
Amulti-proxy approach to detect
the pore pressure and the origin
of overpressure in sedimentary
basins: An example from the Gulf
of Suez rift basin

Ahmed E. Radwan*

Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Kraków,
Poland

The pore pressure gradient and fracture gradient (PPFG) are critical parameters for

drillingmudweight design in the energy industry. Successful drilling operations can

be achieved successfully through the understanding of the pore pressure and

fracture pressure in the subsurface succession. The scope of this research is to use

an integrated approach that encompasses well-logging, basin modeling, drilling-

based interpretations, and reservoir measurement methods to gain a reasonable

PPFGmodel and decrease the drilling uncertainties in the El Morgan oil field in the

Gulf of Suez. Moreover, it investigates the overpressure generation mechanisms in

the basin, which have not been studied before in this area. In this work, PPFGs of

more than 16 km of cumulative thick sedimentary succession were modeled and

evaluated using an integrated approach. This study utilizes Eaton’s sonic and

resistivity-based methods for pore pressure evaluation, while vertical stress was

calculated based on the composite density profile. The study revealed that the top

geo-pressure was detected at a depth of 1,030m of Tortonian sediments. Late

Miocene sediments reveal hard over-pressure with a maximum gradient of

0.55 PSI/feet, while Middle Miocene sediments exhibit mildly over-pressured,

normal, and sub-normal pore pressure zones. The lowest pore pressure values

were measured in the Langhian-Serravalian Kareem reservoir with a gradient of

0.29 PSI/feet. With the exception of a slight difference in the reservoir section, the

pore pressure profiles in the northern and southern parts of the El Morgan oil field

are relatively similar. Reservoir connectivity is believed tobe themain reasonbehind

pore pressure magnitude differentiation in the Middle Miocene reservoirs. The key

mechanism for generating overpressure has been identified as disequilibrium

compaction, and reservoir overcharging may contribute as an excess-pressure

generation mechanism at the reservoir level. The presented approach can be

applied in PPFG studies for both development and exploratory geomechanical

studies in other areas of the Gulf of Suez basin or elsewhere in the world.
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Introduction

Abnormal pore pressure is one of the main challenges for

drilling engineers and exploration geologists, and it can be sub-

classified into overpressure and sub-normal pressure (Figure 1)

(e.g., Bourgoyne et al., 1986; Mouchet andMitchele, 1989; Neuzil,

1995; Yassir and Bell, 1996; Osborne and Swarbrick, 1997; Sayers

et al., 2002; Ramdhan and Goulty, 2010; Ramdhan and Goulty,

2011; Zhang, 2011; Radwan et al., 2019a; Radwan et al., 2020a;

Radwan, 2021b). Overpressure generation mechanisms

(Figure 2) have been studied in many sedimentary basins, and

they are linked with disequilibrium compaction (e.g., Martinsen,

1994; Hart et al., 1995; Klaus, 1999; Vejbæk, 2008; Kumar and

Rao, 2012; Marín-Moreno et al., 2013; Wang et al., 2016; Drews

et al., 2019; Zhang et al., 2019; Li et al., 2021), clay diagenesis (e.g.,

Jeans, 1994; Lahann et al., 2001; Katahara, 2006; Lahann and

Swarbrick, 2011), tectonic activities (e.g., Hao et al., 2004; Luo

et al., 2007), hydrocarbon generation (Spencer, 1987; Osborne

and Swarbrick, 1997; Hansom and Lee, 2005; Chi et al., 2010),

and thermal effects (e.g., Mello and Karner, 1996; He et al., 2002).

