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Variational Quantum Algorithms (VQAs)
have received considerable attention due to
their potential for achieving near-term quan-
tum advantage. However, more work is needed
to understand their scalability. One known
scaling result for VQAs is barren plateaus,
where certain circumstances lead to exponen-
tially vanishing gradients. It is common folk-
lore that problem-inspired ansatzes avoid bar-
ren plateaus, but in fact, very little is known
about their gradient scaling. In this work
we employ tools from quantum optimal con-
trol to develop a framework that can diag-
nose the presence or absence of barren plateaus
for problem-inspired ansatzes. Such ansatzes
include the Quantum Alternating Operator
Ansatz (QAOA), the Hamiltonian Variational
Ansatz (HVA), and others. With our frame-
work, we prove that avoiding barren plateaus
for these ansatzes is not always guaranteed.
Specifically, we show that the gradient scal-
ing of the VQA depends on the degree of con-
trollability of the system, and hence can be
diagnosed through the dynamical Lie algebra
g obtained from the generators of the ansatz.
We analyze the existence of barren plateaus
in QAOA and HVA ansatzes, and we high-
light the role of the input state, as different
initial states can lead to the presence or ab-
sence of barren plateaus. Taken together, our
results provide a framework for trainability-
aware ansatz design strategies that do not
come at the cost of extra quantum resources.
Moreover, we prove no-go results for obtain-
ing ground states with variational ansatzes for
controllable system such as spin glasses. Our
work establishes a link between the existence
of barren plateaus and the scaling of the di-
mension of g.

1 INTRODUCTION

Quantum computers hold the promise to achieve
computational speed-ups over classical supercomput-
ers for certain tasks [1, 2, 3, 4]. However, de-
spite recent tremendous progress in quantum tech-
nologies, present-day quantum devices (known as
Noisy Intermediate-Scale Quantum (NISQ) devices)
are constrained by the limited number of qubits, con-
nectivity, and by the presence of quantum noise [5].
Hence, it becomes crucial to determine what are the
capabilities and limitations of NISQ computers to
achieving a quantum advantage.

One of the most promising computational models
for making use of near-term quantum computers are
Variational Quantum Algorithms (VQAs) [6]. Here,
a task of interest is encoded into a parametrized cost
function C(θ) that is efficiently computable on a noisy
quantum computer. Part of the computational com-
plexity is pushed onto classical computers by leverag-
ing the power of classical optimizer that train the pa-
rameters θ and minimize the cost. VQAs have been
proposed for tasks such as solving linear systems of
equations [7, 8, 9] or performing dynamical quantum
simulations [10, 11, 12, 13, 14, 15, 16, 17], as well as
for many others relevant applications [18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30].

Despite the wide application range of VQAs, their
widespread use is still limited by several challenges
that can hinder their success. For instance, it has been
shown that the optimization task associated with min-
imizing the VQA cost function is in general an NP-
hard non-convex optimization problem [31]. More-
over, despite the typical difficulties encountered in
classical non-convex optimization tasks, there are new
challenges that arise when training the parameters of
VQAs such as hardware noise, or the limited preci-
sion arising from a limited number of shots. These
difficulties have then led to several quantum-aware
optimizers being developed [32, 33, 34, 10, 35, 36].

In addition, certain VQAs have been shown to ex-
hibit the so-called barren plateau phenomenon, where
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the cost function becomes untrainable due to gradi-
ents that vanish, on average, exponentially with the
system size [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48]. Thus, barren plateaus have then been recognized
as one of the main limitations to overcome in order
to preserve the hope of achieving quantum advantage
with VQAs. Recently, a great deal of effort has been
put forward to developing methods that can mitigate
the effect of barren plateaus [49, 50, 51, 52, 53, 54, 55],
but ideally one would like to devise and employ VQA
ansatzes which do not exhibit barren plateaus alto-
gether.

For instance, it is known that one should avoid
problem-agnostic ansatzes such as deep hardware ef-
ficient ansatzes, as these can exhibit barren plateaus
due to their high expressibility [37, 38, 47]. Hence,
so-called problem-inspired ansatzes have been specu-
lated to be able to overcome barren plateaus by en-
coding information about the problem at hand in the
ansatz. Here, the intuition is that problem-inspired
ansatzes constrain the space explored during the op-
timization to a space that either contains the solution
to the problem, or that at least contains a good ap-
proximation to the solution, while maintaining a low
expressibility.

In this work we employ tools from Quantum Opti-
mal Control (QOC) to diagnose the presence or ab-
sence of barren plateaus in certain families of problem-
inspired ansatzes with a periodic structure. QOC the-
ory is a long standing theoretical framework devel-
oped to provide tools for the manipulation of quan-
tum dynamical processes. As shown in Fig. 1, we
here make use of the fact that periodic VQAs and
QOC systems can be considered as different level for-
mulations of a common variational problem [56], as
both aim at driving a quantum system with a clas-
sical optimization loop. Most importantly, this con-
nection allows us to understand and forecast the pres-
ence or absence of barren plateaus in problem-inspired
variational ansatzes like the Quantum Alternating
Operator Ansatz (QAOA) [19, 57] and the Hamil-
tonian Variational Ansatz (HVA) [58, 59]. We note
that the procedure is perfectly suitable for other pe-
riodic ansatzes like the adaptive QAOA [57, 60] and
the quantum optimal control ansatz [61]. Moreover,
our results also extend to quantum neural network
architectures used in the quantum machine learning
literature [62]. Our results indicate that problem-
inspired ansatzes are not immune to barren plateaus,
and hence that certain ansatz strategies in the litera-
ture need to be revised.

Our main results are organized into propositions
and theorems that show that one can diagnose the
existence of barren plateaus by analyzing the control-
lability of the system, i.e., by studying the Dynam-
ical Lie Algebra (DLA) of the system. The DLA is
the subspace of operator space spanned by the nested
commutators of the elements in the set of genera-

Figure 1: Framework for Variational Quantum Algorithms
(VQA) and Quantum Optimal Control (QOC). VQAs and
QOCs can be regarded as two different levels of a the-
ory that manipulate the evolution of a quantum system by
training sets of parameters governing the system’s dynam-
ical evolution [56]. In VQAs (QOC) one applies a series
of parametrized quantum gates (control pulses) to an input
state. By gathering knowledge on the evolution via measure-
ments on the resulting evolved state, the set of parameters
(controls) are trained using a classical optimizer until a given
task is completed. In this work we consider VQAs and QOC
systems that have periodic structure ansatzes as in Eq. (2).

tors of the ansatz (e.g., see [63] for an introduction
to quantum control theory). In an effort to give a
comprehensive picture, our results follow the differ-
ent controllability scenarios shown in Fig. 2.

The manuscript is organized as follows. In Section 2
we present the theoretical framework for VQAs, which
includes a description of the type of ansatz considered,
as well as a basic review of concepts related to barren
plateaus and ansatz expressibility. Then, in Section 3
we introduce the framework of QOC, and recall how
in QOC theory the DLA of the ansatz generators is
used to study the controllability of the system. Sec-
tion 4 contains the main results of this work, while
in Section 5 we present our numerical simulations.
Finally, in Section 6 we present our discussions and
conclusions.

2 VARIATIONAL QUANTUM ALGO-
RITHMS
In this section we review the basic framework of Vari-
ational Quantum Algorithms (VQAs). In particular,
we discuss a general form for ansatzes that have a pe-
riodic structure, which we consider throughout this
work. Since our goal is to analyze the gradient scal-
ing, we additionally provide an overview of the barren
plateau phenomenon.
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2.1 General framework
We consider an optimization task where the goal is to
minimize a cost function of the form

C(θ) = Tr[OU(θ)ρU†(θ)] . (1)

Here, ρ is an input state on n qubits in a d-dimensional
Hilbert space with d = 2n, U(θ) a parametrized quan-
tum circuit, and O is a Hermitian operator that de-
fines the task at hand.

Throughout this work we consider layered
parametrized quantum circuits that, as shown in
Fig. 1, have a periodic structure of the form

U(θ) =
L∏
l=1

Ul(θl), Ul(θl) =
K∏
k=0

e−iHkθlk . (2)

Here, the index l indicates the layer, θl =
(θl1, . . . , θlK) contains the parameters of such layer
(such that θ = {θl}Ll=1), and Hk are Hermitian
traceless operators that generate the unitaries in the
ansatz. For generality, one can also allow for certain
layers to be unparametrized, in which case one would
simply set certain θlk to be constant. In what follows
we refer to this type of ansatz as a Periodic Structure
Ansatz (PSA). We refer the reader to Appendix B
for a detailed discussion of several ansatzes from the
literature that are PSAs.

2.2 Barren plateaus
Recently, it has been shown that the choice of ansatz
can hinder the trainability of the parameters θ for
large problem sizes due to the existence of the so-
called barren plateau phenomenon. In this context,
deep unstructured problem-agnostic ansatz are known
to exhibit barren plateaus [37, 49, 47]. Hence, the de-
sign of ansatzes that overcome barren plateaus has
been recognized as one of the most important chal-
lenges to guarantee the success of VQAs [6], and
problem-inspired ansatzes have been proposed as one
of the most promising strategies. However, despite
their promise, little is known about the existence of
barren plateaus in problem-inspired ansatzes.

Let us now briefly recall that when the cost exhibits
a barren plateau, the gradients are exponentially sup-
pressed (on average) across the optimization land-
scape. This implies that an exponentially large pre-
cision is needed to navigate trough the flat landscape
and determine a cost minimizing direction [37, 49, 42].
Hence, consider the following definition.

Definition 1 (Barren Plateau). A cost function C(θ)
as in Eq. (1) is said to have a barren plateau when
training θµ ≡ θpq ∈ θ, if the cost function partial
derivative ∂C(θ)/∂θµ ≡ ∂µC(θ) is such that

Varθ[∂µC(θ)] 6 F (n) , with F (n) ∈ O
(

1
bn

)
,

(3)

for some b > 1. Here the variance is taken with re-
spect to the set of parameters θ.

We refer the reader to Appendix C for additional
details on barren plateaus.

It is worth remarking that the barren plateau phe-
nomenon has been linked to the expressibility of the
ansatz, as it has been shown that circuits with large
expressibility will exhibit small gradients [47]. In
this context, one can quantify the expressibility of
an ansatz by comparing the distribution of unitaries
obtained from U(θ) to the maximally expressive uni-
form (Haar) distribution UH [64]. Defining the t-th
moment superoperator of the distribution generated
by the ansatz U(θ),

M
(t)
U(θ) =

∫
θ

dU(θ)U(θ)⊗t ⊗ (U∗(θ))⊗t , (4)

we recall that its ordinary action on a given opera-
tor can be obtained by placing said operator into the
center of the representation of M (t)

U(θ) as [65, 66]

M
(t)
U(θ)(·) =

∫
θ

dU(θ)U(θ)⊗t(·)(U(θ)†)⊗t . (5)

In our case, we will only be interested in second mo-
ments. For that reason, we will focus on the deviation
of the second moments of the distribution generated
by the ansatz M (2)

U(θ) from M
(2)
UH

the second moments
of the Haar distribution, via the norm of the super-
operator

A(t)
U(θ) = M

(t)
UH
−M (t)

U(θ) . (6)

For our purposes here, we find it convenient to de-
fine the expressibility as the infinity norm, ‖A‖∞ =
λmax(A), with λmax(A) the largest singular value of
A 1. Thus, the more expressible the ansatz, the
smaller the norm ‖A(2)

U(θ)‖∞, and the smaller the gra-
dients of the cost partial derivatives [47]. The limit
‖A(2)

U(θ)‖∞ = 0 is reached when U(θ) forms a 2-design,
in which case the cost exhibits a barren plateau ac-
cording to Definition 1 [37, 49].

3 QUANTUM OPTIMAL CONTROL
Quantum Optimal Control (QOC) is a theoretical
framework that provides tools for the systematic ma-
nipulation of quantum dynamical systems. The con-
nection between VQAs and QOC has been previously
established showing that one can use QOC tools to

1The expressibility can also be defined in terms of other ma-
trix norms such as the diamond norm or the Schatten p-norms.
However, due to the matrix norm equivalence, if ‖A(t)

U(θ)‖ = ε

for our definition, there always exists an ε′ for other expressibil-
ity definitions such that the expressibility is equal to ε′ and such
that ε and ε′ are related via a dimensionallity factor [67, 68].
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specify the parameters θ at a device-level [69, 56, 70]
and to analyze VQA landscapes [71]. Conversely,
tools from VQAs have been employed to determine
optimal control sequences [72]. In particular, Ref. [56]
notes that VQAs and QOC can be unified as formu-
lations of variational optimization at the circuit level
and pulse level, respectively. In addition, the frame-
work of QOC has been employed to analyze the com-
putational universality of quantum circuits [73, 74,
75], as well as their reachability [76].

In QOC one is interested in controlling the dy-
namical evolution of a quantum state |ψ〉 in a com-
plex d-dimensional Hilbert space H = Cd (where
d = 2n) [63]. In the typical setting, one has a Hamil-
tonian

H({fk(t)}) = H0 +
K∑
k=1

fk(t)Hk (7)

that is tunable through some time-dependent func-
tions {fk(t)}, know as control fields or protocols. The
fixed Hamiltonian H0, usually called the drift, rep-
resents the natural or free evolution of the system,
whereas the control Hamiltonians {Hi} are associ-
ated with interactions with external degrees of free-
dom (usually electromagnetic radiation). Thus, |ψ〉
evolves through the parametrized propagator U(t) as
|ψ〉(t) = |ψ(t)〉. In turn, U(t) is the solution to the
Schrödinger equation

dU(t)
dt

= −iH({fk(t)})U(t), with U(0) = 1 . (8)

As shown in Appendix D, under standard assump-
tions, the Trotrerized QOC propagator of Eq. (8) is a
PSA as in Eq. (2).

The variety of different dynamics a quantum control
system in the form of Eq. (7) can undergo, upon vari-
ation of the control fields, is well understood though
group theory. Since the Hamiltonian is Hermitian and
traceless, U(θ) belongs to SU(d), the Lie group of uni-
tary d × d complex matrices that preserves the stan-
dard inner product on H. Surprisingly, the set of all
unitaries U(θ) that can be accessed by such a control
system forms itself a Lie group, known as the dynam-
ical Lie group G ⊆ U(d). Hence, a natural question
which arises is: how can this group be determined?

First, let us define the set of generators.

Definition 2 (Set of generators). Given a
parametrized quantum circuit of the form in Eq. (2)
we define the set of generators G = {Hk}Kk=0 as the
set (of size |G| = K + 1) of the (traceless) Hermitian
operators that generate the unitaries in a single layer
of U(θ).

Naturally, the group G depends on the set of gener-
ators G, yet it is not sufficient to look at the individual
elements of G. Instead, one must consider the Lie al-
gebra that emerges from their nested commutators.
Hence, consider the following definition [77].

Definition 3 (Dynamical Lie Algebra). Given a con-
trol system with generators G (see Definition 2), the
Dynamical Lie Algebra (DLA) g is the subalgebra of
su(d) spanned by the repeated nested commutators of
the elements in G, i.e.,

g = span 〈iH0, . . . , iHK〉Lie ⊆ su(d), (9)

where 〈S〉Lie denotes the Lie closure, i.e., the set ob-
tained by repeatedly taking the nested commutators be-
tween the elements in S.

Here, su(d) is the special unitary algebra of degree
d, the Lie algebra formed by the set of d × d skew-
Hermitian, traceless matrices. In Appendix E, we lay
down the basic procedure to build DLAs (see Algo-
rithm 1) and provide some discussion on the complex-
ity of such construction.

Once the DLA is obtained from the set of genera-
tors, one can determine the set of unitaries that are
expressible by the control system. Specifically, one
can now properly define the dynamical Lie group as
follows.

Definition 4 (dynamical Lie group). The set uni-
taries G that can be generated by a control system is
determined by its DLA (see Definition 3) through 2

G = eg := {eV , V ∈ g} . (10)

The dynamical Lie group in turn determines the
set of states |ψ(θ)〉 = U(θ)|ψ〉 that can be reached by
evolving an initial state |ψ〉. Specifically, here U(θ)
can attain values in the Lie group G. In addition,
Definition 4 crucially shows that one can study the
expressibility of a control system (i.e., the unitaries
that can be generated, or the set of states that can
be reached) via the DLA obtained from the set of
generators. As shown in Fig. 2, when computing g
there are several cases of interest that can arise and
which we here consider. For the sake of clarity, in
what follows we briefly recall several key concepts that
will be useful throughout the manuscript. We refer
the reader to [63] for additional details.

