are mainly attached to the surface
of the OM, they may also be partially released in a soluble form
into the extracellular milieu (Rangarajan et al., 1997). It was
shown that a C-terminally truncated form of RgpB is no longer
attached to the OM demonstrating the importance of the CTD
signal for export and cell attachment (Seers et al., 2006).

Among prominent virulence proteins of T. forsythia which
are equipped with a “classical” CTD for targeting to the T9SS are,
for instance, the two heavily glycosylated surface (S-) layer
proteins TfsA and TfsB (Sabet et al., 2003; Lee et al., 2006;
Sakakibara et al., 2007; Sekot et al., 2011; Posch et al., 2012),
BspA surface antigen (Sharma et al., 1998), and hemagglutinin
(Murakami et al., 2002). The TfsA and TfsB proteins self-
assemble into a 2D crystalline layer around T. forsythia cells;
this S-layer mediates the adherence of the bacterium to the
human gingival epithelium (Mishima and Sharma, 2011) and, at
the early stage of infection, delays the immune response of
human gingival fibroblasts (hGFBs) and macrophages (Sekot
et al., 2011). BspA, on the other hand, is known to activate the
host response in monocytes and epithelial cells through a TLR-2
dependent mechanism (Hajishengallis et al., 2002; Onishi et al.,
2008). Furthermore, a set of six secretory proteases of T. forsythia
cleave host proteins such as collagen (Ksiazek et al., 2015) and
degrade complement proteins and the antimicrobial peptide LL-
37, which may contribute to virulence through evading innate
immunity (Koneru et al., 2017). Of note, these proteases bear a
nearly identical CTD that ends with a Lys-Leu-Ile-Lys-Lys motif
(KLIKK), but share very limited sequence similarity with the
“classical” CTD (Ksiazek et al., 2015).

Considering the link between CTD-proteins and virulence, it is
likely that blocking of their OM-export in T. forsythia and P.
gingivalis alters the pathogens’ ability to induce a host response.
Thus, the purpose of this study was to assess, if and in which
aspects shut-down of the T9SS in T. forsythia and P. gingivalis
influences the elicitation of a cellular response of human
macrophages and hGFBs-both known for their roles in the
pathogenesis of periodontitis. Specifically, along with the parent
strains we used mutants of T. forsythia and P. gingivalis with a
deletion in the T9SS signal peptidase gene resulting in a secretion
defective phenotype. Using shot-gun proteomics, we first
investigated the bacterias’ OM proteome for the presence of key
CTD-proteins of known virulence potential to assess the efficiency
of the T9SS shut-down and then, challenged the two human cell
types with the different bacterial species for up to 16 hours and
determined the production of different inflammatory mediators
using qPCR and ELISA. Specifically, we investigated the
production of tumor necrosis factor (TNF)-a, interleukin (IL)-8,
and IL-6 in U937 macrophages and of IL-6, IL-8, and monocyte
chemoattractant protein (MCP)-1 in hGFBs. IL-6 and TNF-a are
involved in regulating the immune reactivity of acute-phase
proteins and in recruiting of lymphocytes to inflamed tissues
(Charlie-Silva et al., 2019). IL-8 and MCP-1 are strong
chemoattractants and stimulate the migration of leukocytes to
sites of infection (Baggiolini and Clark-Lewis, 1992; Deshmane
et al., 2009). These inflammatory mediators are a substantial part
February 2022 | Volume 12 | Article 835509
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of the host defense; insufficient cytokine production leads to an
impaired bacterial elimination and development of a dysbiotic
state (Olsen and Hajishengallis, 2016), whereas an excessive
response might cause collateral tissue damages (Cekici et al., 2014).
MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The T. forsythia ATCC 43037 type strain (wild-type) and P.
gingivalis BAA-308/W83 (wild-type) were obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA). Deletion mutants of the signal peptidase gene encoding
PorU (PG0026) of P. gingivalis (Lasica et al., 2016) (henceforth
abbreviated DPG0026) and the T. forsythia ortholog Tanf_02580
(henceforth abbreviated DTanf_02580) (Tomek et al., 2014) were
available in our laboratory. T. forsythia wild-type and
DTanf_02580 were grown anaerobically in brain-heart-infusion
(BHI) broth with supplements, at 37°C for 7 days as published
previously (Tomek et al., 2014). P. gingivalis wild-type and
DPG0026 were grown anaerobically in enriched tryptic soy
broth (ETSB) at 37°C for 3 days (Tada et al., 2017). Bacteria
were harvested by centrifugation at 5000 g for 20 min at 4°C and
washed once with the respective growth medium.