Historically and despite decades of research into the

subsurface sediment characteristics, it remains difficult to

predict critical reservoir parameters of strata buried in

sedimentary basins such as pore pressure (e.g., Gretener, 1979;

Audet and McConnell, 1992; Martinsen, 1994; Gordon and

Flemings, 1998; Dutta, 2002; Chopra and Huffman, 2006;

Gutierrez et al., 2006; Zhang, 2011; Radwan et al., 2019b;

Baouche et al., 2020a; Radwan et al., 2020a; Baouche et al.,

2020b; Ganguli and Sen, 2020; Radwan and Sen, 2021a;

Radwan, 2021b; Radwan and Sen, 2021b) and fracture

pressure (e.g., Anderson et al., 1973; Traugott, 1997; Draou

and Osisanya, 2000; Radwan et al., 2019b; Sen and Ganguli,

2019; Tariq et al., 2019; Radwan et al., 2020a; Radwan, 2021b).

The importance of pore pressure and fracture pressure is related

to their influence on drilling operations (e.g., Gray-Stephens

et al., 1994; Swarbrick, 2012; Sen et al., 2020; Abdelghany et al.,

2021; Radwan, 2021b), exploration (e.g., O’connor et al., 2011a;

John et al., 2014), and reservoir stability and production (e.g.,

Hillis, 2000; Agbasi et al., 2021; Radwan and Sen, 2021a; Radwan

and Sen, 2021b; Kassem et al., 2021).

In the oil and gas industry, pore pressure is measured in

reservoirs using specific tools (i.e., bottom-hole pressure gauge,

well testing), and it can be predicted or estimated using indirect

methods (Radwan et al., 2019b). Pore pressure can be measured

in permeable zones (e.g., Swarbrick, 2002; Dasgupta et al., 2016;

Sen et al., 2017; Adouani et al., 2019; Radwan et al., 2019b;

Dasgupta et al., 2019; Radwan et al., 2020a; Radwan, 2021b). On

the other hand, seismic velocities (e.g., Sayers et al., 2002; Chopra

and Huffman, 2006; Bachrach et al., 2007; Khan et al., 2017;

Hussain and Ahmed, 2018), well logs (e.g., Zhang, 2011;
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FIGURE 1
Cartoon illustration showing the definitions of overpressure (deviation from hydrostatic) and Terzaghi (simple) vertical effective stress
(σV=SV−Pf).

FIGURE 2
Typical curve-types from velocity-density cross plots with associated overpressure generating mechanisms (Hoesni, 2004).
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Wessling et al., 2013; Radwan et al., 2019b) and basin modeling

(e.g., Nordgård Bolås et al., 2004; Radwan et al., 2020a; Li et al.,

2022) are used to predict and estimate pore pressure in frontier

sedimentary basins. Drilling parameters and well logs can be used

for pressure estimation while drilling (e.g., Mouchet and

Mitchele, 1989; Zhang, 2011; Peters et al., 2017; Bourgoyne

et al., 1991; Alam et al., 2019). Standard methods, including

effective-depth methods and empirical methods (e.g., Eatons’

method, Bowers’ method), have been used for pore pressure

prediction in the industry. However, these methods have been

used with fair success in areas like the Gulf of Mexico, where

sedimentation rates are fairly rapid. Applying these methods in

other areas, e.g., the North Sea and the Gulf of Suez, has been

more problematic due to the differences in the used parameters

and geological conditions (Law and Spencer, 1998; Helset et al.,

2009; Shaker, 2015; Snee, 2015; Radwan et al., 2019b; Radwan,

2021b). However, many researchers rely solely on one method

for interpreting pore pressures, which may not be efficient in

some areas. Recently, researchers have applied machine

learning to predict pore pressure in sedimentary basins (e.g.,

Ahmed et al., 2019; Jafarizadeh et al., 2022; Radwan et al., 2022),

as well as 3D modeling being used in pore pressure modeling

(e.g., Lopez et al., 2004; Altmann et al., 2014; Radwan, 2022a;

Chen et al., 2022).

Reviewing the previous literature on pore pressure prediction

and detection methods suggests that geophysical logging has

been used for pore pressure prediction in many basins globally

(e.g., Eaton, 1975; Traugott, 1997; Bowers, 2001). Reservoir

measurements have been used for PPFG model calibration

and as direct measurement methods (e.g., Drews et al., 2018;

Radwan, 2018; Sen et al., 2019, Sen et al., 2020; Radwan, 2021b).