First and foremost, we recall the concept of control-
lability. A control system is said to be controllable if
its DLA is full rank, i.e., g = su(d). This implies that
G = SU(d) and hence every unitary (up to a phase)
can be obtained by appropriately choosing control pa-
rameters in Eq. (45). In particular, this means that
for any two states |ψ〉 and |φ〉, there always exists a
unitary U(θ) ∈ G such that U(θ)|ψ〉 = |φ〉.

If the DLA is not full rank, then the system is said
to be uncontrollable. In this case g is a proper subalge-
bra of su(d), and only a proper subgroup G ⊂ SU(d)

2This is grounded in the fact that every possible DLA is a
subalgebra of the special unitary algebra su(d) and therefore
compact. The exponential map is a function e : g→ G. If g is
compact then the exponential map is surjective: every element
of G is the image of at least one element of g.
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Figure 2: Cases of interest for the Dynamical Lie Alge-
bra. The Dynamical Lie Algebra (DLA) g determines the set
of unitaries expressible, and concomitantly, the set of states
reachable. In this figure we show different scenarios that can
arise when computing g. Our main results (on gradient scal-
ing of VQAs and QOC systems) pertain to these different
scenarios.

is available to the control system, meaning that the
set of reachable states {U(θ)|ψ〉, ∀U(θ) ∈ G} is not
the whole state space. As depicted in Fig. 2, there are
two sources of uncontrollability [78].

On one hand, if the generators in G share one or
more common symmetries, i.e., there is at least one
Hermitian operator Σ that commutes with every ele-
ment in G, then every H ∈ g is block diagonal in the
eigenbasis of Σ. This causes the state space to break
into subspaces that are invariant under the action of
g, in which case controllability is clearly disrupted.
Here, the DLA is a reducible representation of some
Lie algebra. On the other hand, even in the absence
of symmetries, that is, when the DLA is irreducible,
uncontrollability can arise simply because the Lie al-
gebra is a proper subalgebra of su(d).

Let us finally remark that, as shown in Fig. 2, even
though a reducible system cannot be controllable on
the entire Hilbert space it may still be controllable on
some (or all) of the invariant subspaces. Given a DLA
that is a direct sum of irreducible representations, i.e.,
g =

⊕
j gj , then the Hilbert space can be expressed as

H =
⊕

j Hj , withHj being invariant under the action
of g. A system is said to be subspace controllable on
subspace Hj if gj is full rank, i.e., gj = u(dj), where
dj = dim(Hj)) and u(dj) denotes the unitary algebra
of degree dj .

4 MAIN RESULTS
As previously discussed, VQAs and QOC can be con-
sidered as two formulations of a common variational
optimization problem that optimizes parameters con-
trolling the dynamical evolution of a quantum system.
In this section we present our main results, where
we basically leverage tools from QOC to analyze the

trainability and the existence of barren plateaus in
VQAs. Specifically, we organize our results in term of
the different controllability settings shown in Fig. 2.
In all cases, the proofs are presented in the Appendix.
The main idea behind our results is that, given a
PSA U(θ) as in Eq. (2), the study of the DLA of
the ansatz can diagnose the presence (or absence) of
barren plateaus in the VQA landscapes.

4.1 Controllable systems
First, let us consider controllable systems. It is well
known that the distribution of unitaries generated
by controllable systems converges to a 2-design in
the long-time (i.e., for sufficiently deep circuits) [79].
However, the rate of convergence actually depends
on the specific choice of generators. Hence, our first
result analyzes the depth at which the expressibility
‖A(2)

U(θ)‖∞ of a controllable system is ε small.

Theorem 1. Consider a controllable system. Then,
the PSA U(θ) will form an ε-approximate 2-design,
i.e. ‖A(2)

U(θ)‖∞ = ε with ε > 0, when the number of
layers L in the circuit is

L = log(1/ε)
log
(

1/‖A(2)
U1(θ)‖∞

) . (11)

Here ‖A(2)
U1(θ)‖∞ denotes the expressibility of a sin-

gle layer U1(θ1) of the ansatz according to Eqs. (2)
and (6).

See Appendix F for a proof of Theorem 1.
We note that Theorem 1 arises from the following

expression that connects the expressibility of an L-
layered PSA to the expressibility of a single layer of
the ansatz to the L-th power as

‖A(2)
U(θ)‖∞ =

(
‖A(2)

U1(θ)‖∞
)L

. (12)

Here we can see that ‖A(2)
U(θ)‖∞ = 0 if and only if

‖A(2)
U1(θ)‖∞ = 0. Hence, as expected, PSAs that have

more expressible layers require less depth to have
an ε-expressibility (to be ε-approximate 2-designs).
Conversely, one can also see that ansatzes with less
expressible layers require more depth to become ε-
approximate 2-design.

The following corollary analyzes the scaling of L.

Corollary 1. Let the single layer expressibility of
a controllable system be ‖A(2)

U1(θ)‖∞ = 1 − δ(n),
with δ(n) being at most polynomially vanishing with
n, i.e., with δ(n) ∈ Ω(1/ poly(n)). Then, if
L(n) ∈ Ω(n/δ(n)), U(θ) will be no worse than an
ε(n)-approximate 2-design (i.e., ‖A(2)

U(θ)‖∞ 6 ε(n))
with ε(n) ∈ O(1/2n), where we have added the n-
dependence in L and ε for clarity.
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See Appendix G for a proof of Corollary 1.
From Corollary 1 we have that when the single

layer expressibility is (at most) polynomially vanish-
ing with n, then a polynomial number of layers suffice
to make the PSA U(θ) exponentially close to being a
2-design. We note, however, that in the case where
the single layer expressibility is exponentially close to
1, one requires an exponential number of layers to
form an ε-approximate 2-design. In all the aforemen-
tioned cases it is worth remarking that an exponential
number of layers will always lead to ε-approximate 2-
designs with ε ∈ O(1/2n), independently of the value
of ‖A(2)

U1(θ)‖∞.
Once the depth of the ansatz is sufficient for the

controllable system to be an ε-approximate 2-design,
then a barren plateau will arise. Hence, one can prove
the following proposition from Theorem 1 and Corol-
lary 1.

Proposition 1 (Controllable). There exists a scal-
ing of the depth for which controllable systems form
ε-approximate 2-designs with ε ∈ O(1/2n), and hence
the system exhibits a barren plateau according to Def-
inition 1.

See Appendix H for a proof of Proposition 1.
Proposition 1 rephrases the well known barren

plateau results of [37, 47] in terms of controllability.
Specifically, it has been shown that when an ansatz
forms a 2-design, such randomness leads to a barren
plateau. Hence, the proof of Proposition 1 simply
follows the proof in [37], with the addition that the
convergence to a 2-design comes from the fact that
the system is controllable.

Evidently, it becomes relevant to determine sys-
tems that are controllable as these can exhibit barren
plateaus. In this work we prove that two relevant sets
of generators lead to full rank DLAs, and hence to
controllable systems.

Proposition 2. The following two sets of generators
generate full rank DLAs, and concomitantly lead to
controllable systems:

• GHEA =
{
Xi, Yi

}n
i=1

⋃{∑n−1
i=1 ZiZi+1

}
,

• GSG =
{∑n

i=1Xi,
∑
i<j (hiZi + JijZiZj)

}
, with

hi, Jij ∈ R sampled from a Gaussian distribution.

See Appendix I for a proof of Proposition 2.
The first case in Proposition 2 corresponds to

the generators of PSA layered Hardware Efficient
Ansatz [80], and hence Proposition 1 indicates that
this system can exhibit barren plateaus. While it
is known that the layered Hardware Efficient Ansatz
converges to a 2-design for sufficient depth [81, 82, 83,
37, 49], the proof of existence of barren plateaus for
this ansatz presented here is novel in that we show
that the system is controllable.

The second result in Proposition 2 pertains to de-
termining the ground state energy of quantum spin
glasses (usually configured to encode solution to com-
binatorial optimization problems) [84, 85] with a PSA
generated by GSG. Hence, since the system is control-
lable, according to Proposition 1, such an ansatz will
also exhibit a barren plateau. This provides a no-go
theorem for determining the ground state of certain
spin glasses with Hamiltonians using deep PSA vari-
ational ansatzes .

4.2 Subspace controllable systems
Let us now consider the case of reducible DLAs, i.e.,
control systems with symmetries. Here we recall that
in this case the DLA is a direct sum of the form
g =

⊕
j gj , such that any unitary U(θ) in the dynam-

ical group G preserves the subspaces U(θ)Hj ⊂ Hj .
Then, similarly to the fully controllable case, if a sys-
tem is subspace controllable in a given subspace there
exists a depth at which the unitaries U(θ) form 2-
designs in that subspace. In such a case, we can de-
rive the following theorem for the variance of the cost
function partial derivative with respect to a parameter
θµ ≡ θpq associated to layer p and generator Hq (see
Eq. (2) for a definition of the ansatz). In the following,
will slightly abuse notation and denote Hµ = Hq.

Theorem 2 (Subspace controllable). Consider a sys-
tem that is reducible, i.e. so that the Hilbert space is
H =

⊕
j Hj with each Hj invariant under the action

of the dynamical Lie group G (see Def. 4), and con-
trollable on some Hk of dimension dk (i.e. gk = u(dk)
or su(dk)). Consider a cost function C(θ) in the form
of Eq. (1) and suppose that the number of layers L in
the circuit is enough to allow the distribution of uni-
taries U(θ) to be ε close to a 2-design in Hk. Then,
if the initial state is such that ρ ∈ Hk, the variance
of the cost function partial derivative with respect to
parameter θµ is given by

Varθ[∂µC(θ)] = 2dk
(d2
k − 1)2 ∆(H(k)

µ )∆(O(k))∆(ρ(k)) , (13)

where O is the operator whose expectation value is
being minimized and Hµ is the generator of the cor-
responding gate. Here ∆(A) = DHS

(
A,Tr[A]1dd

)
,

with DHS (A,B) = Tr[(A − B)2] the Hilbert-Schmidt
distance, and where we defined A(k) as the reduc-
tion of operator A onto the subspace of Hk. Explic-
itly, A(k) = QkAQ

†
k with Qk a matrix (of dimension

dk×2n) with columns corresponding to a basis of Hk.

See Appendix J for a proof of Theorem 2.
Theorem 2 shows that the input state ρ can actually

play a crucial role in determining the gradient scaling
of the cost function. Specifically, if ρ belongs to an
invariant subspace where the system is controllable,
then the scaling of the cost function partial derivative
variance is determined by the dimension of the invari-
ant subspace rather than by the dimension d = 2n
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Figure 3: Trainability analysis for a PSA used to pre-
pare the ground state of a Heisenberg XXZ Hamilto-
nian. a) Due to the symmetries in the XXZ Hamiltonian
of Eq. (15), the Hilbert space spanned by the PSA can be
expressed as a direct sum of invariant subspaces Hk (of di-
mension dk =

(
n
k

)
) composed of states with k excitations.

Hence both HXXZ and U(θ) generated by Eq. (16) will be
block diagonal. Since the system is subspace controllable in
each invariant subspace, the gradient scaling of the PSA can
be analyzed via Theorem 2. b) The existence or absence of
barren plateaus is directly determined by the dimension of
the invariant subspace to which the input state ρ belongs.
For instance, the cost can be trainable for ρ ∈ H1, but will
exhibit a barren plateau if ρ ∈ Hn/2, as in the latter case the
dimension dn/2 is exponentially large.

of the Hilbert space. Hence, the cost function C(θ)
might exhibit barren plateaus in some subspaces but
not in others. This is formalized in the following corol-
lary.

Corollary 2. Consider an ansatz of the form in (2)
giving rise to a reducible DLA, and let ρ ∈ Hk, with
Hk some invariant subspace that is controllable (i.e.
the DLA reduced to such subspace is full rank). The
following bound holds

Varθ[∂µC(θ)] 6 4d2
k

(d2
k − 1)2

√
Tr[H4

µ]
√

Tr[O4] . (14)

That is, provided Tr[(Hµ)4],Tr[O4] ∈ O(2n), the cost
function will exhibit a barren plateau for any subspace
such that dk ∈ O(2n).

See Appendix K for a proof of Corollary 2. In addi-
tion, in this appendix, we also note relevant cases for
which Tr[(Hµ)4],Tr[O4] ∈ O(2n) holds.

For example, let us consider the problem of prepar-
ing the ground state of a Heisenberg XXZ spin chain

HXXZ =
n−1∑
i=1

(XiXi+1 + YiYi+1 + JZiZi+1) (15)

with a PSA generated by G = GXXZU
⋃
{Z1}. Here,

the XXZ generators

GXXZU =

{∑
i

XiXi+1 + YiYi+1,
∑
i

ZiZi+1

}
i:even,odd

(16)
are accompanied by a control generator Z1, which
is introduced precisely to make the system (sub-
space) controllable. We remark that we here em-
ploy a U subindex in GXXZU to indicate that this
set of generators is uncontrollable. Since all ele-
ments in GXXZU commute with Mz =

∑n
i=1 Zi, the

Hilbert space fractures into n+ 1 invariant subspaces
of fixed excitation 3 H =

⊕n
m=0Hm, of dimension

dm = dim(Hm) =
(
n
m

)
[86].

Because the example set G has a DLA that is full
rank on every subspace [87], we can analyze the train-
ability of such a PSA using Theorem 2. The implica-
tions of Corollary 2 for such a VQA are schematically
shown in Fig. 3. Here we find that the presence, or ab-
sence, of barren plateaus for the PSA U(θ) generated
by Eq. (16) is completely determined by the scaling
of the invariant subspace to which the input state be-
longs. For instance, the cost may not exhibit a barren
plateau if ρ has a number of excitations that does not
scale with n, while it will have a barren plateau for
k = n/2 (as in this case the dimension dn/2 scales
exponentially with the number of qubits).

4.3 Uncontrollable and reducible systems
Analyzing the scaling of the gradients in the case of
uncontrollable systems becomes much more intricate
than in the controllable or subspace controllable cases,
mainly because integrating over the Haar measure
of proper subgroups of the unitary group is not so
straightforward [88]. As shown in this (and the next)
section, one can still obtain a few analytical results
for these cases. In particular, one can derive an up-
per bound for the variance of partial derivatives in
terms of the degree of expressibility on the invariant
subspaces, in a spirit similar to that of [47].

Before presenting our main results for uncontrol-
lable and reducible systems, it is convenient to in-
troduce some notation. We will use UB and UA, re-
spectively, to address the portions of the circuit that
come before and after a given parameter θµ ≡ θpq ∈ θ.
That is,

UB =
q∏

m=0
e−iHmθpm

(
p−1∏
l=1

K∏
k=0

e−iHkθlk

)
, (17)

and

UA =
L∏

l=p+1

K∏
k=0

e−iHkθpk

 K∏
k=q+1

e−iHkθpk

 , (18)

3We recall that a state |ψ〉 has m excitations if it can be
expressed as a linear combination of computational basis states
with Hamming weight m
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where we have omitted the θ dependency for simplic-
ity.

Then, the following theorem holds.

Theorem 3. Consider a system that is reducible and
let ρ ∈ Hk with Hk an invariant subspace of dimen-
sion dk. Then, the variance of the cost function par-
tial derivative is upper bounded by

Varθ[∂µC(θ)] 6 min{GA(ρ(k)), GB(O(k))} , (19)

with

GB(ρ(k)) =
(∥∥∥A

U
(k)
B

(
(ρ(k))⊗2

)∥∥∥
2
−

∆(ρ(k))
d2
k
− 1

)
Tr
[〈
X2
〉
U

(k)
A

]
GA(O(k)) =

(∥∥∥A
U

(k)
A

(
(O(k))⊗2

)∥∥∥
2
−

∆(O(k))
d2
k
− 1

)
Tr
[〈
Y 2
〉
U

(k)
B

]
.

Here we defined X = [H(k)
µ , (U (k)

A )†OU (k)
A ] and Y =

[H(k)
µ , (U (k)

B )ρ(k)(U (k)
B )†]. For simplicity, we here em-

ployed the short-hand notation 〈·〉
U

(k)
x

(with x = A,B)
indicates the expectation value over the distribution of
unitaries obtained from U

(k)
x in the k-th subsystem.

Finally, ‖M‖2 =
√

Tr[M†M ] is the Frobenius norm,
and ∆(·) was defined in Theorem 2.

See Appendix L for a proof of Theorem 3.
Theorem 3 generalizes the expressibility results

in [47] to invariant subspaces. More specifically, The-
orem 3 provides a bound on the variance of the cost
function partial derivative ∂µC(θ) as a function of
the ansatz expressibility on the relevant invariant sub-
space. Hence, similar to the results observed in [47],
the more expressible an ansatz is in a subspace, the
smaller the gradients will be. Moreover, ansatzes that
are very expressible in subspaces with exponentially
large dimensions can exhibit barren plateaus as the
variance of the cost function partial derivative will
vanish exponentially, according to Eq. (19).