For stimulation of human cells, bacterial pellets were
resuspended in RPMI 1640 medium (Invitrogen, Waltham,
MA, USA) and the optical density at 600 nm (OD600) was set
to 1 with medium. A correlation between OD600 values of 1.0 and
colony forming units (CFU) per milliliter of culture of the
different bacteria and mutants included in this study was
determined by dilution plating and colony counting (three
biological replicates with three technical replicates, each), with
OD600 = 1.0 corresponding to 3 x 108 CFU of T. forsythia wild-
type, 5 x 108 CFU of T. forsythia DTanf_02580, 1 x 109 CFU of P.
gingivalis wild-type, and 1 x 109 CFU of P. gingivalis DPG0026,
respectively. Bacterial suspensions were immediately used for
further processing.

Outer Membrane Isolation
For the isolation of outer membranes, 1 g of wet pellet of T.
forsythia wild-type, DTanf_02580, P. gingivalis wild-type, and
DPG0026, respectively, was resuspended in 25 mL of phosphate-
buffered saline (PBS) and disrupted by sonication on ice for 15
min/50% power/30 s duty cycle, using a Branson Ultrasonics
Sonifier™ (Branson, Brookfield, CT, USA). The OM isolation
essentially followed a protocol published for T. forsythia
(Komatsuzawa et al., 2002; Shimotahira et al., 2013). Briefly,
undisrupted bacteria were removed and membrane fractions
collected by ultracentrifugation at 100,000 g for 1 h/4°C
(Ti70.1 rotor; Beckman, Brea, CA, USA) and washed with PBS.
The pellet was resuspended in 5 mL of 1% (w/v) sodium lauryl
sarcosine (Sigma-Aldrich, St. Louis, MO, USA) and the insoluble
OM fraction was re-dissolved in 500 µL of 1% (w/v) sodium
dodecyl sulphate (SDS) (w/v). The OM isolation was performed
in triplicate, each, and the preparations were analyzed by SDS-
PAGE using 10% gels according to Laemmli (Laemmli, 1970)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and separated protein bands were stained with Coomassie
Brilliant Blue G250 (CBB). Protein concentrations of the OM
preparations were determined by the Bradford assay
(Bradford, 1976).

Shot-Gun Proteomics
For shot-gun proteomics, the SDS-dissolved OM preparations
were digested in-solution. The proteins were S-alkylated with
iodoacetamide and digested with trypsin (Promega, Madison,
WI, USA) as described elsewhere (Gundry et al., 2009). The
digested samples were loaded on a BioBasic C18 column
(BioBasic-18, 150 x 0.32 mm, 5 µm; Thermo Fisher Scientific,
Waltham, MA, USA) using 80 mM ammonium formate buffer at
a flow rate of 6 µL min-1 as solvent A. A gradient from 5% solvent
B (80% acetonitrile) in solvent A to 40% solvent B over 45 min
was applied, followed by a 15-min gradient from 40% solvent B
to 95% solvent B to facilitate the elution of large peptides.
Detection was performed with QTOF MS (Bruker maXis 4G;
Bruker, Billerica, MA, USA) equipped with the standard ESI
source in positive ion, DDA mode (switching to MSMS mode for
eluting peaks). MS-scans were recorded (range: 150-2200 Da)
and the six highest peaks were selected for fragmentation. For
instrument calibration, ESI calibration mixture (Agilent, Santa
Clara, CA, USA) was used. The analysis files were converted to
mgf files (using Data Analysis, Bruker), which are suitable for
performing an MS/MS ion search with ProteinScape (Bruker,
MASCOT embedded). The files were searched against the
UniProt database.

Isolation and Growth Conditions of
Human Monocytes and Human
Gingival Fibroblasts
The U937 monocytic cell line was purchased from the ATCC and
cultured in RPMI 1640 medium, supplemented with 10% (v/v)
fetal bovine serum (FBS) and penicillin (100 U mL-1)-
streptomycin (100 µg mL-1) (Pen-Strep) at 37°C in a humidified
atmosphere containing 5% CO2 (Friedrich et al., 2015).

hGFBs were isolated from the gingival tissue of periodontally
and systemically healthy individuals (Sekot et al., 2011). Gingival
tissue was cut off with a scalpel, placed into Dulbecco’s Modified
Eagle’s Medium (DMEM; Invitrogen) supplemented with 10%
FBS, Pen-Strep, shredded into small pieces, and incubated at
37°C and 5% CO2 for cell outgrowth.

Stimulation of Human Macrophages and
Human Gingival Fibroblasts With Bacteria
Prior to stimulation with bacteria, U937 monocytes were
differentiated into macrophages as described previously (Sekot
et al., 2011; Friedrich et al., 2015). Briefly, three milliliters of cell
suspension at a concentration of 106 cells mL-1 were added per
well of a 6-well plate and cells were stimulated with phorbol 12-
myristate 13-acetate (Sigma-Aldrich) at a concentration of 0.2 mg
mL-1 for 72 hours.