Also, drilling events can be utilized to calibrate the pore pressure

model (e.g., Zhang, 2011; Brahma et al., 2013; Das and

Chatterjee, 2018a; Das and Chatterjee, 2018b; Radwan et al.,

2019b; Mahetaji et al., 2019; Radwan et al., 2020a). In addition,

basin modeling has been considered as the primary tool for

pressure prediction in frontier areas. Basin modeling results can

give a clear image of sedimentation rate, tectonics, erosion, etc.,

which consequently affect the geopressure mechanism (e.g.,

Thomsen, 1998; Darby et al., 1998; Bjørlykke et al., 2010;

Karlsen and Skeie, 2006; Couzens-Schultz and Azbel, 2014;

Snee, 2015; Satti, et al., 2015; Burgreen-Chan et al., 2015;

Peters et al., 2017; Mosca et al., 2018; Nagy et al., 2019;

Radwan et al., 2020a). However, there is no preferred method

that could guarantee and be commonly accepted as better than

another method. Therefore, the capability of integrating most of

the previously mentionedmethods can provide a higher degree of

confidence for the predicted pore pressure fracture gradient

(PPFG) model.

The Gulf of Suez basin is classified as one of the challenging

basins in terms of drilling due to complex tectonic and structural

settings (Radwan, 2018; Abass et al., 2019; Radwan et al., 2019b;

Radwan et al., 2020a; Radwan, 2021b). However, to date,

overpressure generation mechanisms have not been studied

before in the Gulf of Suez basin, despite their importance and

implications for drilling activity. In this work, the proposed

approach relies on the integration of more than one method

to obtain the most appropriate PPFG model for the studied basin

area of El Morgan field. Basin modeling, reservoir, and drilling

data were used as additional inputs with geophysical logging for

pore pressure prediction and calibration in the studied oil field.

The integration of the previously mentioned tools can drive

exemplary modeling of the geopressure. Also, overpressure

generation mechanisms in the Gulf of Suez basin were

investigated in this work, which have not been studied before

and may have implications for the overpressure prediction

process, and consequently achieving successful drilling in the

studied area. The prime objectives of this work are to: 1) detect

the overpressure generation mechanism in the El Morgan area

that has not been investigated before in the rift basin, 2) present

an improved integrated workflow approach that can act as a

valuable reference case in sedimentary basins using combined

methods, 3) extend our knowledge of the pore pressure

distribution in the penetrated formations of the studied area,

and 4) highlight the pore pressure regimes and geopressure zones

within the entire (Middle Miocene to recent) sequence.

Geologic setting and lithostratigraphy

The Gulf of Suez rift basin (Figure 3) is an iconic offshore

basin that formed in the Oligocene-Miocene period, and lies in

the northwest branch of the Red Sea. As evidenced by geophysical

and borehole data, the basin is filled with more than a 5-km-thick

sedimentary sequence ranging from the Precambrian to the

Quaternary (Metwalli et al., 1981; Metwalli et al., 1982; El-

Hattab, 1982; Montenat et al., 1988; EGPC, 1996; Radwan,

2022b), which is punctuated by several unconformities of

different magnitudes and ages (Figure 3). The studied area of

El Morgan oil field is situated in the south central offshore area of

the rift basin, where numerous hydrocarbon plays are present

(Figure 3) (Alsharhan and Salah, 1995; EGPC, 1996; Bosworth

and McClay, 2001; Barakat et al., 2002; Youssef et al., 2002;

Alsharhan, 2003; Radwan, 2014; Attia et al., 2015; Abudeif et al.,

2016a; El Ayouty, 2017; Abudeif et al., 2018; Radwan, 2018;

Radwan et al., 2019a; Radwan et al., 2019b; Radwan et al., 2019c;

Radwan et al., 2020a; Radwan et al., 2020b; Radwan et al., 2020c;

Radwan et al., 2021a; Radwan et al., 2021b; Radwan et al., 2021c;