4.4 Uncontrollable and irreducible systems
Here, we analyze a case where the DLA is an irre-
ducible representation of some proper subalgebra of
su(d). Specifically, we consider a toy model ansatz
U(θ) =

∏L
l=1 e

−iθlxSye−iθlySx with generators G =
{Sx, Sy}, where g = {iSx, iSy, iSz} is the spin S =
(d− 1)/2 irreducible representation of su(2). That is,
[Sj , Sk] = 2iεjklSl with ε the Levi-Civita symbol and
j, k, l ∈ {x, y, z}. We address the task of minimizing
a cost function of the form

C(θ) = 〈m |U†(θ)(Sx + Sy + Sz)U(θ)|m〉 , (20)

where |m〉 is an eigenstate of Sz, i.e., Sz|m〉 = m|m〉
with m ∈ {−S,−S + 1, . . . , S − 1, S}.

Let us analyze the variance of partial derivative
with respect to parameter θµ = θjx, i.e., the one
corresponding to the generator Sx on the j-th layer.
Assuming a depth p such that that the distribu-
tions UA(θ) and UB(θ) converge to ε-approximate 2-
designs on the dynamical Lie group G (which in this

case is the d-dimensional irreducible representation of
SU(2)), we are able to explicitly integrate over the
Haar measure on G and find the following proposi-
tion to hold.

Proposition 3. Consider the cost function of
Eq. (20). Let θµ = θj,x, and let us assume that the
circuit is deep enough to allow for the distribution
of unitaries UA and UB to converge to 2-designs on
G = SU(2). Then variance of the cost function par-
tial derivative ∂µC(θ) = ∂C(θ)/∂θµ is

Varθ[∂µC(θ)] = 2m2

3 . (21)

See Appendix M for a proof of Proposition 3.
Proposition 3 shows that the variance of the cost

function again depends on the input state |m〉, which
is a similar result to the one obtained in Theo-
rem 2. Moreover, here Varθ[∂µC(θ)] can in fact be
as large as d2. This is due to the fact that the
“size” (the difference between maxima and minima)
of the landscape also grows with d. One can get
rid of this effect by considering a normalized cost
instead, C̃(θ) = C(θ)/S, where the ad-hoc factor
1/S guarantees that the landscape is |C(θ)| 6 1
for all values of d. The variance of such normal-
ized landscape is Varθ[∂µC̃(θ)] = 2

3
m2

S2 = 8
3

m2

(d−1)2 ,
that is, vanishes exponentially for initial states with
|m| ∈ O(poly(log(d))). Similar to the subspace con-
trollable results in Corollary 2, here the choice of ini-
tial state is again crucial as it can lead to the cost
function exhibiting barren plateaus.

4.5 General case: linking gradient scaling to
the dimension of the Lie algebra
In this section we note that the dimension of the DLA
can be linked to the scaling of the variance of the cost
function partial derivatives. This opens up the pos-
sibility of diagnosing the existence of barren plateaus
of uncontrollable systems by analyzing the scaling of
their DLAs. First, let us remark that a key aspect of
the toy model in Section 4.4 is that the dimension of
the DLA is dim(g) = 3. This is independent of the
dimension d of the Hilbert space it acts on. Moreover,
as shown in Eq. (21) the variance is also independent
of d as it does not present the typical dimensional-
dependent factor in the denominator that one usually
obtains when integrating over unitary 2-designs (see
Eq. (13) in Theorem 2).

For instance, when the system is controllable,
dim(g) = d2 − 1 = 22n − 1, and thus the dimension
of the DLA is exponentially growing with the system
size n. Concomitantly, one finds that Varθ[∂µC(θ)] =

2d
(d2−1)2 g(Hµ, O, ρ) [37, 49], and hence the variance is
exponentially vanishing with the system size. A simi-
lar result is obtained in the subspace controllable case
(see Theorem 2) where the variance is of the form

2dk
(d2
k
−1)2 g(H(k)

µ , O(k), ρ(k)).
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These facts have led us to conjecture that the di-
mension of the DLA plays a key role in determining
the presence or absence of barren plateaus in the cost
function landscape. More specifically, for PSAs with
sufficient depth (i.e., with a depth such that the distri-
bution of unitaries generated by U(θ) has converged
to the Haar measure in the Lie group G), we have
noted that the following conjecture appears to hold.

Conjecture 1. Let the state ρ belong to a subspace
Hk associated with a subspace DLA gk (or sub-DLA,
the subrepresentation in g where ρ has support on).
Then, the scaling of the variance of the cost function
partial derivative is inversely proportional to the scal-
ing of the dimension of the DLA, i.e.

Varθ[∂µC(θ)] ∈ O
(

1
poly(dim(gk))

)
. (22)

The implications of Conjecture 1 are as follows.
First, it means that systems with a sub-DLA gk

4

that is polynomially growing with the system size can
exhibit gradients that vanish only polynomially, and
hence may not exhibit barren plateaus. Conversely,
systems with a sub-DLA that is exponentially grow-
ing with the system size would exhibit gradients that
vanish exponentially with the system size, hence ex-
hibiting barren plateaus. Here, we remark that sys-
tems with sub-DLAs that are not exponentially grow-
ing may still have barren plateaus which are not re-
lated to the dimension of the DLA. For instance, if
the cost function is global, the system can still ex-
hibit barren plateaus even with trivial ansatzes that
do not a have exponentially growing dimension of the
DLA [49].

Using Conjecture 1, one could diagnose gradient
scalings by determining the size of the Lie algebra of
a given ansatz U(θ). This comes at the cost of tak-
ing the set of generators G and computing the DLA.
While numerical methods (as in Algorithm 1) can
prove valuable insights for small system sizes, these
algorithms will generally scale poorly in the number
of qubits. Hence, performing a theoretical analysis of
the DLA (similar to the one performed in Proposi-
tion 2) is a preferable method.

Here we remark that there are simple (yet patholog-
ical) cases that show that Eq. (22) does not preclude
the possibility that systems with algebras that grow
polynomial with the system size may still exhibit bar-
ren plateaus. For instance, consider Eq. (13), where
ρ belongs to a subspace with polynomially growing
algebra: dk ∈ O(poly(n)). Then, note that if the in-
put state is exponentially close to being maximally
mixed on Hk (i.e., if ∆(ρ(k)) ∈ O(1/2n)) one can eas-
ily verify that the system will exhibit a barren plateau

4Let us note that one should look at the sub-DLA instead
of the full DLA, since when there are symmetries and the ini-
tial state belongs to one or multiple invariant subspaces, the
dynamics is contained in those.

according to Definition 1 as the cost function partial
derivative will be exponentially vanishing. Here, the
barren plateau arises not from the dimension of the
DLA being exponentially large but rather from trying
to train a VQA on an input state that is exponentially
close to being maximally mixed. A similar result can
be found if H(k)

µ is exponentially close to the identity.
Hence, we remark that Conjecture 1 does not imply
that systems with polynomially growing algebras are
exempt from having barren plateaus, as cases where
ρ (H(k)

µ ) is exponentially close to being maximally
mixed (the identity) will naturally be hard to train
from the definition of the cost function in Eq. (1).

We finally note that to further support the claim in
Conjecture 1, we present in the following section re-
sults obtained from numerically computing the scaling
of the variance of the cost function partial derivatives
for systems with DLAs having several different de-
pendencies on the number of qubits. As discussed in
Section 5, we see that the the result in Conjecture 1
holds true for all cases considered, as in these cases
the scaling of the variance of the cost function par-
tial derivative is inversely proportional to the scaling
of the dimension of the DLA. In addition, based on
our conjecture one can accurately make predictions
regarding whether a given modification to an ansatz
(adding a new generator to G by introducing a new
unitary in each layer) might improve or be detrimen-
tal to the trainability of the parameters.

5 NUMERICAL SIMULATIONS
In this section we present results obtained by numeri-
cally computing the variance of the cost function par-
tial derivatives for systems with different PSAs, and
with DLAs of dimensions with different scaling. In
particular, we consider systems that are controllable,
subspace controllable, and subspace uncontrollable.
As we show, in all cases Conjecture 1 is verified. Fi-
nally, we refer the reader to Appendix M for a numer-
ical study of the toy model in Section 4.4, where g and
G are, respectively, the d-dimensional irreducible rep-
resentations of su(2) and SU(2).

5.1 Controllable systems
First, let us remind that when the system is control-
lable, U(θ) forms a 2-design (see Proposition 1). In
this case the scaling of Varθ[∂µC(θ)] has been widely
analyzed in the literature (see for instance [37, 47]).
Controllable systems, as previously discussed, satisfy
Conjecture 1. In Fig. 4 we show the variance of cost
function partial derivatives as a function of 1/ dim(g)
for the cost function

C(θ) = 〈0 |U†(θ)(Z1 ⊗ Z2)U(θ)|0〉 . (23)

Here, U(θ) is a layered Hardware Efficient ansatz (see
the circuit in the inset of Fig. 4) with 200 layers and
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Figure 4: Variance of cost function partial derivatives ver-
sus inverse of the DLA dimension for a controllable sys-
tem. The layered Hardware Efficient Ansatz (shown in the
inset for n = 4) is a controllable system with generators
given in Proposition 2. Then, as shown in Proposition 1, the
cost function of Eq. (23) exhibits a barren plateau and hence
Varθ[∂µC(θ)] ∈ O(1/2n). Moreover, since the system is
controllable one finds that dim(g) = 4n−1. Hence, as shown
in the plot, Conjecture 1 holds for controllable systems, since
the dependence of Varθ[∂µC(θ)] versus 1/ dim(g) is linear
on a log-log scale.

where |0〉 = |0〉⊗n. For each value of n = 2, 4, . . . , 20,
the variance was computed by randomly initializing
1000 sets of parameters. Since this system is con-
trollable (as proved in Proposition 1), then dim(g) =
d2 − 1 = 4n − 1. In Fig. 4 we see that, as expected,
the variance is a polynomial function of 1/ dim(g) (in-
dicated by a straight line in a log-log scale).

5.2 Reducible systems
5.2.1 The XXZ model

Let us first consider the task of finding the ground
state energy of the XXZ Hamiltonian HXXZ of
Eq. (15). First, let us notice that GXXZU , the uncon-
trollable set of generators of Eq. (16), has two symme-
tries: magnetization and parity. Hence, the DLA is
reducible, i.e. a sum of irreducible sub-representations
gXXZU =

⊕n
m=0
σ=±

gm,σ ⊆ u(dm,σ), where the indicesm
and σ indicate number of excitations and parity, re-
spectively (see Appendix N for details). Notably, the
system can be rendered subspace controllable (while
preserving the invariant subspace structure) by in-
troducing an additional generator consisting of local
fields at the ends of the chain [89, 90]

GXXZ = GXXZU ∪ {Z1 + ZN} . (24)

The new set GXXZ generates a DLA that is full rank
on each of the invariant subspaces, i.e. gXXZ =⊕n

m=0
σ=±

u(dm,σ). In Figure 5(a), we sketch a single
layer of the ansatz generated by GXXZ . Note that
upon the removal of the unitary generated by Z1+ZN
(indicated by a shaded area), one recovers the HVA
ansatz with generators GXXZU proposed in Ref. [59].

Figure 5(b) shows numerical results obtained by

computing Varθ[∂µC(θ)] for the cost function

C(θ) = 〈ψm,+ |U†(θ)HXXZU(θ)|ψm,+〉/n , (25)

with J = 1. Here, U(θ) is the HVA ansatz gener-
ated by GXXZ (see Eq. (24)) with L = 6n layers, and
|ψm,+〉 is an initial state with m excitations and even
parity σ = + (see Appendix O for details). For each
system system size n = 2, 4, . . . , 20, and for each value
of m, we computed the variance with respect to θL

2 ,2
by randomly initializing each θpq ∈ [0, 2π] and aver-
aging over 9500 sets of parameters (for n = 20 we
averaged over 2700 sets of parameters).

In Figure 5(b, left) we see that for m = 1, 2, . . . , 5
the variance of the cost function partial derivative is
polynomially decreasing with n, indicating that the
cost function does not exhibit a barren plateau for
initial states with fixed number of excitations. How-
ever, in the case m = n/2 (see Figure 5(b, right)),
one can observe that Varθ[∂µC(θ)] vanishes exponen-
tially. In addition, in Figure 5(b) we also show the
curves for Varθ[∂µC(θ)] obtained from the analytical
result in Eq. (13) of Theorem 2. The agreement be-
tween theoretical and numerical results indicates that,
already for the linear depths used in the experiments,
the ansatz is well converged to a 2-design. Hence,
the results in Theorem 2 suggest that the system will
exhibit a barren plateau when initialized on any sub-
space where dm ∈ O(2n), for example, in the case of
m = n/2 excitations.

In addition, Figure 5(b, right) shows the scaling of
the variance for the PSA generated by GXXZU , with
an initial state with m = n/2. As previously noted,
this case is not controllable and hence Theorem 2 does
not hold. However, the gradient scaling of the cost
function can still be diagnosed using the expressibil-
ity result of Theorem 3. First, we note that the vari-
ance values for the uncontrollable case are larger than
the ones for the controllable case. This result is in
accordance with the fact that the smallest variances
are reached with the higher expressibilities. Still, de-
spite the system not being controllable, we find that
the cost function still exhibits a barren plateau as the
cost vanishes exponentially with n.

In Figure 5(c) we show that for all subspace con-
trollable cases considered, Conjecture 1 holds. Specif-
ically, we have shown Varθ[∂µC(θ)] as a function of
1/dim(g), and we see a linear dependence in a log-log
scale. This is true both for the exponentially growing
algebras (m = n/2) as well as for the polynomially
growing algebras (m = 1, 2, . . . , 5). Moreover, we see
that the Conjecture is verified on the subspace un-
controllable case of GXXZU (pink stars), where the
dimension of the DLA is exponentially growing, and
concomitantly, the variance of the cost function par-
tial derivative is exponentially suppressed.
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Figure 5: Numerical results for the XXZ model. a) Schematic illustration of a single layer of the subspace controllable
periodic structure ansatz for the set of generators GXXZ in Eq. (24) for n = 4 qubits. Removing the unitary in the shaded
area leads to the uncontrollable periodic structure HVA generated by GXXZU . b) Left panel: Variance of the partial derivative
of the cost in Eq. (25) versus the number of qubits n. The different markers correspond to initial states with a number of
excitations m = 1, 2, . . . , 5 (left) with an ansatz generated by GXXZ , and to m = n/2 (right) with an ansatz generated by
GXXZ and by GXXZU . Here we recall that a state |ψ〉 has m excitations if it can be expressed as a linear combination of
computational basis states with Hamming weight m. The dashed lines represent the theoretical prediction of Eq. (13). In
both cases the plot is shown in a log-linear scale. For m = 1, 2, . . . , 5 the variance is polynomially vanishing with n, while for
m = n/2 the variance is exponentially vanishing with n. c) Variance of the cost function partial derivative versus 1/ dim(g).
The plot is shown in a log-log scale. For each value of m we see a linear dependence, which verifies Conjecture 1.

5.2.2 The Ising Model

In this section we present results obtained for numer-
ically simulating the use of a PSA to find the ground
state of the Ising model. Specifically, consider the
Hamiltonian of the one-dimensional Transverse Field
Ising Model (TFIM)

HTFIM =
nf∑
i=1

ZiZi+1 + hx

n∑
i=1

Xi , (26)

where nf = n − 1 in the case of open boundary con-
ditions, and nf = n in the periodic boundary con-
ditions case (where Zn+1 ≡ Z1). Then, as shown in
Figure 6(a, left), the ansatz is generated by the set

GTFIM =
{ nf∑
i=1

ZiZi+1,
n∑
i=1

Xi

}
. (27)

Note that the PSA generated by GTFIM is in fact the
QAOA employed for solving the MAXCUT problem
on a 2-regular graph [19, 57].

As discussed in Appendix N, the generators in
GTFIM (with open boundary conditions) have two
symmetries: parity symmetry Π, and the so-called
Z2 symmetry ΠZ2 (representing an invariance under
a global flip in the qubits). The Hilbert space is bro-
ken into four invariant subspaces, H =

⊕
σ,σ′ Hσ,σ′ ,

where σ, σ′ = ±1 respectively spanning the eigenval-
ues of Π and ΠZ2 , and where dim(Hσ,σ′) is exponen-
tially growing, i.e., dim(Hσ,σ′) ∈ O(2n). In turn, the
DLA decomposes as gTFIM =

⊕
σ,σ′ gσ,σ′ ⊆ u(dσ,σ′).