Adherent macrophages were gently scraped, counted and
seeded in a 24-well plate at a density of 2 x105 cells/well in 0.5
mL of RPMI 1640 medium supplemented with 10% FBS and 1%
February 2022 | Volume 12 | Article 835509
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Pen-Strep. hGFBs were seeded at a density of 5 x104 cells/well in
0.5 mL of DMEM containing the same supplements. After 24
hours, the media were discarded, cells were rinsed once with PBS,
subsequently, 0.5 mL of the respective medium without FBS, but
containing Pen-Strep was added, and cells were exposed to the
different bacterial stimuli at a multiplicity of infection (MOI) of
50 (Sekot et al., 2011). Six and five independent experiments for
U937 and hGFB, respectively, with four technical replicates,
each, were performed and FBS-free medium containing Pen-
Strep without bacteria served as a negative control. Stimulation
was done for 3 hours and 16 hours, at 37°C and 5% CO2.

MTT Cell Viability Assay
After cell stimulation, 100 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) dye (5 mg mL-1 in PBS) was
added to the cells and the plates were incubated at 37°C for 2 hours
(Vistica et al., 1991). Subsequently, the medium was discarded and
500 µL of dimethylsulfoxide were added to each well and the plates
were shaken to facilitate dissolving of formazan crystals. Controls
were performed in which each bacterium was solely added. OD570

values were measured on a Spectramax Plus micro-plate reader
(Molecular Devices, Sunnyvale, CA, USA). The MTT assay was
performed in five replicates.

Gene Expression Analysis of
Inflammatory Mediators
At the end of the stimulation, the cell supernatant was collected
and aspirated for ELISA quantification of secreted inflammatory
mediators. Adherent cells were washed with PBS followed by
detachment from the wells with a cell scraper (macrophages) or
accutase (hGFBs; Thermofisher Scientific) and used for gene-
expression analysis.

Isolation of mRNA, transcription into cDNA, and qPCR was
performed using the TaqMan® Gene Expression Cells-to-CT™

kit (Ambion/Applied Biosystems, Foster City, CA, USA) (Behm
et al., 2019; Blufstein et al., 2019). The target genes were amplified
using the following primers (all Applied Biosystems): TNF-a,
Hs99999043_m1; IL-6, Hs00985639_m1; IL-8, Hs00174103_m1;
MCP-1, Hs00234140; GAPDH, Hs99999905_m1. qPCR was
performed in paired reactions using the ABI StepOnePlus device
with the following setting: 10 min at 95°C, 50 cycles at 95°C for 15
seconds and 60°C for 60 seconds. Ct values were determined for
each gene and the expression of the target gene was determined
by the 2−DDCt method, where DDCt = (Ctarget

t − CGAPDH
t )sample −

(Ctarget
t − CGAPDH

t )control. Cells, which were not treated with
bacteria, served as control. For U937 macrophages, expression
of IL-6, IL-8 and TNF-a was analyzed, for hGFBs, IL-6, IL-8
and MCP-1.

Determination of Secreted Cytokines
and Chemokines by ELISA
The concentration of the inflammatory mediators IL-6, IL-8,
TNF-a, and MCP-1 in conditioned media, i.e., cell culture
supernatant after stimulation, was determined using ELISA
Ready-SET-Go kits (eBioscience, Santa Clara, CA, USA)
according to the manufacturer’s protocol.
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Statistical Analysis
ANOVA’s statistic for the repeated measure followed by the
post-hoc LSD test for pairwise comparisons was used to analyze
statistical differences. Statistical analysis was performed using
SPSS 24.0 software (IBM, Armonk, NY, USA). All data are
expressed as mean ± standard error of the mean (s.e.m.).
Significant statistical differences were considered at P < 0.05.
RESULTS

CTD-Proteins Are Depleted From the
Outer Membrane of a T. forsythia and P.
gingivalis T9SS Signal Peptidase Mutant
Prior to analyzing the influence of the T9SS shut-down on the
immune response of U937 macrophages and hGFBs to T. forsythia
andP. gingivalis challenges, the efficiencyofCTD-protein depletion
from theOMin the signal peptidasemutantsDTanf_02580 (Tomek
et al., 2014) and DPG0026 was investigated.

First, SDS-PAGE analysis of the OM preparations from T.
forsythia wild-type, DTanf_02580, P. gingivalis wild-type, and
DPG0026 revealed different CBB-stained banding patterns of the
respective parent and mutant strains, indicative of the absence of
proteins in the molecular-mass regions of known CTD-proteins
(compare with Tables 1, 2) in the T9SS signal peptidase mutants
(Supplementary Figure 1).