Radwan et al., 2021d; Radwan et al., 2021e; Ali et al., 2022). El

Morgan field is located on the southwest coast of the Sinai

Peninsula, covering an area of roughly 46 km2 (Bentley and

Biller, 1990; Radwan, 2014; Attia et al., 2015). El Morgan field

is classified as the biggest giant oil field in Egypt with more than

1.5 BBO reserves. The stratigraphic sequence of El Morgan oil

field is classified into three main depositional mega sequences,

namely pre-rift, syn-rift, and post-rift (Brown, 1980; Attia et al.,
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2015; Abudeif et al., 2016a; Abudeif et al., 2016b; Radwan et al.,

2019b; Radwan et al., 2019c; Radwan, 2021a; Radwan et al.,

2021a; Radwan, 2021b; Radwan et al., 2021b; Radwan, 2021c;

Radwan et al., 2021c; Radwan et al., 2021d; Radwan et al., 2021e).

The deposition of sediments in the study area took place in

different depositional environments (EGPC, 1996). Two main

sandstone reservoirs were deposited during the syn-rift time.

The Kareem Formation and Belayim Formation (Hammam

Faraun Member) (Figure 4) are typical of a fan delta

depositional environment (El-Ashry, 1972; EGPC, 1996;

Hughes et al., 1997). Miocene sandstone rocks are the main

reservoir rocks, and they trap hydrocarbons that originate

from the organic-rich carbonate (Campanian-Maastrichtian

and Eocene), shales (Paleocene), and marls (Miocene)

(Brown, 1980; Rohrback, 1982; Barakat et al., 1997;

AlSharahan, 2003; El Nady, 2006; El Diasty and Peters,

2014). The thick evaporites of the Miocene section are the

sealing rocks in the area (AlSharahan, 2003; Radwan, 2014;

Radwan et al., 2021c).

The tectonic evolution of this area is linked to the tilted fault

block system in the rift basin (Robson, 1971; Patton et al., 1994;

Schutz, 1994; Bosworth et al., 1998; Radwan et al., 2020b;

Moustafa and Khalil, 2020). The field structure is a NW-SE

trending, anticlinal, horst block, with dips of <6–8° (Figure 5)

(Gawad et al., 1986; Khalil and Meshrif, 1988; Rashed, 1990;

EGPC, 1996; Alsharhan, 2003; Jackson et al., 2006; Ali et al., 2016;

Radwan, 2018; Radwan et al., 2019b; Radwan et al., 2021c). The

El Morgan oil field is divided into the north and south portions

by the El Morgan hinge zone (Figure 5). The studied A well is

located in the northern part of the field, while the H well is

located in the southern part of the field, as shown in Figure 5.

Materials and methods

The data of eight offshore wells that represent the northern

and southern parts of the El Morgan field were used in the

execution of this work. The studied wells are named (A, B, C, D,

FIGURE 3
Location map of the Gulf of Suez and the El Morgan oil field (adopted from Mahmoud et al., 2005; Bosworth and Taviani 1996; Bosworth and
Durocher 2017).
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E, F, G, and H). Wells A and B were used for modeling, while

other wells’ data were used as offset wells (Figure 5). All available

data, including a high-resolution geophysical log suite consisting

of gamma, resistivity, formation bulk density, and sonic logs,

were the key inputs for this study.

Vertical stress and pore pressure

The weight of the overburden rock is called vertical stress

(σV) or overburden (Plumb et al., 1991; Shaker, 2007; Paul et al.,

2009; Zhang 2011). The composite density profile (Eq. 1) was

utilized for overburden stress calculations in the region using

available data (Radwan et al., 2020a; Radwan, 2021b). Finite data

in the topmost part of the surface section in the studied wells was

considered a severe challenge in this study. The Amoco density

method was utilized to count the pseudodensity in the surface

section (Eq. 2) (Paul et al., 2009; Radwan et al., 2019b). The

estimated density from the Amoco equation was appended to the

wireline density logs, and hence the composite density profile was

developed for the studied wells (Plumb et al., 1991; Matthews,

2004; Radwan et al., 2019b).