However, employing Algorithm 1 we computed the
dimension of the DLA generated by GTFIM and we
found that it only grows polynomially with n. That
is, we obtain that

dim(gTFIM) = n2 . (28)

Clearly, this implies that dim(gσ,σ′) 6 n2 for all σ, σ′.
Note that the set {1,Π} constitutes a representa-

tion of S2, the symmetric group of two elements, un-
der which the open-boundary-condition TFIM gen-
erators are invariant. Instead, the TFIM generators
with closed boundary conditions are invariant under a
representation of Cn, the cyclic group of n elements.
As discussed in Appendix N, the dimension of the
DLA now grows linearly instead of quadratically.

Similarly to what happened in the XXZ case, we
can turn the TFIM model subspace controllable upon
the introduction of an extra generator. Consider the
set

GLTFIM = GTFIM
⋃{

n∑
i=1

Zi

}
, (29)

leading to the PSA in Figure 6(a, right). The set
GLTFIM can also be regarded as being constituted by
the individual terms in the one-dimensional Longi-
tudinal and Transverse Field Ising Model (LTFIM)
Hamiltonian

HLTFIM =
nf∑
i=1

ZiZi+1 + hx

n∑
i=1

Xi + hz

n∑
i=1

Zi . (30)

In addition, the ansatz generated by GLTFIM is also
a QAOA-type ansatz where an additional mixer has
been added.

In the case of open boundary conditions, the∑n
i=1 Zi term breaks the Z2 symmetry, and thus

the set GLTFIM only conserves the parity symmetry,
gLTFIM =

⊕
σ gσ. Using Algorithm 1 we find that the

DLA is full rank on both σ = ±1 parity subspaces,
and hence

dim(gσ) ∈ O(22n) . (31)
Similarly, in the closed boundary condition case, one
can also find that the dimension of the DLA grows

Accepted in Quantum 2022-08-31, click title to verify. Published under CC-BY 4.0. 11



Figure 6: Numerical results for the TFIM and LTFIM
models. a) Schematic illustration of a single layer of the PSA
for the sets of generators GTFIM in Eq. (27) (left), and GLTFIM
in Eq. (29) (right) for n = 4 qubits. By adding (removing)
the gates in the shaded one obtains the ansatz in Eq. (27)
with periodic (open) boundary conditions. b) Variance of
the cost function partial derivative of the cost function in
Eq. (32) versus the number of qubits n for each ansatz. The
dashed (dotted) lines indicate the best polynomial (exponen-
tial) fit. The plot is shown in a log-linear scale. c) Variance
of the cost function partial derivative versus 1/ dim(g). The
plot is shown in a log-log scale.

exponentially with n. This is an example where we
show how a simple modification to the ansatz (adding
a layer generated by

∑n
i=1 Zi) can greatly change the

dimension of the DLA, and, as discussed below, such
a small change can greatly affect the trainability of
the cost function.

In Figure 6(b) we show results for numerically com-
puting Varθ[∂µC(θ)] for the cost function

C(θ) = 〈+|⊗nU†(θ)HTFIMU(θ)|+〉⊗n/n , (32)

where U(θ) is the PSA generated by the set GTFIM
of Eq. (27) with L = 12n layers for open boundary
conditions, and L = 6n for closed boundary condi-
tions. For each value of n = 4, 6, . . . , 18 we computed
the variance by picking 4400 random sets of parame-
ters, while for n = 20 we picked 1000 random intial-
izations. In all cases the partial derivative was taken
with respect to θL

2 ,2
. We see from Figure 6(b) that the

variance of the cost partial derivative vanishes poly-
nomially with n for both open and closed boundary
conditions, and hence the system does not exhibit a
barren plateau. Then, as shown in Figure 6(c), once
again, Conjecture 1 holds for both open and closed
boundary conditions: Varθ[∂µC(θ)] and dim(gTFIM)
respectively vanish, and grow, polynomially with n.

Moreover, in Figure 6(b) we also depict results ob-
tained by computing Varθ[∂µC(θ)] for the LTFIM
ansatz, using the same cost function of Eq. (32).
Now, U(θ) is the PSA generated by the set GLTFIM
in Eq. (27) with L = 6n layers. Using the same
number of samples than for the TFIM case, we find

Figure 7: Numerical results for the Erdös–Rényi model.
a) Variance of the cost function partial derivative of the
cost function in Eq. (35) versus the number of qubits n.
The dashed line indicates the medians across graphs com-
puted for each value of n. The plot is shown in a log-linear
scale. b) Variance of the cost function partial derivative ver-
sus 1/ dim(g). The plot is shown in a log-log scale.

that Varθ[∂µC(θ)] vanishes exponentially with n for
both open and closed boundary conditions, and hence
the cost exhibits a barren plateau. We see in Fig-
ure 6(c) that Conjecture 1 also holds for the LTFIM
ansatzes with open and closed boundary conditions,
as this time Varθ[∂µC(θ)] vanishes exponentially with
n, while dim(gTFIM) grows exponentially with n.

It is worth noting that, as discussed before, and
as shown in Figure 6(a), the difference between the
TFIM and the LTFIM ansatz is given by an additional
unitary in each layer (parametrized by a single angle).
However, despite this simple difference, we find the
variance of the cost function have different scaling, as
one cost exhibits a barren plateau while the other one
does not exhibit a barren plateau.

5.2.3 Erdös–Rényi model

Let us now consider the task of solving MAXCUT
problems with a QAOA ansatz. Here, we recall that
MAXCUT is specified by a graph G = (V,E) of nodes
V and edges E, such that one seeks to determine a
partition of the nodes ofG into two sets that maximize
the number of edges connecting nodes between sets.
The MAXCUT Hamiltonian is given by

HER = −1
2
∑
ij∈E

(1− ZiZj) , (33)

and we consider the standard QAOA ansatz generated
by

G =
{

n∑
i=1

Xi, HER

}
. (34)

Let us analyze the variance of the partial derivative
of the cost

C(θ) = 〈+|⊗nU†(θ)HERU(θ)|+〉⊗n/|E| , (35)

where we use |E| (the number of edges in the graph)
to normalize the cost function. For each value of
n = 2, 3, . . . , 9 we generated 90 graphs according to
the Erdös–Rényi model [91]. That is, each graph G
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was chosen uniformly at random from the set of all
graphs of n nodes. Then, for each graph we sam-
pled 3000 random initializations with L = 12n layers
and we took the partial derivative with respect to the
angle in the L/2-th layer associated to the (mixer)
Hamiltonian

∑n
i=1Xi. In Fig. 7(a) we show results

of Varθ[∂µC(θ)] versus the number of qubits. Here
we can see that, as expected, even for fixed n differ-
ent graphs will have different value of the variance.
However, by computing the median variance for each
system size we found that the scaling of the median
is exponentially decaying with the system size. While
this result does not preclude the possibility of gener-
ating graphs that will not have a barren plateau, it
suggests that uniform sampling of graphs from the
Erdös–Rényi model will lead to the landscape for
a typical graph having a barren plateau. Then, as
shown in Fig. 7(b), we compute the dimension of the
DLA for each graph, and find that Conjecture 1 is
confirmed, as the relation between Varθ[∂µC(θ)] and
dim(g) is linear in a log-log-scale.

6 DISCUSSION
In this work, we have explored a fundamental connec-
tion between VQAs and the theory of QOC with the
purpose of analyzing the existence of barren plateaus
in a family of periodic-structured ansatzes which con-
tain, as special cases, the QAOA and the HVA, among
other widely used ansatzes in variational quantum al-
gorithms and quantum machine learning. Our results
show that one can diagnose the presence of barren
plateaus in the cost function landscape by analyzing
the degree of controllability of the system, charac-
terized by the dimension of the dynamical Lie alge-
bra (DLA) obtained from the set of generators of the
ansatz.

Our main results are the following. First, we show
that if the DLA is full rank, i.e. if the system is
controllable, then the cost function exhibits a barren
plateau. This follows from the fact that, as we show,
controllable systems converge to 2-designs. Here, we
also derive an expression relating the depth required
for a given ansatz to become an ε-approximate two-
design with the expressibility of one of its layers.

We then consider systems with symmetries, where
the Hilbert space partitions into invariant subspaces
associated with the different eigenspaces. In this con-
text, we show that when the system is subspace con-
trollable, the existence of barren plateaus crucially de-
pends on the input state to the VQA. For example, the
cost might be trainable for certain input states, but
might exhibit a barren plateau for others. Specifically,
our results connect the scaling of the variance of cost
function partial derivatives to that of the dimension of
the subspace in which the input state has support on.
Instead, when the system is subspace uncontrollable,
we show that one can still upper bound the variance of

the cost function partial derivative using the express-
ibility of the ansatz in the relevant subspace. This
indicates that larger subspace expressibilities leads to
smaller gradients.

Finally, we present an conjecture that shows that
one can directly study the scaling of the cost function
partial derivative variance by computing the dimen-
sion of the subspace DLA to which the input state
belongs. This conjecture implies that ansatzes with
polynomially growing DLAs can exhibit polynomially
vanishing gradients, while ansatzes with exponentially
growing DLAs should exhibit exponentially vanishing
gradients.

In addition, we performed numerical simulations of
VQAs with the hardware efficient ansatz, QAOA, and
HVA, for problems such as preparing ground states
of the XXZ model and of the Ising model, or solv-
ing MAXCUT problems on graphs generated from the
Erdös–Rényi model. The numerical results match our
theoretical predictions and hence verify our analyti-
cal results for controllable and subspace controllable
systems. Moreover, in all cases considered we verify
that our conjecture holds, further providing evidence
that the scaling of the cost function partial derivative
variance may be directly linked to the dimension of
the subspace DLA.

Implications of our results to ansatz design

The broader implication of our results is that the
framework introduced here can be used to design
ansatzes, as one could potentially predict if an ansatz,
or a modification to the ansatz, will lead to the cost
function exhibiting a barren plateau. Hence, our
work can be considered as paving the way towards
trainability-aware ansatz design.

For instance, we have shown how a simple change
in the ansatz structure, such as adding an additional
parametrized unitary per layer, can greatly affect the
gradient scaling of the cost by changing the control-
lability of the system. This means that one should be
careful when employing schemes such as the Adaptive
QAOA or quantum optimal control ansatz as the ad-
dition of an operator H to the set G of generators of
the ansatz can lead to barren plateaus if the system
becomes controllable (or subspace controllable in an
exponentially growing subspace). In particular, if H
does not commute with the elements in G, one should
analyze how the DLA changes by such addition before
proceeding to change the ansatz.

Here, we crucially remark that one of the main ad-
vantages of the aforementioned theoretical analysis is
that it can be performed classically (either analyti-
cally or numerically) as it just requires the evaluation
of the DLA. Hence, our methods save precious quan-
tum resources as one does not need to run the quan-
tum algorithm, or even access a quantum computer,
to test the trainability of the ansatzes.
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Finally, we remark that if our conjecture holds more
generally, then one can use this additional tool to di-
rectly study the trainability of an ansatz by estimat-
ing the scaling of the variance of the cost function par-
tial derivative through the scaling of the dimension of
the DLA. For example, such results can be used to
show that certain ansatzes might not have exponen-
tially vanishing gradients. For instance, when con-
sidering a QAOA ansatz for solving MAXCUT on 2-
regular graphs, a straightforward computation of the
DLA reveals its scaling is only linear in n. Hence,
we expect (and we find) no barren plateaus. Simi-
larly, one can use our conjecture to analyze ansatz
proposals in the literature. For example, Ref. [71]
recently proposed an ansatz generated by the set
of products up to K-body Pauli X operators, i.e.,
G = {Xi}i∪{XiXj}i>j∪{XiXjXk}i>j>k∪· · · . Since
the ansatz is abelian, the dimension of DLA is just the
number of generators. Thus, we expect that when us-
ing a poly number of layers the ansatz should be rid
barren plateaus.

Outlook

In the present work, we have established a novel
framework for diagnosing the presence of barren
plateaus in VQAs. While here we mainly focus on
the trainability of ansatzes for near-term quantum
computing, our results should also be considered as
useful in the broader context of QOC. For instance,
while the barren plateau phenomenon has been re-
cently widely studied in VQAs, it is clear from our
manuscript that barren plateaus can (and will) also
arise in QOC schemes (see also [92]). Hence, we leave
for future work to study how some of the results de-
rived for the trainability of VQAs be used to analyze
the trainability of QOC control pulses.

In addition, we note that since our work studies
the trainability of certain families of ansatzes, we also
leave for future work to show how the tools here
presented can be employed to study more general
ansatzes (e.g., ansatzes for quantum machine learning
applications) which do not necessarily have a periodic
structure. In addition, we leave as an open question
how the results in our conjecture can be generalized
and formally proved.
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Appendices

In the following appendices we present additional information and derive proofs for the main results in the
manuscript. In Appendix A we introduce preliminary notation and definitions that will be relevant for the rest of
the appendices. Then, in Appendix B we provide additional details on different widely known ansatzes that are
Periodic Structure Ansatz (PSA). In Appendix C we provide a brief review of barren plateaus. Appendices F–M
contain the proofs of our main Theorems, Corollaries and Propositions. Finally, in Appendix N we discuss the
symmetries in the XXZ and Ising spin models considered in the main text, and in Appendix O we provide
additional details on the initial state used for the numerical simulations of the XXZ model.

A Preliminaries
Let us first review some definitions and prior results that will be relevant for the rest of the appendices.

Properties of the Haar measure. Let U(d) denote the group of d× d unitary matrices. Let dµH(V ) = dµ(V )
be the volume element of the Haar measure, where V ∈ U(d). Then, the Haar measure has the following
properties: (1) The volume of the Haar measure is finite:

∫
U(d) dµ(V ) <∞. (2) The Haar measure is uniquely

defined up to a multiplicative constant factor. (3) Let dζ(V ) be an invariant measure. Then there exists a
constant c such that dζ(V ) = c · dµ(V ). (4) The Haar measure is left- and right-invariant under the action of
the unitary group of degree d, i.e., for any integrable function g(V ), the following holds:∫

U(d)
dµ(V )g(WV ) =

∫
U(d)

dµ(V )g(VW ) =
∫
U(d)

dµ(V )g(V ), (36)

where W ∈ U(d).
Symbolic integration. Let us present formulas that allow for the symbolical integration with respect to the

Haar measure on a unitary group [93]. For any V ∈ U(d) the following expressions are valid for the first two
moments: ∫

U(d)
dµ(U)uiju∗pk = δipδjk

d
,∫

U(d)
dµ(U)ui1j1ui2j2u

∗
i′1j
′
1
u∗i′2j

′
2

=
δi1i′1δi2i

′
2
δj1j

′
1
δj2j

′
2

+ δi1i′2δi2i
′
1
δj1j

′
2
δj2j

′
1

d2 − 1 −
δi1i′1δi2i

′
2
δj1j

′
2
δj2j

′
1

+ δi1i′2δi2i
′
1
δj1j

′
1
δj2j

′
2

d(d2 − 1) ,

(37)
where uij are the matrix elements of U . Assuming d = 2n, we use the notation i = (i1, . . . in) to denote a
bitstring of length n such that i1, i2, . . . , in ∈ {0, 1}.

Useful Identities. We introduce the following identities, which can be derived using Eq. (37) (see [49] for a
review): ∫

U(d)
dµ(U) Tr

[
UAU†B

]
=

Tr[A] Tr[B]
d

, (38)∫
U(d)

dµ(U) Tr
[
UAU†BUCU†D

]
=

Tr[A] Tr[C] Tr[BD] + Tr[AC] Tr[B] Tr[D]
d2 − 1

−
Tr[AC] Tr[BD] + Tr[A] Tr[B] Tr[C] Tr[D]

d (d2 − 1)
,

(39)∫
U(d)

dµ(U) Tr
[
UAU†B

]
Tr
[
UCU†D

]
=

Tr[A] Tr[B] Tr[C] Tr[D] + Tr[AC] + Tr[BD]
d2 − 1

−
Tr[AC] Tr[B] Tr[D] + Tr[A] Tr[C] Tr[BD]

d (d2 − 1)
,

(40)

where A,B,C, and D are linear operators on a d-dimensional Hilbert space.

Integration over parameter space: In the next sections we will derive analytical expressions for the variance
of the partial derivatives of cost functions C(θ) over parametrized circuits U(θ). In such derivations, we will
have to deal with integration over the parameter space. A key step in the following analysis will be to relate
the integration over parameters with integration over the ensemble of unitaries arising from different parameter
choices. In this sense, we recall that given a set of parameters {θ} one can obtain an associated set of unitaries
generated by the quantum circuit {U(θ)}. Then, consider the integration of some function f(U(θ)) over θ.
Defining U as the distribution of unitaries generated by U(θ), the following identity holds∫

θ

dθf(U(θ)) =
∫
U
dUf(U) . (41)
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In addition, if the distribution of unitaries U can be shown to converge to a 2-design, the integration over the
distibution can be further converted into an integration over the Haar measure∫

U
dU −→

∫
U(d)

dµ(U) (42)

allowing the use of identities (38), (39), and (40).