Next, the OM preparations from T. forsythia wild-type,
DTanf_02580, P. gingivalis wild-type, and DPG0026 were
subjected to shot-gun proteomics. Specifically, we performed a
closer inspection for the presence of known CTD-proteins in
order to assess the efficiency of their translocation blockage via
deletion of the T9SS signal peptidase genes PG0026 and
Tanf_02580, respectively.

According to MS analysis of peptide fingerprints, in the OM
preparation of the DTanf_02580mutant (Table 1), several known
CTD-bearing virulence factors were no longer detectable. Among
these were the surface antigen BspA (Tanf_04820), a possible
hemagglutinin/hemolysin (Tanf_06020) and the S-layer protein
TfsB (Tanf_03375), while the second S-layer protein, TfsA
(Tanf_03370) was massively reduced. It is likely that due to the
high cellular abundance of the S-layer proteins residual amounts
of TfsA might originate from cross-contamination with
periplasmic content during cell fractionation. These results not
only confirm but also expand our previous analysis of the
DTanf_02580 mutant (Tomek et al., 2014) and corroborate data
showing that other T. forsythia CTD-proteins (Veith et al., 2009)
are missing in the OM fraction of the signal peptidase mutant but
are present in that of the T. forsythia wild-type. These included
IgG Fc binding domain-containing proteins (Tanf_00065,
Tanf_11855), a bacterial group 2 Ig-like protein (Tanf_03310), a
conserved repeat protein (Tanf_08920), as well as hypothetical
proteins (Tanf_08965, Tanf_02330, Tanf_02425). Notably, in
contrast to these proteins bearing a “classical” CTD, the KLIKK
proteases of T. forsythia are secreted directly into the extracellular
medium, and, thus, cannot be detected in either the wild-type
bacterium or the T9SS signal peptidase mutant (Veith et al., 2009).
February 2022 | Volume 12 | Article 835509
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In the case of P. gingivalis, peptide fingerprints of the
dominant P. gingivalis Cys-proteases RgpA (PG2024), RgpB
(Arg-specific; PG0506) and Kgp (Lys-specific; PG1844) as well
as of hemagglutinin HagA (PG1837), immunoreactive antigen
PG91 (PG2102) and peptidylarginine deiminase (PG1424) were
found exclusively in the OM preparation form the P. gingivalis
wild-type (Table 2).
Effect of T. forsythia and P. gingivalis Wild-
Type and the DTanf_02580 and DPG0026
Mutant on the Viability of U937
Macrophages and Gingival Fibroblasts
The effect of the different wild-type bacteria and mutants on the
viability of U937 macrophages and hGFBs was investigated prior
to determining the immunostimulatory potential of T. forsythia
and P. gingivalis wild-type versus the respective T9SS signal
peptidase deficient mutant.

All tested T. forsythia and P. gingivalis species promoted the
viability of U937 macrophages, three hours and 16 hours post
stimulation (Figures 1A, B). No differences in the viability of the
macrophages were observed between challenges with wild-type
species versus the corresponding T9SS-deficient mutant. In
contrast, none of the tested bacteria had a significant influence
on the viability of hGFBs after both three hours and 16 hours
post stimulation (Figures 1C, D). Bacteria alone did not show a
measurable reactivity with the MTT reagent under the chosen
experimental conditions.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Effect of T. forsythia Wild-Type and the
DTanf_02580 Mutant on the Host
Response of U937 Macrophages
The effect of T. forsythia wild-type and DTanf_02580 on the gene
expression levels of TNF-a, IL-6, and IL-8, and on the production
of the corresponding proteins in U937 macrophages is shown in
Figure 2. Both T. forsythia species increased the gene expression
of all investigated inflammatory mediators (Figure 2A). Three
hours post stimulation, T. forsythiawild-type induced significantly
higher expression levels of all genes compared to the DTanf_02580
mutant. After 16 hours, neither T. forsythia strain had an effect on
TNF-a gene expression, while both, wild-type and mutant,
stimulated IL-8 gene expression by a similar degree. Gene
expression of IL-6 after 16 hours was below the detection limit
in the bacteria-treated groups. Sixteen hours post stimulation,
both T. forsythia species increased the production of all
investigated inflammatory mediators (Figure 2B), but no
significant differences between T. forsythia wild-type and the
T9SS signal peptidase mutant were observed.
Effect of T. forsythia Wild-Type and the
DTanf_02580 Mutant on the Host
Response of Human Gingival Fibroblasts
Figure 3 shows the effect of T. forsythia wild-type and
DTanf_02580 on the gene expression levels of IL-6, IL-8 and
MCP-1, and the production of the corresponding proteins in
hGFBs. Both T. forsythia species induced a significant increase in
TABLE 2 | CTD proteins detected by MS in the OM from P. gingivalis W83 wild-type (wt Pg) and T9SS signal peptidase-deficient mutant (DPG0026).