The vertical stress gradient (OBG) calculation applying the

Amoco method can be expressed by Eq. 1:

FIGURE 4
Stratigraphy and lithology of the El Morgan oil field (Radwan, 2018).
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Sv � ∫Z

0
RHOB(Z) * g dZ (1)

σVAmoco � σmudline + ((TVD − AG −WD)/3125)α (2)

The hydrostatic pressure in the area of the Gulf of Suez is

equivalent to 8.7 (pounds per gallon) (Selim et al., 2003; Selim

and Badawy, 2010; Radwan, 2018; Radwan et al., 2019b; Radwan

et al., 2020a; Radwan, 2021b). The identification of shale zones in

this study is based on well logs and lithology descriptions. The

normal compaction trend (NCT) was considered as the

hydrostatic pressure which is equivalent to 8.7 (pounds per

gallon) (Radwan, 2018; Radwan et al., 2019b; Radwan et al.,

2020a). Eaton’s sonic and resistivity methods were used to

estimate the pore pressure from the eight wells (Eqs 3, 4)

(Eaton, 1975).

PP � OBG – (OBG − PPN)( Ro
Rnx

)x

(3)

PP � OBG − (OBG − PPN) (ΔTo
ΔTn

)
x

(4)

Fracture pressure

The fracture pressure was determined using the Eaton

fracture method (Eaton, 1975). The fracture pressure was

calibrated with the formation integrity test (FIT) data from

the studied wells to check the fracture pressure profile. The

previously used Poisson’s ratio in the Gulf of Suez was used in

this study (Selim et al., 2003; Selim and Badawy, 2010; Radwan

et al., 2019b; Radwan et al., 2020a; Radwan et al., 2020b). The

fracture pressure equation is expressed as the following:

F � Sv –D/P(ѵ/1 − ѵ) + (P /D) (5)

Burial history modeling and drilling events

1D basin modeling has been created for the sedimentary

section of the studied field using Schlumberger’s PetroMod©

(V. 2018). The bottom hole temperature was estimated from

1D basin modeling and validated by the actual measured

temperature in the wells using the Horner method

(Kutasov and Eppelbaum, 2005). The stratigraphic section

used in building the basin model is based on the

biostratigraphic and lithostratigraphic approaches in the

area of El Morgan Field, which has thick Miocene

sediments (Radwan, 2021b). Furthermore, internal

biostratigraphic and geological lithostratigraphic reports

from the literature were used to build the representative

history model (Radwan A. E., 2021-Radwan, 2021c;

Radwan et al., 2021a-Radwan et al., 202e). The measured

FIGURE 5
Generalized SW-NE cross-section showing the stratigraphy and structural relationship of the El Morgan field (Radwan, 2022b).
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bottom hole temperature data was used to validate the thermal

history model for the two wells, and the measured data of

vitrinite organic matter reflectance (% VRo) was utilized to

calibrate the model. The temperature history of the sediments

along with the wells and burial history modeling were created

by basin modeling software that was provided by Gulf of Suez

petroleum company (GUPCO). Sedimentation history,

deposition timing, and formation age were the key inputs

into basin modeling for the geopressured zones. In addition,

drilling events and reservoir pressure were employed to

validate the PPFG model output results. Schlumberger

charts were used for environmental corrections for the

logging data set (Charts, 1991). Overpressure generation

mechanisms in El Morgan oil field were inferred from the

relation between sonic velocity and density (Hoesni, 2004).

The proposed multidisciplinary
geopressure evaluation workflow

The proposed multidisciplinary PPFG analysis workflow is

dependent mainly on the integration of indirect methods

(geophysical methods), measured reservoir data, and drilling

event-based interpretations. In addition, basin modeling is

integrated with the previous methods, where it represents an

effective tool for sedimentation rate determination and

overpressure prediction. This workflow goes through five

procedures: a) data collection, b) summarizing the data and

quality control, 3) calculation process, 4) model result

calibration, and 5) final model results. Geophysical data, basin

modeling, drilling data, and reservoir measurements are the

primary inputs in this approach (Figure 6).