B Ansatzes
In general, ansatzes for parametrized quantum circuits can be divided into two primary categories: problem-
agnostic and problem-inspired ansatzes. In a problem agnostic ansatz one does not have any information about
the problem, or its solution, that one can encode in the ansatz. Such is the case for instance in a task of
estimating the spectrum of an unknown density operator [29]. On the other hand, problem-inspired ansatzes
employ prior information about a given problem or task. For example, for the problem of estimating the ground
state energy of a particular Hamiltonian, one can design ansatzes that preserve the symmetry of the problem
Hamiltonian [94].

Here we remark that several well known problem-agnostic and problem-inspired ansatzes in the literature are
PSAs of the form in Eq. (2). In particular, our framework allows us to study the hardware-efficient ansatz (HEA)
[80], quantum alternating operator ansatz (QAOA) [19], Adaptive QAOA [57, 60], Hamiltonian variational
ansatz (HVA) [58], and Quantum Optimal Control Ansatz (QAOC) [61].

Below we provide several examples of problem-inspired and problem-agnostic PSA and highlight their advan-
tages in different problems.

Hardware efficient ansatz. The Hardware Efficient Ansatz (HEA) is a problem-agnostic ansatz, which relies
on gates native to a quantum hardware. In particular, an ansatz can be designed based on a gate alphabet,
which depends on the architecture and the connectivity of a given quantum hardware. This procedure helps
in avoiding the overhead associated with transpiling an arbitrary unitary into a sequence of native gates. For
example, one can consider native gates, such as single qubit rotations e−iθ/2Ze−iγ/2Y and CNOTs, where Y
and Z denote Pauli matrices, and a CNOT between the control qubit i and the target qubit j is given by:
e−iπ/2(|1〉〈1|i⊗(Xj−1j)). Then an ansatz of the form in (2) can be generated as follows: one layer consists of
parametrized single qubit rotations on each qubit, followed by unparametrized CNOTs acting on neighboring
qubits.

The HEA has been employed to prepare the ground state of molecules [80], to study Hamiltonians that are
similar to the device’s interactions [95], and in several other variational quantum algorithms [21, 96, 97, 49]. The
HEA is also suitable in the near-term implementations of VQAs due to its low-depth structure which results
into a lower-noise circuit in comparison to other ansatze [97, 39].

Quantum alternating operator ansatz. The Quantum Alternating Operator Ansatz (QAOA) is a problem-
inspired ansatz that simulates the discretized adiabatic transformations [19]. Consider a goal of preparing
the ground state of a problem Hamiltonian HP . Let HM denote a mixer Hamiltonian, with corresponding
ground state |ψ〉. Then the QAOA maps |ψ〉 to the ground state of HP by sequentially applying the problem
unitary e−iγlHP , followed by the mixer unitary e−iβlHM . Let θ = (γ,β). Then the QAOA is given by U(θ) =∏L
l=1 e

−iβlHM e−iγlHP , which follows the general form of the ansatz defined in (2). Here, p is the order of
the discretized adiabatic transformation and it determines the precision of the solution [19]. The QAOA was
originally introduced for finding approximate solutions to combinatorial optimization problems [19]. The QAOA
has been generalized as a standalone ansatz [57] and its performance has been investigated in several tasks,
including the task of learning a unitary [98]. Moreover, the QAOA has been shown to be computationally
universal [74, 75], and the choice of optimal mixer is still an open debate [99, 100].

Adaptive QAOA. As a consequence of the adiabatic theorem, the QAOA should lead to good solutions for
high values of p [19]. However, for small values of p, the QAOA is an ad-hoc ansatz, which is not necessarily
an optimal strategy to approximate the ground state of the problem Hamiltonian. A way to improve such an
ad-hoc ansatz is to employ a variable mixer instead of a fixed mixer at each layer [57]. Let {Gk}qk=1 denote a
set of mixer Hamiltonians. Then an adaptive QAOA can be defined as follows: U(θ) =

∏L
l=1 e

−iβlGle−iγlHp ,
where each Gl can be adaptively picked from {Gk}qk=1.

One particular adaptive approach was introduced in [60], where at each layer, Gl is picked based on the
largest gradient of the cost function among all {Gl}. Moreover, [60] observed that adaptive entangling mix-
ers can improve performance and reduce the number of parameters and CNOTs to achieve a desired ac-
curacy in comparison to the non-adaptive QAOA. We note that the adaptive QAOA follows the form in
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(2) if adaptive mixers are learned up to a fixed layer and then the whole structure is repeated. That is,
U(θ) =

∏p
m=1

∏r
l=1 e

−iβl,mGl,me−iγl,mHP , where Gl,1 are learned adaptively for each l ∈ {1, . . . , r}, and
Gl,1 = Gl,m for all m ∈ {1, . . . ,m}.

Hamiltonian variational ansatz. The Hamiltonian variational ansatz is another problem-inspired ansatz,
which implements time evolution under problem Hamiltonian via Trotterization [58]. It can be understood as
a generalization of the QAOA to more than two non-commuting Hamiltonians. Let HP =

∑
lHl denote a

problem Hamiltonian, such that [Hl, Hl′ ] 6= 0. Then the HVA of order p is given by U(θ) =
∏p
k=1

∏
l e
−iθl,kHl ,

which is in the form of (2). The HVA has been investigated in studying one- and two-dimensional quantum
many-body models [101, 102].

A simple example where the HVA can be employed is the XXZ model to study magnetism. For a one-
dimensional chain, the Hamiltonian for the XXZ model is given by HXXZ = −

∑n
l=1XlXl+1 +YlYl+1 +gZlZl+1,

where g determines the phase of magnetisation. Let HA =
∑n
l=1AlAl+1, where A ∈ {X,Y, Z}. Then, one way

to parametrize a HVA of order p is as follows: U(θ) =
∏p
l=1 e

−iβlHXe−iγlHY e−iδlHZ for g = 1, and where
θ = (β,γ, δ). Another way to parametrize a HVA is as follows: U(θ) =

∏p
l=1 e

−iβl(HX+HY )e−iδlHZ , where we
redefined θ = (β, δ).

Quantum optimal control ansatz. The HVA discussed above helps constraining the variational search to a
relevant symmetric subspace of the the total Hilbert space. In general, this approach might require high values
of p to achieve a desired accuracy in approximating the ground state of many-body Hamiltonians. One way
to avoid high values of p is to introduce drive terms in addition to the problem Hamiltonian, which break the
symmetry of the problem Hamiltonian Hp. This approach falls under the framework of quantum optimal control
[61]. In particular, let {Ĥk} denote a set of drive terms. Then the update time-dependent Hamiltonian is given
by H̄(t) = HP +

∑
k ck(t)Hk, where drive terms Hk are picked such that [HP , Hk] 6= 0 for all k. Here, ck(t) are

time-dependent control parameters. Let HP =
∑
qHq and let θ = (γ,β). Then the Quantum Optimal Control

Ansatz (QOCA) of order L is given by U(θ) =
∏L
l=1
∏
q e
−iβl,qHq

∏
k e
−iγl,kHk , where γl,k denote the discrete

drive amplitudes of the control parameter ck(t).
In general, finding an optimal drive Hamiltonian terms {Hk} is a computationally challenging problem. One

can employ an adaptive approach to pick drive Hamiltonians from a fixed set of Hamiltonian, similar to the
adaptive QAOA [60]. In [61], the QOCA was shown to outperform other ansatze, including the HEA and the
HVA for the task of preparation of the ground state of the half-filled Fermi Hubbard model.

C Barren Plateaus
As mentioned in the main text, the barren plateau phenomenon has been recognized as one of the most important
challenges to overcome to guarantee the success of VQAs. When a cost function exhibits a barren plateau, its
gradients are exponentially suppressed (in average) across the optimization landscape. Consider the following
mathematical definition.

Definition 1 (Barren Plateau). A cost function C(θ) as in Eq. (1) is said to have a barren plateau when
training θµ ≡ θpq ∈ θ, if the cost function partial derivative ∂C(θ)/∂θµ ≡ ∂µC(θ) is such that

Varθ[∂µC(θ)] 6 F (n) , with F (n) ∈ O
(

1
bn

)
, (43)

for some b > 1. Here the variance is taken with respect to the set of parameters θ.

From Chebyshev inequality we know that Varθ[∂µC(θ)] bounds the probability that ∂µC(θ) diverges from
its average (of zero) as P (|(∂µC(θ)| > c) 6 Varθ[∂µC(θ)]/c2 for any c > 0.

Equation (43) implies that one requires a precision (i.e., a number of shots) that grows exponentially with
n to navigate trough the flat landscape and determine a cost minimizing direction when optimizing the cost
function. Moreover, as shown in [40, 42], barren plateaus affect both gradient-based and gradient-free methods
meaning that simply changing the optimization strategy does not mitigate or solve the barren plateau issues.
Since the goal of VQAs is to have computational complexities that scale polynomial with n, such exponential
scaling in the required precision destroys the hope of achieving a computational advantage with the VQA over
classical methods (which usually scale exponentially with n).

The first result for barren plateaus was obtained in [37], where it was shown that deep unstructured ansatz
that form 2-designs have barren plateaus. This phenomenon was then generalized to layered Hardware Efficient
Ansatzes in [49] were it was proven that the locality of the cost function is connected to the existence of barren
plateaus. That is, global cost functions (i.e., cost functions where O in (1) acts non-trivially in all qubits) exhibit
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barren plateaus even for shallow depths, whereas local cost functions (i.e., cost functions where O in (1) acts
non-trivially in a small number of neighboring qubits) do not exhibit barren plateaus for short-depth ansatzes.

The barren plateaus phenomenon has also been studied in the context of quantum neural networks [41, 46,
103], and to the problem of learning scramblers [43]. In addition, it has been shown that circuits that generate
large amounts of entanglement [41, 45, 44] are prone to suffer from barren plateaus. To circumvent or mitigate
the effect of barren plateaus, several strategies have been developed [52, 51, 54, 53, 46, 104, 28, 29, 105, 106].

D Quantum Optimal Control
Here we recall for convenience that in a standard QOC setting one is interested in controlling the dynamical
evolution of a quantum state |ψ〉 in ad-dimensional Hilbert space H = Cd (where d = 2n) [63]. Here, the system
dynamics are determined by a Hamiltonian

H({fk(t)}) = H0 +
K∑
k=1

fk(t)Hk (44)

that is tunable through some time-dependent control fields functions {fk(t)}.
At its core, the problem in QOC is to determine how to shape the control fields such that the system evolves

in a desired manner. A specific set of optimal fields is usually constructed by imposing a parametrization
on the functions and applying standard numerical optimization routines. The success of such optimization
process depends on the structure of the underling optimization spaces, the so-called quantum control landscapes
[107, 108, 109].

For instance, a common choice is to consider piece-wise constant fields where the protocol duration T is
divided in L intervals ∆tj = tj − tj−1 (such that T =

∑L
j=1 ∆tj) at each of which the fields take a constant

value, e.g., fk(t) = fk,j if tj−1 < t < tj . In this case, the propagator factorizes into a product of individual
sub-propagators, each of which is generated by a constant Hamiltonian and thus leads to the simple matrix
exponential form

U({fk(t)})=
L∏
l=1

e−iH̃l∆tl , H̃l=H0 +
K∑
k=1

fl,kHk . (45)

By Trotterizing Eq. (45) one finds

U({fk(t)}) ≈
L∏
l=1

K∏
k=0

e−iHk∆tlfl,k , (46)

where fl,0 = 1 for all l. Note that (46) is a PSA of the form of Eq. (2), through the identification

θl,0 = ∆t0 , θl,k = ∆tlfl,k, k > 1 . (47)

We remark that in the limit ∆tl −→ 0, Eq. (46) becomes exact. In the general case, the exact and Trotterized
ansatzes approximately coincide, and a nontrivial correction of Eq. (47) is needed to make the correspondence
exact. In any case, Eq. (47) allows us to henceforth use the notation U({fk(t)}) = U(θ) and indicate with θ
the trainable parameters in a QOC setting.

E Dynamical Lie Algebra computation
First, let us recall that a Lie algebra is a vector space g together with an operation [·, ·] : g → g called Lie
bracket that is bilinear, alternating (the output is zero if the inputs are linearly dependent) and satisfies the
identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, known as the Jacobi identity. Lie algebras are vector spaces that
are closed under such Lie bracket, i.e. [x, y] ∈ g for all x, y ∈ g. Note that this operation is not necessarily
associative, i.e. [x[y, z] 6= [[x, y], z]. In fact, this is precisely what the Jacobi identity captures: how the order
of evaluation affects the result of the operation.

In our quantum context, Lie algebras manifest as matrix Lie algebras. For example, the space of quantum
observables u(d) is a subspace of the vector space of d × d complex matrices that is closed under matrix
commutator (playing the role of a Lie bracket). More generally, we will encounter ourselves with Lie algebras
that form Lie subalgebras of u(d). A subalgebra is a subspace of an algebra that is itself closed under the Lie
bracket. For example, in a n qubit quantum system, the subspace Ω = span{X,Y, Z}, where X =

∑
iXi,
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Algorithm 1: Basis for the Dynamical Lie Algebra (DLA).
Input: Set of generators G of the ansatz.
Output: Basis S of the algebra g obtained from G.
Init: S ← G, Sprev ← G, Snew ← {}, C ← 1, new← 1.

1 while new>0 do
2 Snew ← {}.
3 for h0 ∈ G do
4 for h ∈ Sprev do
5 C ← [h0, h]
6 if S ∪ {C} is linearly independent
7 then
8 S ← S ∪ {C}.
9 Snew ← Snew ∪ {C}.

10 new← |Snew|.
11 Sprev ← Snew.
12 return S

Y =
∑
i Yi and Z =

∑
i Zi is closed under commutation and thus constitutes a 3-dimensional subalgebra of the

4n-dimensional operator space.
Specifically, we will be interested in the so-called dynamical Lie algebra (DLA). This Lie algebra is the subspace

of u(d) generated by the Lie closure of the generators of a paramterized quantum circuit (see Definition 3). In
general, computing the DLA is a highly nontrivial task. One possible approach to the DLA is direct construction,
i.e. start with a set of generators defining a subspace of operator space (but not a subalgebra), and start
commuting them, finding new elements until one obtains a basis of the DLA (see Algorithm 1). The complexity
of such approach is, in general, O(poly(d)) with d = 2n, that is, exponential in n the number of qubits. For
example, a naive approach (representing operators as dense d × d matrices) yields roughly O(d2d6), since, in
general, one has to check linear independence O(d2), for example by implementing LU or QR decompositions
(whose cost is O(N3) for N ×N matrices) on such d× d matrices. Although such complexity can be reduced,
for example, using more intelligent representations of operators, in essence direct construction is attempting to
build a basis for a subalgebra of su(d2), i.e. a basis with potentially as many as d2 elements, and therefore it
cannot generally avoid exponentiality.

Despite being exponential, direct construction of the DLA (either numerically or analitically) on small system
sizes can constitute a remarkably useful tool to later extrapolate or prove the scaling (e.g. by induction) of the
DLA beyond those small ’afforable’ system sizes. Moreover, note that in many cases one may only be interested
in checking whether the dimension of the DLA is above a certain threshold, a task with complexity linear in
the size of such threshold. Of course, this is neglecting the complexity of computing new DLA elements, which,
as mentioned above, can be substantially diminished by choosing efficient representations for those operators.

F Proof of Theorem 1: Convergence of controllable systems to 2-designs
In the following we provide a proof for Theorem 1, which we recall for convenience.

Theorem 1. Consider a controllable system. Then, the PSA U(θ) will form an ε-approximate 2-design, i.e.
‖A(2)

U(θ)‖∞ = ε with ε > 0, when the number of layers L in the circuit is

L = log(1/ε)
log
(

1/‖A(2)
U1(θ)‖∞

) . (48)

Here ‖A(2)
U1(θ)‖∞ denotes the expressibility of a single layer U1(θ1) of the ansatz according to Eqs. (2) and (6).