Protein name Protein MASCOT score* Sequence coverage (%)**

Locus tag Amino acids wt Pg DPG0026 wt Pg DPG0026

Arginine-specific protease RgpA PG2024 1706 2140 0 23 0
Arginine-specific cysteine proteinase RgpB PG0506 736 915 0 27 0
Lysine-specific cysteine proteinase Kgp PG1844 1727 2145 0 22 0
Hemagglutinin protein HagA PG1837 2105 908 0 13 0
Immunoreactive 61-kDa antigen PG91 PG2102 540 332 0 13 0
Peptidyl-arginine deaminase PG1424 446 804 0 27 0
February
 2022 | Volume 12 |
*Results from one representative preparation from three biological replicates in terms of MASCOT scores are shown. **Only peptides covering more than 5% of the sequence were considered.
TABLE 1 | CTD proteins detected by MS in the OM from T. forsythia ATCC 43037 wild-type (wt Tf) and T9SS signal peptidase-deficient mutant (DTanf_02580).

Protein name Protein MASCOT score* Sequence coverage (%)**

Locus tag Amino acids wt Tf DTanf_02580 wt Tf DTanf_02580

Surface antigen BspA Tanf_04820 1156 784.7 0 19.1 0
Possible hemagglutinin Tanf_06020 1252 134.3 0 5.2 0
S-layer protein TfsA Tanf_03370 1166 4002 350 49.9 7.8
S-layer protein TfsB Tanf_03375 1347 3415 0 46,7 0
IgG Fc binding domain-containing protein Tanf_00065 598 1228 0 29.1 0
IgG Fc binding domain-containing protein Tanf_11855 613 1235 0 24.3 0
Bacterial group 2 Ig-like protein Tanf_03310 376 241.2 0 12 0
Conserved repeat protein Tanf_08920 764 212.3 0 5.8 0
Hypothetical protein, uncharacterized Tanf_08965 1562 670 0 9.6 0
Hypothetical protein, uncharacterized Tanf_02330 1830 477.5 0 8.1 0
Hypothetical protein, uncharacterized Tanf_02425 1457 976.4 0 19.4 0
*Results from one representative preparation from three biological replicates in terms of MASCOT scores are shown. **Only peptides covering more than 5% of the sequence were considered.
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the gene expression of IL-6, IL-8, and MCP-1, three hours and 16
hours post stimulation. T. forsythiawild-type induced significantly
higher gene expression levels than the DTanf_02580mutant. Also,
both T. forsythia species increased the production of all
investigated cytokines compared to the control (Figure 3B), but,
again, T. forsythia wild-type induced a significantly higher protein
production than the T9SS signal peptidase mutant.

Effect of P. gingivalis Wild-Type and the
DPG0026 Mutant on the Host Response of
U937 Macrophages
The gene expression levels of TNF-a, IL-6, and IL-8 in U937
macrophages upon stimulation with P. gingivalis wild-type and
the DPG0026 mutant, and the levels of the corresponding
proteins are shown in Figure 4. Three hours post stimulation,
the expression of TNF-a, IL-6, and IL-8 was significantly
increased in the P. gingivalis wild-type, whereas the DPG0026
mutant significantly enhanced the expression of TNF-a and IL-
8, but not of IL-6 (Figure 4A). No significant difference between
the response of U937 macrophages to the two different P.
gingivalis species was observed. Sixteen hours post stimulation,
with both P. gingivalis species, the gene expression levels of TNF-
a and IL-8 were similar to those in the unstimulated control. IL-6
expression after stimulation was below the detection limit
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
(Figure 4A). After 16 hours, the levels of TNF-a and IL-8 in
the conditioned media of P. gingivalis wild-type-treated
macrophages were significantly lower than those in
macrophages treated with the DPG0026 mutant and the
control group (Figure 4B). IL-6 protein in the conditioned
media of P. gingivalis wild-type-treated macrophages was
below the detection limit of the ELISA kit. Stimulation with
the DPG0026mutant resulted in a significantly higher amount of
IL-8 and IL-6 in the conditioned media compared to the control
group, whereas TNF-a production was not affected.