FIGURE 6
Pore pressure evaluation workflow.
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FIGURE 7
The burial history model for well A presents the thermal burial history evolution with time and rate of deposition.

FIGURE 8
1D basin modeling represents the conversion of burial history into equivalent mud weight versus the depth in feet per each formation.
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Results and discussion

In this study, the studied well logs cover more than 16 km

(cumulative well logs) and represent eight wells in the El

Morgan oil field, with each well having a thickness of about

2 km. The results of basin modeling, pore pressure, fracture

pressure, and overpressure generation mechanisms are

discussed as follows:

Basin modeling

Basin modeling, according to Duppenbecker et al. (2004) and

Radwan et al. (2020a), can be used to predict and understand

pressure evolution or porosity anomaly expectations. Integration

of geological, geophysical, and geochemical data allows for

establishing a sequential record of basin history changes

through the sedimentation process (Poelchau et al., 1997;

Thomsen, 1998). As a result, basin modeling can be used as

the main key indicator as a quantitative tool for pore pressure

prediction, in addition to routine petroleum system evaluation.

Moreover, understanding the sedimentation history in the basin

can lead to enhancing the abnormal pressure prediction.

The penetrated subsurface section of the El Morgan oil field

contains sediments from the Langhian to the Quaternary periods

(Figure 4). The developed burial history for the studied field has

been converted to equivalent pressure mud density using the

PetroMod© (V. 2018). In this study, a thermal history for well A

was constructed (Figure 7). In the Gulf of Suez, the temperature

history is controlled by the heat flow and subsidence generated by

the clysmic tectonic events during rifting stages (Prosser, 1993).

The temperature was estimated using 1D basin modeling and

confirmed using the actual bottom hole temperature (Figure 7)

calculated using the generalized Horner method (Kutasov and

Eppelbaum, 2005). Consequently, the constructed one-

dimensional burial history for the studied area indicated high

sedimentation rates which generated overpressure in the late

Miocene formations (South Ghraib and Zeit). Following the

relation between depth in feet versus the equivalent pressure

density within the sediment for each formation, equivalent

pressure build-up was detected against the base of Zeit and

South Ghraib formations up to 10.5 ppg (Figure 8).

FIGURE 9
PPFG model output of in the El Morgan oil field.
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More than 700 m (2,296 feet) of sediments were buried in the

El Morgan oil field in less than 3 million years during the

Tortonian and Messinian periods, indicating a high tendency

for compaction disequilibrium to occur in the late Miocene

sediments. Figure 8 shows the relation between depth in feet

with the equivalent pressure density within the sediment for each

formation; the base of the Zeit formation and the South Ghraib

formation showed equivalent pressure build-up of more than

10.5 ppg (Figure 8). Pore pressure predictions show that the

overpressure is showing a significant deviation in the interval

between 975 m (3,200 feet) and 1,525 m (5,000 feet). This fast

sedimentation process gives a build-up of overpressure that

reflects disequilibrium compaction of the shale due to the

high sedimentation rate and fast sediment burial. To properly

interpret and predict pore pressure at the studied oil field,

velocity and density must be investigated for overpressure

generation mechanisms detection. The results of basin

modeling analysis in El Morgan oil field are relatively similar

to the results of the neighboring Badri oil field, where they have

relatively the same geological conditions.

Vertical stress, pore pressure, and fracture
pressure analysis

In the investigated eight wells, overburden or vertical stress

was found to have an average of 18 ppg equivalent mud weight

(EMW) (Figure 9). The overburden gradient increases from

TABLE 1 Studied wells drilling summary model, where the drilling problems listed per each formation are accompanied by the rig operation during
drilling events and actions.