Proof. To study the convergence of the PSA U(θ) to an approximate 2-design we employ the tools of Harmonic
analysis. The following arguments are based on Ref. [110]. This is similar to using Fourier analysis to study
the convergence of a probability distribution on a real line to the normal distribution, which is also known as
the central limit theorem.
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The second moment operator corresponding to the distribution U over unitaries U can be defined as follows

M
(2)
U =

∫
U
dUU ⊗ U ⊗ U∗ ⊗ U∗ . (49)

Let M (2)
UH

denote the second moment operator corresponding to the Haar distribution. Our goal is to evaluate
the difference between M (2)

U and M (2)
UH

. Let us review some properties of M (2)
UH

before we calculate this distance
operator. An important property of M (2)

UH
is that it is a projector onto a two-dimensional subspace, that is,

M
(2)
UH

has eigenvalues 0 or 1. We show this by noting that the following equations hold:

(M (2)
UH

)2 =
(∫
U(d)

dµ(U)U ⊗ U ⊗ U∗ ⊗ U∗
)(∫

U(d)
dµ(V )V ⊗ V ⊗ V ∗ ⊗ V ∗

)

=
∫
U(d)

dµ(U)
∫
U(d)

dµ(V ) (UV ⊗ UV ⊗ (UV )∗ ⊗ (UV )∗) (50)

=
∫
U(d)

dUdW (W ⊗W ⊗W ∗ ⊗W ∗)

=
∫
U(d)

dWW ⊗W ⊗W ∗ ⊗W ∗

= M
(2)
UH

, (51)

and

Tr
[
M

(2)
UH

]
= Tr

[∫
U(d)

dµ(U)U ⊗ U ⊗ U∗ ⊗ U∗
]

=
d∑

i,j,k,l=1

∫
U(d)

dµ(U)Ui,iUj,jU∗k,kU∗l,l (52)

= 2
d2 − 1

d∑
i,j=1

1− 2
d(d2 − 1)

d∑
i=1

1

= 2 . (53)

In Eq. (50), we used the left invariance of the Haar measure, and in (52) we used the Weingarten function to
explicitly evaluate the integral. The first property puts in evidence that M (2)

UH
is a projector and the second

property shows that the eigenspace with eigenvalue 1 is a two-dimensional subspace.
Let V = UL · · ·U2U1, be an L-layered PSA, where each unitary Uj is sampled from the same distribution

dµ = P (U)dU . Then, the probability distribution and moment operator of V are respectively given by

µL[V ] =
∫
U(d)

dU1

∫
U(d)

dU2 · · ·
∫
U(d)

dULP (U1)P (U2) · · ·P (UL)δ(V − UL · · ·U2U1) , (54)

M
(2)
V =

∫
U(d)

dµL[V ] V ⊗ V ⊗ V ∗ ⊗ V ∗

=
∫
U(d)

dV

∫
U(d)

dU1

∫
U(d)

dU2 · · ·
∫
U(d)

dULP (U1)P (U2) · · ·P (UL)δ(V − UL · · ·U2U1) V ⊗ V ⊗ V ∗ ⊗ V ∗

=
∫
U(d)

dU1

∫
U(d)

dU2 · · ·
∫
U(d)

dULP (U1)P (U2) · · ·P (UL) (
L∏
l=1

Ul)⊗ (
L∏
l=1

Ul)⊗ (
L∏
l=1

U∗l )⊗ (
L∏
l=1

U∗l )

=
L∏
l=1

∫
U(d)

dUlP (Ul)Ul ⊗ Ul ⊗ U∗l ⊗ U∗l

=
(
M

(2)
U1

)L
. (55)

Equation (55) shows that the moment operator of an L-layered ansatz is equal to the L-th power of the moment

operator of a single layer. We can also calculate this formally. In our case each Ul is given by Ul =
K∏
k=1

e−iθlkHk ,

Accepted in Quantum 2022-08-31, click title to verify. Published under CC-BY 4.0. 27



where G = {Hk}Kk=1 are the set of generators, and where the θlk are sampled from the uniform distribution.
Then, let us note that

M
(2)
U1

=
( 1

2π

)n ∫ K∏
k=1

dθk

K∏
k=1

e−iθkHk ⊗
K∏
k=1

e−iθkHk ⊗
K∏
k=1

eiθkH
∗
k ⊗

K∏
k=1

eiθkH
∗
k

=
( 1

2π

)n K∏
k=1

∫
dθke

−iθkHk ⊗ e−iθkHk ⊗ eiθkH
∗
k ⊗ eiθkH

∗
k

=
( 1

2π

)n K∏
k=1

(
V ⊗2
k ⊗ V ∗⊗2

k

) ∫
dθk

∑
l1,k,l2,k
l3,k,l4,k

e−iθk(l1,k+l2,k−l3,k−l4,k)| l1,k, l2,k, l2,k, l4,k〉〈l1,k, l2,k, l2,k, l4,k |
(
W⊗2
k ⊗W ∗⊗2

k

)†

=
K∏
k=1

(
W⊗2
k ⊗W ∗⊗2

k

) ∑
l1,k,l2,k
l3,k,l4,k

δ(l1,k + l2,k − l3,k − l4,k)| l1,k, l2,k, l3,k, l4,k〉〈l1,k, l2,k, l3,k, l4,k |
(
W⊗2
k ⊗W ∗⊗2

k

)†
.

(56)

Here Hk|li,k〉 = li,k|li,k〉, and Wk is the unitary matrix that diagonalizes Hk. To calculate the distance to a
2-design we need to prove some properties of eigenvalues and eigenvectors of M (2)

U1
. Let |φ〉 be an eigenvector of

M
(2)
U1

with associated eigenvalue λ. Then,

|〈φ|M (2)
U1
|φ〉| = |λ| =

∣∣∣ ∫
U(d)

dU1 P (U1) 〈φ|U1 ⊗ U1 ⊗ U∗1 ⊗ U∗1 |φ〉
∣∣∣ (57)

6
∫
U(d)

dU1 P (U1)
∣∣∣〈φ|U1 ⊗ U1 ⊗ U∗1 ⊗ U∗1 |φ〉

∣∣∣ (58)

6 1 . (59)

The equality holds if and only if |φ〉 is an eigenvector of U ⊗ U1 ⊗ U∗1 ⊗ U∗1 ∀U1, such that P (U1) 6= 0. For
the specific case of Haar measure, this means that |φ〉 is an eigenvector of U ⊗ U ⊗ U∗ ⊗ U∗ ∀U ∈ SU(d). We
already showed that there are two such eigenvectors for Haar measure with eigenvalue 1.
Now, using the following argument we hope to show that those two are also the only eigenvectors of M (2)

U1

with eigenvalue 1, given that the set G is controllable. Let |φ〉 be an eigenvector of M (2)
U1

with eigenvalue 1.
One can now also see that |φ〉 is also an eigenvector of M (2)

V (since M (2)
V = (M (2)

U1
)L) ∀L ∈ Z+. Then, G being

a controllable set implies that for all U ∈ SU(d), there exists an L for which V =
L∏
l=1

K∏
k=1

e−iθlkHk = U so that

P (U) 6= 0. That, is one can obtain any unitary in U(d) by tuning the parameters in V . It also implies that |φ〉
has to be an eigenvector of U ⊗ U ⊗ U∗ ⊗ U∗ with eigenvalue 1. But this means that |φ〉 is an eigenvector of
U ⊗U ⊗U∗⊗U∗ with eigenvalue 1 ∀U ∈ SU(d). So |φ〉 is also an eigenvector of M2[µH ] with eigenvalue 1, and
there are two such eigenvectors. Let us call them |φ1〉, and |φ2〉. Hence, we have

M
(2)
UH

= |φ1〉〈φ1 |+ |φ2〉〈φ2 | (60)

M
(2)
U1

= |φ1〉〈φ1 |+ |φ2〉〈φ2 |+
d4−2∑
i=1

λi|ψi〉〈ψi | (61)

M
(2)
V = |φ1〉〈φ1 |+ |φ2〉〈φ2 |+

d4−2∑
i=1

λLi |ψi〉〈ψi | . (62)

Here {λi} is the set of the remaining eigenvalues such that 0 6 |λi| < 1. Let λmax be the eigenvalue with

maximummodulus. Thus, we can now show that ‖A(2)
U(θ)‖∞ = ‖M (2)

UH
−M (2)

V ‖∞ = ‖
N4−2∑
i=1

λki |ψi〉〈ψi |‖∞ = |λLmax|.

Then, recalling that |λmax| = ‖A(2)
U1(θ)‖∞ is also the expressibility of one layer, one can find that

‖A(2)
U(θ)‖∞ =

(
‖A(2)

U1(θ)‖∞
)L

. (63)
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Solving for L and denoting ε = ‖A(2)
U(θ)‖∞ leads to

L = log(1/ε)
log
(

1/‖A(2)
U1(θ)‖∞

) . (64)

G Proof of Corollary 1: Rate of convergence of controllable systems to 2-designs
Here we prove Corollary 1.

Corollary 1. Let the single layer expressibility of a controllable system be ‖A(2)
U1(θ)‖∞ = 1 − δ(n), with δ(n)

being at most polynomially vanishing with n, i.e., with δ(n) ∈ Ω(1/poly(n)). Then, if L(n) ∈ Ω(n/δ(n)), U(θ)
will be no worse than an ε(n)-approximate 2-design (i.e., ‖A(2)

U(θ)‖∞ 6 ε(n)) with ε(n) ∈ O(1/2n), where we
have added the n-dependence in L and ε for clarity.

Proof. Let us recall from the main text, and from Eq. (63), that

‖A(2)
U(θ)‖∞ =

(
‖A(2)

U1(θ)‖∞
)L

. (65)

Replacing ‖A(2)
U1(θ)‖∞ = 1− δ(n), one finds

‖A(2)
U(θ)‖∞ = (1− δ(n))L . (66)

Then, assuming that L(n) ∈ Ω(n/δ(n)) we have, by definition, that there exists c > 0 and n0 such that
L(n) > cn/δ(n) for all n > n0. From the previous, we find that for n > n0

‖A(2)
U(θ)‖∞ = (1− δ(n))L 6 (1− δ(n))

cn
δ(n) , (67)

where we have used the fact that (1− δ(n)) 6 1. Recalling that δ(n) ∈ Ω(1/poly(n)), i.e., δ(n) vanishes no
faster than a polynomial function of n, we find to first order that

(1− δ(n))
c′n
δ(n) ≈ e−n+O( 1

n ) . (68)

Then, defining ε(n) = (1− δ(n))
cn
δ(n) we prove the result in Corollary 1 as

‖A(2)
U(θ)‖∞ 6 ε(n) , with ε(n) ∈ O( 1

2n ). (69)

H Proof of Proposition 1: Controllability leads to barren plateaus
Let us now provide a proof for Proposition 1.

Proposition 1 (Controllable). There exists a scaling of the depth for which controllable systems form ε-
approximate 2-designs with ε ∈ O(1/2n), and hence the system exhibits a barren plateau according to Defini-
tion 1.

Proof. Let us start by noting that for all controllable systems one can form a ε-approximate 2-designs with
ε ∈ O(1/2n) with a depth scaling obtained from Eq. (64). Then, let us recall that we have defined the
expressibility superoperator as

A(t)
U(θ) = M

(t)
UH
−M (t)

U(θ) . (70)

with its ordinary action given by

A(t)
U(θ)(·) = M

(t)
UH

(·)−M (t)
U(θ)(·) . (71)
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We then have that for any quantum state ρ

‖A(t)
U(θ)(ρ)‖∞ 6 ‖A(t)

U(θ)‖∞ , (72)

which follows from the normalization of ρ. Hence, if ‖A(t)
U(θ)‖∞ 6 ε we find from Eq. (72) that for any quantum

state ρ, the inequality ‖A(t)
U(θ)(ρ)‖∞ 6 ε holds, which is precisely the definition of an ε-approximate state 2-

design. Finally, we can use the results from [37], which imply that since ε ∈ O(1/2n), then the variance of the
cost function partial derivative is given by

Varθ[∂µC(θ)] = F̂ (n) , with F̂ (n) ∈ O(1/2n) . (73)

Thus, the cost function exhibit a barren plateau.

I Proof of Proposition 2: Controllability of the HEA and the Spin Glass model
Let us now prove Proposition 2.

Proposition 2. The following two sets of generators generate full rank DLAs, and concomitantly lead to
controllable systems:

• GHEA =
{
Xi, Yi

}n
i=1

⋃{∑n−1
i=1 ZiZi+1

}
,

• GSG =
{∑n

i=1Xi,
∑
i<j (hiZi + JijZiZj)

}
, with hi, Jij ∈ R sampled from a Gaussian distribution.

In the following we find that by repeated nested commutators between the elements of the sets G in Propo-
sition 2. one can obtain all 22n − 1 Pauli strings, and hence, that the DLA g obtained is full rank.

Proof. We divide the proof into HEA and GS models.

I.0.1 Generators of the Hardware Efficient Ansatz (HEA)

We first start with the set GHEA corresponding to the set of generators of a HEA.

GHEA =
{
Xi, Yi

}n
i=1

⋃{
n−1∑
i=1

ZiZi+1

}
. (74)

First, let us note that from the commutation of Xi with Yi, we get every Zi. Meaning that one can already
obtain all single qubit Pauli operators. Then, the commutation of Xi and Yi with

∑n−1
i=1 ZiZi+1, respectively,

gives

Ai = Yi(Zi+1 + Zi−1) , and Bi = Xi(Zi+1 + Zi−1) . (75)

It then follows that the commutator of Xi+1 with Bi is

Ci = XiYi+1, ∀i ∈ {1, . . . , n− 1} . (76)

Then by computing the commutators of {Xi}ni=1, {Yi}ni=1, and {Zi}ni=1 with {Ci}n−1
i=1 we get all nearest-

neighbour two-body Pauli operators

Di = {XiXi+1, YiYi+1, ZiZi+1, XiYi+1, YiXi+1, XiZi+1, ZiXi+1, YiZi+1, ZiYi+1}, ∀i ∈ {1, . . . , n− 1} . (77)

Similarly, it can be readily verified that the commutators between {Xi}ni=1, {Yi}ni=1, {Zi}ni=1, and operators in
{Di}n−1

i=1 yield all “nearest-neighbour” three-body Pauli operators.
Now, let us show that g also contains the remaining non-nearest-neighbour two body operators. Consider the

commutator between the three-body nearest-neighbour operators

[MiNi+1Oi+2, PiNi+1Qi+2] = [Mi, Pi][Oi+2, Qi+2] (78)
where N,M,O, P,Q ∈ {X,Y, Z}. Clearly, the different choices of M,O,P and Q will generate all next-nearest-
neighbour two-body operators. Iterating this procedure we obtain all 9

(
n
2
)
two-body terms. Then, once we have

all two-bodies we can use one-bodies {Xi}ni=1, {Yi}ni=1 and {Zi}ni=1 to get all three-bodies. Three-bodies with
one-bodies will give four-bodies, and so on. We will get all n-body operators. Thus the DLA of the HEA is full
rank, which implies that the HEA is a controllable ansatz.
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I.0.2 Generators of the Spin Glass (SG)

The set of generators for a spin glass system is given by

GSG =


n∑
i=1

Xi,
∑
i<j

(hiZi + JijZiZj)

 , (79)

with hi, Jij ∈ R. For convenience, we define the following two operators

Hp =
∑
ij

hiZi + JijZiZj , Hm =
∑
i

Xi . (80)

The commutator of Hp and Hm gives

A0 = [Hp, Hm] =
∑
ij

hiYi + JijYiZj . (81)

We then compute the commutator of A0 and Hm:

[Hm, A0] = −Hp +
∑
ij

JijYiYj . (82)

Combining Hp and [Hm, A0] gives

A1 =
∑
ij

JijYiYj . (83)

We now compute the commutator between A1 and Hm as follows:

A3 := [A1, Hm] =
∑
rs

JrsZrYs . (84)

Combining A0 and A3, we get
A4 :=

∑
i

hiYi . (85)

Similarly, combining Hm and A4 gives
A5 :=

∑
i

hiZi . (86)

Finally, combining A5 and Hp gives
A6 :=

∑
ij

JijZiZj . (87)

From the commutator of A4 and A5 we get

A7 := [A4, A5] =
∑
i

h2
iXi . (88)

Moreover, the commutators of A7 with A4 and A5 lead to

A8 := [A7, A4] =
∑
i

h3
iZi , A9 := [A5, A7] =

∑
i

h3
iYi . (89)

By repeating this procedure, we get that the set

S̄ = {
∑
i

h2m
i Xi,

∑
i

hmi Yi ,
∑
i

hmi Zi}nm=1 (90)

also belongs to the Lie algebra. Now, because the h′is are sampled from a Gaussian distribution, we can safely
assume them to be non-zero and different from each other. Then, using a Vandermonde determinant type of
argument one can show that the 3n elements in S̄ are linearly independent and span the same subspace as
S = {Xi, Yi, Zi}ni=1. Thus S belongs to gSG. Combining this with A6, we essentially get the generators of GHEA
and hence one can again generate all n-body Pauli operators. Thus the DLA of the spin-glass system is also of
full rank, which implies that the spin-glass system is controllable.
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J Proof of Theorem 2: Variance in subspace controllable systems
In the following, we provide a proof for Theorem 2 by explicitly computing the variance of the cost function
partial derivative in a subspace controllable setting. Consider a set of generators that share a symmetry (for
simplicity we assume only one symmetry, although generalization to multiple symmetries is straightforward),
i.e., there is a Hermitian operator Σ such that [Σ, g] = 0 ∀g ∈ g. Assuming Σ has N distinct eigenvalues, the
DLA has the form g =

⊕N
m=1 gm. This imposes a partition of H =

⊕N
m=1Hm where each subspace Hm of

dimension dm is invariant under g.
Let us introduce some notation. Consider the d × dm matrix that results from horizontally stacking the

eigenvectors of Σ associated with the m-th eigenvalue (of degeneracy gm)

Q†m =


...