Effect of P. gingivalis Wild-Type and the
DPG0026 Mutant on the Host Response of
Human Gingival Fibroblasts
The effect of P. gingivalis wild-type and DPG0026 on the gene
expression levels of IL-6, IL-8, and MCP-1 in hGFBs, and the levels
of corresponding proteins in conditioned media are presented in
Figure 5. Both P. gingivalis species induced a significant increase in
the gene expression of IL-6, IL-8, and MCP-1 three hours post
stimulation, but no difference between the two P. gingivalis species
was observed. Sxiteen hours post stimulation, only the DPG0026
mutant induced significantly higher gene expression levels of all
investigated inflammatory mediators, which were also significantly
higher than those in P. gingivalis wild-type-treated cells
A B

C D

FIGURE 1 | Viability of U937 macrophages (A, B) and hGFBs (C, D) upon stimulation with T. forsythia wild-type (wt Tf), DTanf_02580, P. gingivalis wild-type (wt
Pg), and DPG0026 at MOI 50 for 3 h or 16 h. Cell viability was measured with the MTT assay. OD570 values were normalized to those measured for non-stimulated
cells (control). Data are presented as mean ± s.e.m. of five independent experiments. * – Significantly different from control (a continues horizontal line), with P < 0.05.
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(Figure 5A). None of the proteins was detected in the conditioned
media of P. gingivalis wild-type-stimulated hGFBs, whereas
stimulation with the DPG0026 mutant resulted in significantly
higher amounts of all secreted inflammatory mediators
compared to the unstimulated control (Figure 5B).
DISCUSSION

The periodontal pathogens T. forsythia and P. gingivalis have
developed ingenious strategies to evade host immune clearance
and to exploit their pathogenic potential (Amano et al., 2014).
These bacteria direct a specific class of their proteins, namely
those equipped with a CTD, to the T9SS-a translocon unique for
Bacteroidetes–to display their harmful or self-protecting cargo at
the cell surface or secrete it into the exterior environment (Veith
et al., 2009; de Diego et al., 2016). Various virulence factors have
been demonstrated to be targeted to the T9SS ensuring OM
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
trafficking. In this study, we have analyzed if and how depletion
of OM proteins channeled through this protein secretion system
affects the immune response of human macrophages and hGFBs
to T. forsythia and P. gingivalis.

By MS-shot-gun proteomics we first confirmed that the OM
of T. forsythia and P. gingivalis T9SS mutants defective in
secretion of CTD-protein due to deletion of the signal
peptidase genes Tanf_02580 and PG0026, respectively, were
depleted from known CTD-proteins, whereas these were
present in the parent strains. In the case of T. forsythia, this
finding corroborates a previous analysis showing that the major
CTD-proteins (TfsA and TfsB) of this bacterium forming the S-
layer accumulated in the periplasm and the mutant lacked the S-
layer (Tomek et al., 2014). Similarly, sortase mutants of P.
gingivalis retained inactive gingipains in the periplasm
(Mizgalska et al., 2021). Therefore, TfsA/TfsB and BspA
surface antigen as well as the RgpA-, RgpB-, Kgp-gingipains
from P. gingivalis served as leads for the assessment of the
A B

FIGURE 2 | Comparison of the effects of T. forsythia wild-type (wt Tf) and T9SS signal peptidase mutant (DTanf_02580) on the gene expression and protein
production of TNF-a, IL-8, and IL-6 in U937 macrophages. (A) Macrophages were stimulated for 3 h (left panels) or 16 h (right panels) and the resulting expression
of TNF-a (a), IL-8 (b), and IL-6 (c) was determined by qPCR. The y-axis shows n-fold expression of the target gene in relation to the unstimulated control (n-fold
expression = 1, indicated by the dashed line) determined by the 2-DDCt method. IL-6 expression after 16 h was below the detection limit. (B) Macrophages were
stimulated for 16 h and the resulting production of TNF-a (a), IL-8 (b), and IL-6 (c) was determined by ELISA. Non-stimulated cells served as a control (Co). All data
are presented as mean ± s.e.m of six independent experiments. * – Significantly different from control, with P < 0.05. # – Significantly different between two T.
forsythia species, with P < 0.05.
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efficiency of T9SS shut-down in the signal peptidase mutants
(Tables 1 and 2).

The viability of both human cell types included in this study
upon bacterial infection was proven by the MTT assay, which is
based on the measurements of mitochondrial cell activity
(Figure 1). We found that at the tested MOI none of the
bacterial species had a cytotoxic effect on the viability of
macrophages and hGFBs (Figure 1). All bacteria induced an
increase in the metabolic activity of macrophages, while this was
not observed for hGFBs. The reason for this difference as well as
the physiological importance of the increased viability of U937
macrophages after infection with T. forsythia and P. gingivalis is
not entirely clear. Increased viability of macrophages might be
due to the metabolic remodeling of these cells after bacterial
infection (Fleetwood et al., 2017).