Formation name Well name Drilling problems Operation

ZEIT A, C, G, and H Partial losses Drilling

A and E Hole fill tripping

A, F, C, and B Tight spot Tripping

A and H Caved shale Drilling

South Gharib A, D, E, and G Salt creeping Tripping

A and F well flow Drilling

Belayim A, C, G, and H Partial losses Drilling

Kareem A, C, G, and H Tight spot partial losses Tripping

TABLE 2 PPFG model values in the field, where (OVB) is the overburden pressure, (FRAC) is the fracture pressure, and (PP) is the pore pressure in ppg
units. Maximum pore pressure of the Hammam Faraun and Kareem reservoirs represents the shale pore pressure.

WELL Formation OVB FRAC PP Pressure regime

Min ppg Max ppg Min ppg Max ppg Min ppg Max ppg

A ZEIT 17.17 18.54 12.85 14.34 8.65 10.30 *Normal pore pressure

*Over pressurized

S.GHARIB 18.49 18.57 14.21 14.46 10.50 10.50 *Over pressurized

H.FARAUN 18.54 18.57 12.17 12.27 6.5 9.4 *Sub-normal pore pressure

*Over pressurized

Reservoir pressure based on repeated formation test,
maximum is the virgin reservoir pressure

FEIRAN 18.62 18.73 13.57 13.62 8.7 8.7 *Normal pore pressure

SIDRI 18.75 18.76 13.63 13.64 8.7 8.7 *Normal pore pressure

BABA 18.78 18.85 13.65 13.68 8.7 8.7 *Normal pore pressure

KAREEM 18.88 18.98 12.83 13.27 6 9.4 *Sub-normal

*Over pressurized

Reservoir pressure based on repeated formation test

Maximum is the virgin reservoir pressure

Frontiers in Earth Science frontiersin.org11

Radwan 10.3389/feart.2022.967201

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.967201


0.91 PSI/feet at the top of the Zeit Formation to 0.98 PSI/feet at

the base of the Kareem Formation. The compressional slowness

was able to detect the overpressure zone through the lateMiocene

sediments in the absence of resistivity log. Measured reservoir

pressure data was used in the interpretation and calibration of the

PPFG model. On the other hand, all encountered drilling

problems were documented in Table 1, which was used as an

indicator for excess pressure.

The pore pressure started as normal pressure with 0.45 PSI/

feet at sea bed sediments to the Zeit Formation, then the pore

pressure gradient increased by 0.09 PSI/feet and reached

0.54 PSI/feet at a depth of 1,030 m. Pore pressure

development continued in the Turonian sediments and

reaches up to 0.54 PSI/feet. Most of the Serravalian Belayim

Formation prevailed normal pore pressure with a gradient of

0.45 PSI/feet except the top part that has the reservoir interval

(Hammam Faraun Member). The Hammam Faraun Member

sandstone shows subnormal conditions based on reservoir

measurements with a gradient of 0.34 PSI/feet. Reservoir

measurements show a subnormal condition in the Kareem

Formation with a gradient of 0.29 PSI/feet. Mild-overpressure

was developed in the Serravalian shales and reaches up to 9.4 ppg

with a gradient of 0.50 and 0.49 PSI/feet in the Hammam Faraun

and Kareem Formations, in an arrangement. The current pore

pressure, overburden stress, and fracture pressure dataset of El

Morgan oil field was documented in Tables 2, 3. Table 2 shows

the results in ppg equivalent mud weight, while Table 3 shows the

results in PSI/feet. The pore pressure and fracture pressure were

modeled in this work to reflect the shale and sandstone pressures,

but it does not reflect the pore pressure in other lithologies.

The studied eight wells are classified as development wells,

which were drilled through the explored middle Miocene

reservoirs in the El Morgan block. Several drilling

complexities in terms of salt creeping, tight spots, losses,

formation fluid influxes, and wellbore failures are observed in

the studied wells. The interpreted PP indicated that the top part

of the sediments from the sea bed till late Miocene age sediments

display hydrostatic pore pressure equal to 8.7 ppg (EMW). At the

base of the Zeit formation and starting from a depth of 1,030 m

(3,379 feet) to the base of the South Gharib formation

(Tortonian), sonic log response deviates from the NCT, this

zone indicating hard overpressure. In addition, two influx events

TABLE 3 Calculated magnitudes (PSI) and gradients (PSI/feet) of overburden (OB), fracture pressure (FP), and pore pressure (PP).