...
...

|v1〉, |v2〉, , |vgm〉
...

...
...

 , (91)

such that Qm maps vectors from H to Hm. These satisfy

QmQ
†
n = 1dmδmn, Q†mQm = Pm , (92)

where Pm are projectors onto the subspace, such that
∑N
m=1 Pm = 1d. Let us now use the notation

|ψ〉(m) = Qm|ψ〉, A(m) = QmAQ
†
m , (93)

to denote the dm-dimensional reduced states and operators, respectively. Recall that, since any unitary U ∈ G
produced by such a system is block diagonal, we can write U =

∑
m PmUPm. Also, let us note that if A = A†

then (A(k))† = A(k).
We are ready to prove of Theorem 2, which we here recall for convenience.

Theorem 2 (Subspace controllable). Consider a system that is reducible (so that the Hilbert space is H =
⊕

j Hj
with each Hj invariant under G), and controllable on some Hk of dimension dk. Then, if the initial state is
such that ρ ∈ Hk, the variance of the cost function partial derivative is given by

Varθ[∂µC(θ)] = 2dk
(d2
k − 1)2 ∆(H(k)

µ )∆(O(k))∆(ρ(k)) . (94)

Here
∆(A) = DHS

(
A,Tr[A]1d

d

)
, with DHS (A,B) = Tr[(A−B)2] (95)

is the Hilbert-Schmidt distance, and A(k) the reduction of operator A onto the subspace of Hk as defined in Eq
(93).

Proof. Consider the partial derivative of the cost function C(θ) with respect to the parameter θpq (= θµ), i.e.
the one associated with layer p and generator Hq (= Hµ). We have

∂µC(θ) = iTr[UBρU†B [Hµ, OA]] (96)

∂pqC(θ) = ∂pq
(
Tr[U(θ)ρU(θ)†O]

)
= ∂pq

(
Tr[UBρU†BOA]

)
= iTr[UBρU†B [Hq, OA]]

(97)

where in the second line we have expanded U(θ) = UAUB , with

UB =
q∏

m=0
e−iHmθpm

(
p−1∏
l=1

K∏
k=0

e−iHkθlk

)
and UA =

L∏
l=p+1

K∏
k=0

e−iHkθpk

 K∏
k=q+1

e−iHkθpk

 , (98)

corresponding to the unitaries before and after the parameter θpq, and OA = U†AOUA. Then, the variance of
the partial derivative is

Varθ[∂pqC] = −
∫
UA
dUAI(UA) , with I(UA) =

∫
UB

dUB

(
F (UB , UA)

)2
, (99)
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where UA and UB denote the distribution of before and after unitaries, respectively, and F (UB , UA) =
Tr[UBρU†B [Hq, U

†
AOUA]]. Now, expanding the block-diagonal unitaries in this equation and assuming that

the initial state belongs to a particular invariant subspace, i.e., ρ(k) = PkρPk = ρ, we find

F (UB , UA) =
∑
mn

Tr[PmUBPmρPnU†BPnX] = Tr[U (k)
B ρ(k)U

†(k)
B X] (100)

where we defined X = [H(k)
q , (U (k)

A )†O(k)U
(k)
A ], and thus

I(UA) =
∫
UB

dUB

(
Tr[UBρU†B [Hq, U

†
AOUA]

)2
=
∫
U(k)
B

dU
(k)
B

(
Tr[U (k)

B ρ(k)U
†(k)
B X]

)2
. (101)

Note that here we have used the fact that, owing to Eq. (100), F (UB , UA) actually depends only on the action
of U (k)

B , i.e., on the action of UB projected onto the k-invariant subspace, and not on the action of the entire
unitary UB ,. Hence, the integration over UB can be replaced by an integration over U(k)

B .
At this point, we introduce the assumption of subspace controllability on Hk. By virtue of Theorem 1 and

Corollary 1, we know that the distribution of unitaries produced by a subspace controllable PSA constitute a
ε-approximate 2-design in the subspace. Therefore, we can use Eq. (39) to integrate and get

I(UA) =
∫
U(dk)

dU (k)
(

Tr[U (k)ρ(k)(U (k))†X]
)2

= Tr[XX] ∆(ρ(k))
d2
k − 1 , (102)

where ∆(A) is the Hilbert-Schmidt distance defined in Theorem 2. Here, we used that Tr[X] = 0. This is
grounded in the fact that, because the generator V shares the symmetry, the commutator X in the subspace is
still a commutator, i.e., X = [H(k)

q , Õ(k)] with Õ = U†AOUA. If the initial state was spread across two (or more)
subspaces, neither ρ(k) would be a density matrix, nor X would be a commutator and one would have to be
more careful in the derivation.
Finally, we proceed to integrate Eq. (102) over UA. Notice again that Õ(k) = PkÕPk = U

†(k)
A O(k)U

(k)
A so X

is actually only a function of U (k)
A (and not of the entire UA). Consequently we can integrate over the reduced

distribution U(k)
A , that, according to the subspace controllability assumption, forms a ε-approximate 2-design

over U(dk). This leads to

VarA,B [∂pqC] = −∆(ρ(k))
d2
k − 1

∫
U(dk)

dµ(U (k)) Tr[XX] (103)

= −2∆(ρ(k))
d2
k − 1

∫
U(dk)

dµ(U (k))
(

Tr[H(k)
q Õ(k)H(k)

q Õ(k)]− Tr[H(k)
q H(k)

q Õ(k)Õ(k)]
)

(104)

= −2∆(ρ(k))
d2
k − 1

( (Tr[H(k)
q ])2Tr[O(k)O(k)] + Tr[H(k)

q H
(k)
q ](Tr[O(k)])2

d2
k − 1

− Tr[H(k)
q H

(k)
q ]Tr[O(k)O(k)] + (Tr[H(k)

q ]Tr[O(k)])2

dk(d2
k − 1) − Tr[H(k)

q H
(k)
q ]Tr[O(k)O(k)]
dk

)
= 2dk∆(ρ(k))
dk(dk + 1)(d2

k − 1)

(
Tr[H(k)

q H(k)
q ]− 1

dk
Tr[H(k)

q ]2
)(

Tr[O(k)O(k)]− 1
dk

Tr[O(k)])2
)

(105)

= 2dk
(d2
k − 1)2 ∆(H(k)

q )∆(O(k))∆(ρ(k)) . (106)

Here, we used the notation Varθ −→ VarA,B to make explicit the assumption that both U(k)
A and U(k)

B form
2-designs in U(dk). Note that we first expanded Tr[XX] in Eq. (104), and then used identities (39) and (40) on
each integrand respectively to arrive at Eq. (105). Note that, even though Tr[Hq] = 0 (and, in most applications,
Tr[O] = 0), this is not necessarily true for their reduced analogs H(k)

q and O(k).

K Proof of Corollary 2: Exponentially growing subspaces have barren plateaus
Let us prove Corollary 2, which we here recall.
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Corollary 2. Consider a PSA of the form in (2) giving rise to a reducible DLA, and let ρ ∈ Hk, with
Hk some invariant subspace that is controllable (i.e. the DLA reduced to such subspace is full rank). If,
Tr[(Hµ)4],Tr[O4] ∈ O(2n), the cost function will exhibit a barren plateau for any subspace such that dk ∈ O(2n).

Proof. We consider the situation in which we have a reducible system and an initial state ρ that belongs to an
invariant subspace Hk which, by assumption, is controllable. Notice that, using Eqs. (J) and (93), we find

Tr[A(k)A(k)] = Tr[APkAPk] . (107)

Then, since the operator M = APkA is a positive semi-definite operator, and since Pk 6 1, one can write

Tr[A(k)A(k)] 6 Tr[A2Pk] . (108)

Using this expression, the following bound on the Hilbert-Schmidt distance holds

∆(A(k)) = Tr[A(k)A(k)]− 1
dk

(Tr[A(k)])2 (109)

6 Tr[A2Pk] (110)

6
√

Tr[A4]Tr[P2
k] (111)

6
√
dk
√

Tr[A4] . (112)

Using Eq. (112) and the equation for the variance in (106) we find

Varθ[∂µC(θ)] 6 4d2
k

(d2
k − 1)2

√
Tr[H4

µ]
√

Tr[O4] , (113)

where we have additionally used the fact that ∆(ρ(k)) 6 2 ∀ρ. Recalling that we are interested in the case when
dk ∈ O(2n) we find that, assuming Tr[V 4],Tr[O4] ∈ O(2n), then the function

T (n) = 4d2
k

(d2
k − 1)2

√
Tr[H4

µ]
√

Tr[O4] (114)

is such that
T (n) ∈ O(1/2n) . (115)

Hence, we finally find that Varθ[∂µC(θ)] 6 T (n), and the cost exhibits a barren plateau from the fact that the
variance of the cost function partial derivative is upper bounded by a function that vanishes exponentially with
n.

Let us finally denote that the proof of Corollary 2 follow from the fact that Tr[(Hµ)4],Tr[O4] ∈ O(2n). We
here note that the following relevant cases satisfy this assumption:

• Hµ, O are projectors of arbitrary rank.

• Hµ, O have a decomposition in the Pauli string basis of the form
∑
i ciσi (with ci real coefficients, and

σi ∈ {1, X, Y, Z}⊗n) with up to O(poly(n)) terms such that
∑
i c

4
i ∈ O(poly(n)).

L Proof of Theorem 3: Expressibility in the subspace
Here we prove Theorem 3, which we now recall.

Theorem 3. Consider a system that is reducible and let ρ ∈ Hk with Hk an invariant subspace of dimension
dk. Then, the variance of the cost function partial derivative is upper bounded by

Varθ[∂µC(θ)] 6 min{GA(ρ(k)), GB(O(k))} , (116)

with

GB(ρ(k)) =
(∥∥∥AU(k)

B

(
(ρ(k))⊗2

)∥∥∥
2
− ∆(ρ(k))

d2
k − 1

)
Tr
[〈
X2〉

U
(k)
A

]
(117)

GA(O(k)) =
(∥∥∥AU(k)

A

(
(O(k))⊗2

)∥∥∥
2
− ∆(O(k))

d2
k − 1

)
Tr
[〈
Y 2〉

U
(k)
B

]
. (118)
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Here we define X = [H(k)
µ , (U (k)

A )†OU (k)
A ] and Y = [H(k)

µ , U
(k)
B ρ(k)(U (k)

B )†]. For simplicity, we here employed the
short-hand notation 〈·〉

U
(k)
x

(with x = A,B) to indicate the expectation value over the distribution of unitaries
obtained from U

(k)
x in the k-th subsystem. Finally, ‖M‖2 =

√
Tr[M†M ] is the Frobenius norm, and ∆(·) was

defined in Theorem 2.
Proof. Let us first note that the variance of the cost function partial derivative can be expressed as

Varθ[∂µC(θ)] = −
∫
U(k)
A

dU
(k)
A

∫
U(k)
B

dU
(k)
B Tr[U⊗2

B (ρ(k))⊗2(U†B)⊗2X⊗2] (119)

=
∫
UA
dUA

∫
UB

dUBTr[(U†A)⊗2(O(k))⊗2UA
⊗2Y ⊗2] (120)

where we defined

X = [H(k)
µ , (U (k)

A )†O(k)U
(k)
A ] , and Y = [H(k)

µ , (U (k)
B )ρ(k)(U (k)

B )†] . (121)

Then, we recall that Ax(·) denotes the expressibility superoperator for the second moment in the k-th subspace

Aω(·) =
∫
U(dk)

dµ(U)U⊗2(·)(U†)⊗2 −
∫
U(k)
ω

dU (U)⊗t(·)(U†)⊗t , (122)

where ω = A,B indicates that one evaluates the expressibility of U (k)
A (θ) or U (k)

B (θ) in the k-th subspace.
First, let us derive Eq. (117). Replacing AB((ρ(k))⊗2) into (119) leads to

Varθ[∂µC(θ)] = −
∫
U(k)
A

dU
(k)
A

∫
U(dk)

dµ(U)Tr[U⊗2
H (ρ(k))⊗2U†⊗2

H X⊗2] +
∫
U(k)
A

dU
(k)
A Tr[AB((ρ(k))⊗2)X⊗2]

= VarB [∂µC(θ)] +
∫
U(k)
A

dU
(k)
A Tr[AB((ρ(k))⊗2)X⊗2] .

(123)

Which leads to
|Varθ[∂µC(θ)]−VarB [∂µC(θ)]| 6

∣∣∣∣ ∫
U(k)
A

dU
(k)
A Tr[AB((ρ(k))⊗2)X⊗2]

∣∣∣∣ . (124)

Using the triangle inequality and then the Cauchy-Schwarz inequality one finds

|Varθ[∂µC(θ)]−VarB [∂µC(θ)]| 6
∫
U(k)
A

dU
(k)
A |Tr[AB((ρ(k))⊗2)X⊗2]| (125)

6 ‖AB((ρ(k))⊗2)‖2
∫
U(k)
A

dU
(k)
A ||X

⊗2||2 (126)

6 ‖AB((ρ(k))⊗2)‖2
〈
||X⊗2||2

〉
U

(k)
A

. (127)

Then, using the fact that

||X⊗2||2 =
√

Tr[X⊗2X⊗2] =
√

Tr[X2 ⊗X2] = |Tr[X2]| = |Tr[[H(k)
µ , (U (k)

A )†O(k)U
(k)
A ]2]| , (128)

one finds

|Varθ[∂µC(θ)]−VarB [∂µC(θ)]| 6 ‖AB((ρ(k))⊗2)‖2Tr
[〈
X2〉

U
(k)
A

]
. (129)

Note that the term VarB [∂µC(θ)] was explicitly computed in Eq. (102), i.e., in Eq. (102) one evaluates the
variance when U (k)

B (θ) forms a 2-design. Hence, replacing VarB [∂µC(θ)] = −∆(ρ(k))
d2
k
−1 Tr

[〈
X2〉

U(k)
A

]
in (129) we

finally obtain

Varθ[∂µC(θ)] 6
(
‖AB((ρ(k))⊗2)‖2 −

∆(ρ(k))
d2
k − 1

)
Tr
[〈
X2〉

U
(k)
A

]
. (130)

Similarly, one can derive Eq. (118) by replacing AA((O(k))⊗2) into (119), which leads to

Varθ[∂µC(θ)] = −
∫
U

(k)
B

dU
(k)
B

∫
U(dk)

dµ(U)Tr[U⊗2
H (O(k))⊗2U†⊗2

H Y ⊗2] +
∫
U

(k)
B

dU
(k)
B Tr[AA((O(k))⊗2)Y ⊗2] .

(131)
Following a similar derivation to the one used in obtaining (125), one finds

Varθ[∂µC(θ)] 6
(
‖AA((O(k))⊗2)‖2 −

∆(O(k))
d2
k − 1

)
Tr
[〈
Y 2〉

U
(k)
B

]
. (132)
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M Proof of Proposition 3: Variance on the irreducible representations of SU(2)
In this section we derive a proof for Proposition 3 for the variance of the irreducible representations of SU(2).
Proposition 3 reads.