Shut-down of the T9SS in both T. forsythia and P. gingivalis
altered the cytokine and chemokine response of host cells to
these pathogens. The T9SS-deficient T. forsythia mutant
DTanf_02580 generally induced a lower inflammatory response
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
compared to the wild-type species in hGFBs as shown by qPCR
and ELISA (Figures 2 and 3). A similar tendency was observed in
U937 macrophages. As shown by proteomic analysis, shut-down
of the T9SS in T. forsythia inhibits the secretion of several
proteins, and particularly the S-layer proteins TfsA and TfsB
(Tomek et al., 2014) as well as BspA, which have opposite effects
on the host response. On the one hand, the T. forsythia S-layer
was shown to delay the host response at the early phase of
infection (Sekot et al., 2011); consequently, its absence might
result in higher cytokine production by the host cells. On the
other hand, BspA is known to be a strong TLR-2 agonist
(Hajishengallis et al., 2002; Onishi et al., 2008). Both U937 and
hGFBs express TLR-2 and produce inflammatory cytokines
upon the stimulation with TLR-2 agonists (Greene et al., 2004;
Behm et al., 2020) and, therefore, the impairment of BspA
secretion results in a lower host response. Since we have
observed a lower inflammatory host response to the
DTanf_02580 mutant compared to the T. forsythia wild-type,
we conclude that abolishing BspA OM translocation has a more
A B

FIGURE 3 | Comparison of the effects of T. forsythia wild-type (wt Tf) and T9SS signal peptidase mutant (DTanf_02580) on the gene expression and protein
production of TNF-a, IL-8, and IL-6 in hGFBs. (A) hGFBs were stimulated for 3 h (left panels) or 16 h (right panels) and the resulting expression of IL-6 (a), IL-8 (b),
and MCP-1 (c) was determined by qPCR. The y-axis shows n-fold expression of the target gene in relation to the unstimulated control (n-fold expression = 1,
indicated by the dashed line) determined by the 2-DDCt method. (B) hGFBs were stimulated for 16 h and the resulting production of IL-6 (a), IL-8 (b), and MCP-1 (c)
was determined by ELISA. Non-stimulated cells served as a control (Co). All data are presented as mean ± s.e.m of six independent experiments. * – Significantly
different from control, with P < 0.05. # – Significantly different between two T. forsythia species, with P < 0.05.
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profound effect on the secretion of the tested inflammatory
mediators. Quantitative differences between macrophages and
hGFBs might be explained by the generally different responses of
these cell types to various pathogen-associated molecular
patterns. Particularly, our previous studies showed that the
activation of the TLR-2 pathway induces a strong response in
hGFBs and periodontal ligament cells, which is markedly higher
than that induced by the TLR-4 agonist lipopolysaccharide
(Andrukhov et al., 2016; Blufstein et al., 2019). Therefore,
elimination of the secretion of the TLR-2 agonist BspA in the
DTanf_02580 mutant would strongly diminish the response of
this cell type to T. forsythia.

Compared to T. forsythia, the deletion of the T9SS signal
peptidase in P. gingivalis had a qualitatively strikingly different
effect on the host response. P. gingivalis wild-type induced
generally higher gene expression of TNF-a, IL-8, and IL-6 in
U937 macrophages three hours post stimulation compared to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
DPG0026 mutant. However, the content of all investigated
proteins in conditioned media was not increased after
stimulation with P. gingivalis wild-type. Moreover, the levels of
most of the investigated proteins after 3 hours were below the
detection limit of the ELISA kit. In contrast, after stimulation
with the DPG0026 mutant, a significantly increased amount of
IL-6 and IL-8 was detected in the supernatant of U937
macrophages. This might be explained by the high activity of
the P. gingivalis gingipains, which in fact are major virulence
factors of this bacterium (Genco et al., 1999; Bao et al., 2014;
O’Brien-Simpson et al., 2016). Gingipains have been shown to
activate the host response by inducing secretion of IL-6 by oral
epithelial cells (Lourbakos et al., 2001), of IL-8 by gingival
fibroblasts (Oido-Mori et al., 2001), and of IL-6, IL-8 and
MCP-1 in monocytic cells (Uehara et al., 2008). This is
reflected by the slightly lower gene expression levels observed
after stimulation with the T9SS-deficient mutant DPG0026 when
A B

FIGURE 4 | Comparison of the effects of P. gingivalis wild-type (wt Pg) and T9SS signal peptidase mutant (DPG0026) on the gene expression and protein
production of TNF-a, IL-8, and IL-6 in U937 macrophages. (A) Macrophages were stimulated for 3 hours (left panels) or 16 hours (right panels) and the resulting
expression of TNF-a (a), IL-8 (b), and IL-6 (c) was determined by qPCR. The y-axis shows n-fold expression of the target gene in relation to the unstimulated control
(n-fold expression = 1, indicated by the dashed line) determined by the 2-DDCt method. IL-6 expression after 16 h was below the detection limit. (B) Macrophages
were stimulated for 16 h and the resulting production of TNF-a (a), IL-8 (b), and IL-6 (c) was determined by ELISA. Non-stimulated cells served as a control (Co). All
data are presented as mean ± s.e.m of six independent experiments. * – Significantly different from control, with P < 0.05. # – Significantly different between two P.
gingivalis species, with P < 0.05.
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compared to the wild-type. On the other hand, gingipains are
potent in the proteolytic cleavage of various host proteins,
including inflammatory mediators (Yun et al., 1999; Yun et al.,
2002; Tam et al., 2009). Thus, the secretion of gingipains by P.
gingivalis wild-type has two consequences for the host cells’
response; they might stimulate the gene expression and at the
same time degrade the secreted proteins. This assumption might
explain the qualitative differences in gene and protein expression
in the response of U937 macrophages to two P. gingivalis species.

In hGFBs, the effects of wild-type and T9SS-deficient P.
gingivalis were slightly different compared to U937
macrophages (Figures 4, 5). After 3 hours, the response of
hGFBs to both species was similar on the gene expression
level, whereas 16 hours post stimulation, the response to the
T9SS-deficient mutant was markedly higher than that to P.
gingivalis wild-type. Gingipain activity of the wild-type might
also explain this difference. The response to bacterial pathogens
in hGFBs might be increased by autocrine mechanisms mediated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
by IL-1b and TNF-a production (Naruishi and Nagata, 2018).
This autocrine loop might be disrupted by gingipains, which
would then result in lower gene expression levels upon the
stimulation with P. gingivalis wild-type. Furthermore,
gingipains have been shown to facilitate P. gingivalis cell
adhesion and invasion (Chen and Duncan, 2004; Boisvert and
Duncan, 2008; Fitzpatrick et al., 2009). In gingival epithelial cells,
intracellular P. gingivalis can suppress the production of IL-8,
interferon-g induced protein 10 and TLR-2 and inhibit apoptosis
(Hajishengallis and Lamont, 2014). Blocking gingipain secretion
in the T9SS-deficient mutant might result in a reduced ability to
invade hGFBs and, therefore, higher gene expression levels can
be observed after stimulation with this strain after 16 hours when
compared to cells infected with the wild-type.

When comparing the response of U937 macrophages and
hGFBs to the different bacterial species, the different intrinsic
properties of these cell types need to be considered. Macrophages
are immune cells and their response to bacteria is transient -
A B

FIGURE 5 | Comparison of the effects of P. gingivalis wild-type (wt Pg) and T9SS signal peptidase mutant (DPG0026) on the gene expression and protein
production of TNF-a, IL-8, and IL-6 in hGFBs. (A) hGFBs were stimulated for 3 hours (left panels) or 16 hours (right panels) and the resulting expression of IL-6 (a),
IL-8 (b), and MCP-1 (c) was determined by qPCR. The y-axis shows n-fold expression of the target gene in relation to the unstimulated control (n-fold expression =
1, indicated by the dashed line) determined by the 2-DDCt method. (B) hGFBs were stimulated for 16 h and the resulting production of IL-6 (a), IL-8 (b), and MCP-1
(c) was determined by ELISA. Non-stimulated cells served as a control (Co). All data are presented as mean ± s.e.m of six independent experiments. * – Significantly
different from control, with P < 0.05. # – Significantly different between two P. gingivalis species, with P < 0.05.
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recovery follows the initial increase in the gene expression to the
initial levels within 24 hours (Nau et al., 2002). In contrast, hGFBs
are assumed to contribute to a sustained inflammation and do not
exhibit a tolerance state after prolonged stimulation with bacterial
components (Ara et al., 2009; Blufstein et al., 2018).
CONCLUSIONS

We demonstrated that the shut-down of OM translocation of
CTD-proteins via the T9SS in T. forsythia and P. gingivalis causes
an alteration of the host immune response to these pathogens,
Considering our data and those from the literature, it is
conceivable to assume that the decreased host response to the
T. forsythia T9SS-signal peptidase mutant and the drastically
changed host response to the P. gingivalis mutant in comparison
to the respective parent strain are largely due to the impaired
secretion of BspA and the S-layer proteins in the T. forsythia
T9SS mutant and the activity of the gingipains in the P. gingivalis
T9SS mutant, respectively. Blocking gingipain secretion in P.
gingivalis seems to have a dual effect, associated with both
activation and inactivation of the host response (Imamura
et al., 2003).

The abrogation of the T9SS secretion system in periodontal
pathogens can have both pro- and anti-inflammatory effects and,
therefore, the contribution of the T9SS to the host-microbiome
interaction in the oral cavity needs further clarification. In a
subcutaneous chamber model of infection in mice, the shut-
down of the T9SS in P. gingivalis resulted in lower inflammation
and decreased systemic dissemination of infection (Benedyk
et al., 2019). However, the overall role of the T9SS in human
periodontitis needs to be investigated in future basic and clinical
studies. This might unravel future strategies for the treatment of
periodontitis and/or prophylaxis of periodontitis.
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