Proposition 3. Consider the cost function of Eq. (20). Let θµ = θj,x, and let us assume that the circuit is
deep enough to allow for the distribution of unitaries UA and UB to converge to 2-designs on G = SU(2). Then
variance of the cost function partial derivative ∂µC(θ) = ∂C(θ)/∂θµ is

Varθ[∂µC(θ)] = 2m2

3 . (133)

Proof. First, let us bring the reader into context. We consider a toy model ansatz U(θ) =
∏L
l=1 e

−iθlxSye−iθlySx

with generators G = {Sx, Sy}, where {iSx, iSy, iSz}, with Sν ∈ Cd×d (ν = x, y, z), form a basis of the spin
S = (d− 1)/2 irreducible representation of su(2). Here, it is convenient to use as basis of the Hilbert space the
set {|m〉}, m = −S,−S + 1, . . . , S − 1, S, of eigenvectors of Sz. That is, we have

Sz|m〉 = m|m〉 , S±|m〉 = λ±(m)|m± 1〉 (134)

with λ± =
√
S(S + 1)−m(m± 1), and where S+ and S− are the spin ladder operators such that Sx =

1
2 (S+ + S−) and S− = 1

2i (S+ − S−).
The dynamical group G is the d-dimensional representation of SU(2) and we will be interested in the partial

derivative w.r.t θµ = θj,x, i.e., the parameter associated with generator V = Sx on the j-th layer of the circuit.
We will assume that the circuit is deep enough to allow for the distribution of unitaries UA and UB to converge to
2-designs on G = SU(2). In consequence, when computing the variance of the different gradient components, we
will be allowed to replace the integration over the angles in the PSA with an integration over the Haar measure
on the group SU(2). Moreover, because irreducible representations of SU(2) and SO(3) are isomorphic, we can
choose to integrate over the latter∫

θ

dU(θ) −→
∫
SU(2)

dµ(U) −→
∫
SO(3)

dµ(U) . (135)

That is, we choose a parameterization of SO(3), e.g. in terms of Euler angles

U(α, β, γ) = e−iαSze−iβSye−iγSz , (136)

and compute the mean value of a function of the form FM (θ) = Tr[U(θ)ρU(θ)†M ], with M Hermitian, over
the cost landscape as

〈F 〉 =
∫
θ

dU(θ)Tr[U(θ)ρU(θ)†M ]

=
∫
SO(3)

dµ(U)Tr[UρU†M ]

= 1
8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ Tr[U(α, β, γ)ρU(α, β, γ)†M ] .

(137)

where 1
8π2 dα dβ sin β dγ is the normalized Haar measure for this parametrization of SO(3). Considering an

initial state that is an eigenstate of Jz, i.e., ρ = |m〉〈m|, its evolution can be conveniently expressed in terms of
Wigner’s small d-matrices

U(α.β, γ)ρU(α.β, γ)† =
∑
m′m′′

e−iα(m′−m′′)dm′m(β)dmm′′(−β)|m′〉〈m′′| (138)

and using that djrk(β) = djkr(−β) and the orthonormality relations

1
2π

∫ 2π

0
dθe−iθ(m−m

′) = δmm′ ,
2S + 1

2

∫ π

0
dβ sin β dSrk(β)dS

′

rk(β) = δS,S′ (139)

we arrive at

〈F 〉 = Tr[M ]
2S + 1 . (140)
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M.0.1 An unbiased gradient

Now, the computation of the mean value of ∂µC(θ) amounts to making the choice M = X, with X =
[Hµ, U

†
AOUA]. We readily find that

〈∂µC〉 =
∫
UA
dUAW (UA) = 0 (141)

since
W (UA) =

∫
UB

dUBTr[UBρU†BX(UA)] =
∫
SO(3)

dµ(U)Tr[UρU†X] = Tr[X(UA)]
2S + 1 = 0 , (142)

which follows from the fact that commutators are traceless.

M.0.2 The variance

Let us now compute the variance of ∂µC(θ). Having shown that 〈∂µC〉 = 0, the variance is

Var[∂µC] = 〈(∂µC)2〉 = −
∫
UA
dUAW (UA) , (143)

where
W (UA) =

∫
UB

dUBTr[U⊗2
B ρ⊗2(U⊗2

B )†X⊗2] = 1
8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ Y (α, β, γ) , (144)

and

Y (α, β, γ) = Tr[U⊗2(α, β, γ)ρ⊗2(U⊗2(α, β, γ))†X]

=
∑

m′m′′n′n′′

e−iα(m′−m′′)e−iα(n′−n′′)dm′m(β)dm′′m(β)〈m′′|X|m′〉dn′n(β)dn′′n(β)〈n′′|X|n′〉 (145)

Here and henceforth, dm,m′ ≡ dSm,m′ . Now, again, integration over γ is trivial, and integrating over α we get
δn′′,m′+n′−m′′ , so that

W (UA) =
∑

m′m′′n′

〈m′′|X|m′〉〈m′ + n′ −m′′|X|n′〉12

∫ π

0
dβ sin β dm′m(β) dm′′m(β) dn′n(β) dm′+n′−m′′,n(β) .

(146)
In the following we will consider that the cost function minimize the expectation value of an operator O that

is an element of the dynamical algebra, i.e., O ∈ g. It is easy to verify that any unitary U(α, β, γ) of the form
of Eq. (136), associated with some 3-dimensional Euler rotation matrix R(α, β, γ), transforms an arbitrary
element Sn̂ = (Sx, Sy, Sz) · n̂ (with n̂ a unit vector ∈ R3) of the algebra in the following manner

U(α, β, γ)Sn̂U†(α, β, γ) = Sn̂′ , with n̂′ = R(α, β, γ)n̂ (147)

Using the shorthand sin(x) −→ sx and cos(x) −→ cx, the rotation matrix reads

R(α, β, γ) =

 cαcβcγ − sαsγ −cγsα − cαcβsγ cαsβ
cαsγ + cβcγsα cαcγ − cβsαsγ sαsβ
−cγsβ sβsγ cβ

 . (148)

Hence, considering O = Sx + Sy + Sz and, calling X(ι) = [Jx, USνU†], we get

X(x) = isβcγSy + i(cαsγ + sαcβcγ)Sz
X(y) = −isβsγSy + i(cαcγ − sαcβsγ)Sz
X(z) = −icβSy + isαsβSz .

(149)

Thus, denoting X =
∑
ν={x,y,z}X

(ν) = (ax, ay, az) · (Sx, Sy, Sz)T we find

ax = 0
ay = −i(sβ(sγ − cα) + cβ)
az = i(sα(sβ + cβ(cγ − sγ)) + cα(sγ + cγ)) .

(150)
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For the moment, let us neglect the explicit dependence of ai on the Euler angles and let us compute the
matrix elements of X

〈m′′|X|m′〉 = a+〈m′′|S+|m′〉+ a−〈m′′|S−|m′〉+ az〈m′′|Sz|m′〉
= a+λ+(m′)δm′′,m′+1 + a−λ−(m′)δm′′,m′−1 + azm

′δm′′,m′
(151)

where a± = ax∓iay
2 , and where we here define S±|m〉 = λ±(m)|m± 1〉. Similarly,

〈m′ + n′ −m′′|X|n′〉 = a+λ+(n′)δm′+n′−m′′,n′+1 + a−λ−(n′)δm′+n′−m′′,n′−1 + azn
′δm′+n′−m′′,n′

= a+λ+(n′)δm′′,m′−1 + a−λ−(n′)δm′′,m′+1 + azn
′δm′′,m′ .

(152)

Now, out of the nine terms in the product 〈m′′|X|m′〉〈m′ + n′ −m′′|X|n′〉 appearing in Eq. (146), only three
terms are non-zero. That is, one only gets

T1 = a+a−λ+(m′)λ−(n′)δm′′,m′+1

T2 = a+a−λ−(m′)λ+(n′)δm′′,m′−1

T3 = a2
zm
′n′δm′′,m′ .

(153)

which give rise to three terms on Y , namely Y1, Y2 and Y3. Consider the first of these

Y1 =
∑
m′n′

a+a−λ+(m′)λ−(n′)1
2

∫ π

0
dβ sin β dm′m(β) dm′+1,m(β) dn′n(β) dn′−1,n(β) , (154)

where, we recall that the coefficients ai = ai(UA) depend on UA. Now, we can use the identity

dSrk(β)dS
′

r′k′(β) =
S+S′∑

J=|S−S′|

〈S′rSr′ |J, r + r′〉〈SkS′k′ |J, k + k′〉dJr+r′,k+k′(β) . (155)

where we henceforth employ the more general notation |m〉 → |S,m〉. In our context, S = S′, and we will
reference the Clebsh-Gordan coefficients as gr,k = 〈SrSk |J, r + k〉. We get

Y1 =
∑

m′n′JJ ′

a+a−λ+(m′)λ−(n′)1
2

∫ π

0
dβ sin β dJm′+n′,m+n(β)dJ

′

m′+n′,m+n(β)

× 〈Sm′Sn′ |J,m′ + n′〉 〈S,m′ + 1, S, n′ − 1 |J,m′ + n′〉 〈SmSn |J,m+ n〉 〈SmSn |J ′,m+ n〉,
(156)

and using the orthogonality relations yields

Y1 =
∑
m′n′J

a+a−λ+(m′)λ−(n′)
2J + 1 〈Sm′Sn′ |J,m′ + n′〉 〈S,m′ + 1, S, n′ − 1 |J,m′ + n′〉(〈SmSn |J,m+ n〉)2

=
∑
m′n′J

a+a−λ+(m′)λ−(n′)
2J + 1 gm′,n′gm′+1,n′−1g

2
m,n . (157)

Similarly

Y2 =
∑
m′n′J

a+a−λ−(m′)λ+(n′)
2J + 1 gm′,n′gm′−1,n′+1g

2
m,n ,

Y3 =
∑
m′n′J

a2
zm
′n′

2J + 1 g
2
m′,n′g

2
m,n .

(158)

These can be restated as Y1 = Y2 = c1 a+a− and Y3 = c3 a
2
z with

c1 =
∑
m′n′J

λ−(m′)λ+(n′)
2J + 1 gm′,n′gm′−1,n′+1g

2
m,n = 2

3m
2

c3 =
∑
m′n′J

a2
zm
′n′

2J + 1 g
2
m′,n′g

2
m,n = 1

3m
2

(159)
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Figure 1: Numerical results for the SU(2) toy model algebra. Variance of the cost function partial derivative of the cost
function in (164) as a function of d = dim(H). Dashed lines indicate the theoretical prediction of (162).

We can proceed to integrate over UA, assuming again we can replace UA with an integration over the Haar
measure on G. Let us call vi each contribution to the variance, i.e. Varθ[∂µC(θ)] =

∑3
i=1 vi. First, one finds

by explicit integration that let us consider

v3 = −c3
∫
UA

dUAa
2
z(UA)

= −c3
1

8π2

∫ 2π

0
dα̃

∫ π

0
dβ̃ sin β̃

∫ 2π

0
dγ̃a2

z(α̃, β̃, γ̃)

= c3 .

(160)

Similarly, it is easy to see that
v1 = v2 = c1

4 . (161)

Altogether, we finally find

Varθ[∂µC(θ)] = VarA,B [∂µC(θ)] =
3∑
i=1

vi = 2
3m

2 (162)

where we have introduced VarA,B to make explicit the assumption made, that is, that the before and after
distributions of unitaries form 2-designs.

M.0.3 Numerical simulations of the SU(2) toy model algebra.

Here we numerically simulate the model employing a PSA of the form

U(θ) =
∏

l=1,...,L
e−iθl1Sye−iθl2Sx , (163)

for minimizing the normalized cost function

C(θ) = 〈m|U†(θ) (Sx + Sy + Sz)U(θ)|m〉/S . (164)

We compute Varθ[∂µC(θ)] for the initial states |m〉 = |S〉 and |m〉 = |1/2〉 for L = 100 using 1200 random
initialization. As shown in Figure 1, the theoretical prediction of Eq. (162) matches the numerical results,
indicating that an initial state |m〉 = |1/2〉 is trainable, while an initial state |m〉 = |S〉 leads to a barren plateau
in the cost function.

N Symmetries in the XXZ and TFIM systems
N.1 The XXZ model
Consider the generators for an HVA ansatz to the XXZ model in Eq. (16) of section 5.2.1. The elements
in GXXZU , and thus in its associated DLA, share two common symmetries: they commute both with the
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magnetization operator M =
∑n
i=1 Zi and with the parity operator

Π =
[n/2]∏
m=1

Pm,n−m+1, where Pij = 1 + σiσj
2 and σi = (Xi, Yi, Zi). (165)

Here, Π is the unitary d-dimensional irreducible representation of the element of the symmetric group Sn that
corresponds to a reflection over the central constituent. As a result of these two symmetries, the state space is
broken into invariant subspaces with well defined parity and excitation number

H =
n⊕

m=0
σ=±

Hm,σ (166)

The dimension of each excitation subspace is dim(Hm) =
(
n
m

)
, whereas, the joint parity-excitation subspaces

have dimension dim(Hm,σ) ≈ 1
2 dim(Hm). The DLA is, accordingly, a direct sum of simple algebras on each

invariant subspace

gXXZU =
n⊕

m=0
σ=±

gm,σ ⊆ u(dm,σ) . (167)

Notably, upon the addition of a generator consisting of local fields on either end of the chain, GXXZ = GXXZU ∪
{Z1 + ZN}, the DLA can be shown to become full rank on each subspace gXXZ =

⊕n
m=0
σ=±

u(dm,σ) [87].

N.2 The TFIM and LTFIM models
In this section we review the symmetries of the different variants of the Transverse Field Ising Model (TFIM)
presented in Section 5.2.2.

N.2.1 Open boundary condition

Let us first consider open boundary conditions on the TFIM model. In this case, the generators GTFIM ={∑n−1
i=1 ZiZi+1,

∑n
i=1Xi

}
have two symmetries. On one hand, they commute with the parity symmetry Π

defined in Eq. (165). On the other hand, they commute with the so-called Z2 operator

ΠZ2 =
n∏
i=1

Xi (168)

that amounts to a global flip of the qubits. Consequently, H is broken into four subspaces Hσ,σ′ with σ, σ′ ∈
{1,−1}. Because the initial state |+〉⊗n for the cost function in Eq. (32) is an eigenstate of both symmetry
operators with eigenvalues σ = σ′ = +1, the dynamics under such a PQC is constrained to the H+1,+1 subspace.
We find, using Algorithm 1, that the dimension of the DLA scales polynomially, dim(g) = n2 (and so does the
restriction to the σ = σ′ = +1 subspace.

In turn, consider open boundary conditions on the Longitudinal Transverse Field Ising Model (LTFIM), given
by generators GLTFIM = GTFIM

⋃
{
∑n
i=1 Zi}. While parity symmetry is conserved, the introduction of this new

global longitudinal field breaks the Z2 symmetry. Thus, we are left with only two subspaces, H =
⊕

σ=±1Hσ,
of dimensions dim(Hσ) ≈ 2n

2 . As expected, the DLA breaks into two corresponding subspace DLAs, each of
which we find to be full rank on the corresponding subspaces, i.e., both subspaces are controllable.

N.2.2 Closed boundary conditions

Let us now consider closed boundary conditions. This case is slightly more involved since the parity symmetry
is replaced by Cn, the cyclic group of n elements. Hereafter, we follow Ref. [111]. Consider the operator R
whose action is to cycle the qubits in a state, i.e., R|a1, . . . , an〉 = |an, a1, . . . , an−1〉. Clearly, Rn = 1. Now, as
a consequence of the invariance of the generators under the action of this group of symmetries, the state space
is broken into n invariant subspaces H =

⊕n−1
k=0 Hk, where the projector onto each subspace is given by

Pk = 1
n

n−1∑
j=0

εkjRj . (169)

Accepted in Quantum 2022-08-31, click title to verify. Published under CC-BY 4.0. 40



In particular, the state |+〉⊗n ∈ H0 and for that reason we will only focus on this subspace. Let us note that a
general formula for the dimension of this subspace is, as far as we know, not known, but it is possible to derive
a closed expression in the case of n prime [111]

dim(H0) = 2 + (2n − 2)
n

, (170)

which makes evident that the subspace is exponentially large. Furthermore, we compute the DLA reduced to
this subspace in the LTFIM case and see an exponential behaviour. In contrast, for the TFIM model we find
a DLA that reduced to the k = 0 subspace and the σ′ = +1 (also has Z2 symmetry), and that has a linear
scaling, i.e., dim(g0,+) ∈ O(n).

O Initial state for the numerical simulations of the XXZ spin chain model
The initial states |ψm,+〉 in the cost function of Eq. (25) are chosen to be eigenstates of the symmetries of the
generators, namely M =

∑n
i=1 Zi and Π (the reflective spatial symmetry w.r.t. the chain’s center) defined in

Eq. (165). That is, the initial state is

|ψm,+〉 = 1√
2

(
m⊗
i=1
|0〉i

n⊗
i=m+1

|1〉i +
n−m⊗
i=1
|1〉i

n⊗
i=n−m+1

|0〉i

)
. (171)

Here m denotes the number of excitations in the state, and + the fact that it is an even parity eigenstate.
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