Depth Formation PP FP OB Comments

Magnitude Gradient Magnitude Gradient Magnitude Gradient

Feet PSI PSI/feet PSI PSI/feet PSI PSI/feet

2110 Zeit 954 0.45 1,420 0.67 1901 0.90 FIT at base 0.68 PSI/feet

2510 1,134 0.45 1704 0.68 2292 0.91

3010 1,360 0.45 2090 0.69 2843 0.94

3585 1955 0.54 2692 0.74 3452 0.96

3610 South Gharib 1967 0.55 2710 0.75 3475 0.96 FIT at base 0.73 PSI/feet

4010 2187 0.55 3014 0.75 3867 0.96

4510 2460 0.55 3391 0.75 4351 0.96

5215 2844 0.55 3914 0.75 5016 0.96

5310 Hammam Faraun 1800 0.34 3382 0.64 5116 0.96 Depleted reservoir, Virgin PP 0.50 PSI/
feet5410 1810 0.34 3431 0.64 5214 0.96

5490 1825 0.34 3471 0.64 5296 0.96

5610 Feiran 2534 0.45 3967 0.71 5443 0.97 Mainly anhydrite

5670 2562 0.45 4018 0.71 5519 0.97

5700 Sidri 2574 0.45 4040 0.71 5551 0.97 Mainly shale

5730 2588 0.45 4063 0.71 5583 0.97

5770 Baba 2607 0.45 4097 0.71 5633 0.98 Mainly anhydrite

5840 2633 0.45 4146 0.71 5704 0.98

5910 Kareem 1700 0.29 4082 0.69 5795 0.98 Depleted reservoir, Virgin PP 0.49 PSI/
feet6010 1715 0.29 4133 0.69 5899 0.98

6510 1720 0.29 4381 0.69 6403 0.98

6810 1726 0.29 4527 0.69 6699 0.98
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were reported from these layers and the kill mud weight was

considered in the PP interpretation (Table 1). The interpreted PP

in the base of the Zeit Formation is equal to 10.3 ppg (EMW),

while it is equal to 10.5 ppg (EMW) in the South Gharib

Formation. Because this zone is a sandstone reservoir zone,

PP gives misleading values when using Eaton’s equation at the

top of the Belayim Formation (i.e., the Hammam Faraun

Member). Therefore, PP interpretation of this reservoir zone

was solely based on measured (MDT) data. Prolonged

production and depletion have reduced the PP to sub-

hydrostatic levels, with pore pressures of 6.5 ppg (EMW) and

a gradient of 0.34 PSI/feet. On the other hand, the shale intervals

indicated mild overpressure equivalent to 9.4 ppg (EMW), hence

it still keeps the virgin pressure of the reservoir (2537 PSI) at a

depth of 1,554 m (5100 feet) with a gradient of 0.50 PSI/feet. The

three members of the Belayim Formation (Feiran, Sidri, and

Baba) display normal hydrostatic conditions with a gradient of

0.45 PSI/feet. The middle Miocene (Kareem Formation) shows

subnormal conditions, and the sandstone reservoir pore pressure

is 6 ppg (EMW) with a gradient of 0.29 PSI/feet, while it

comprises mild overpressure in the shale intervals equivalent

to 9.4 ppg (EMW). Therefore, it still keeps the virgin pressure of

the reservoir (2990 PSI) at a depth of 1859 m (6100 feet) with a

gradient of 0.49 PSI/feet.

Fracture pressure was estimated from Eq. 3, and it shows

matching with the FIT data (Figure 9). Fracture pressure gradient

decreases against the depleted middle Miocene reservoirs and

possesses a risk of fracturing if a higher mud pressure is used

while drilling. Digital numbers of the estimated overburden, pore

pressure, and fracture pressure were documented in Tables 2, 3.

Figure 9 represents the PPFG model output of the studied wells.

Sandstone PP only is drawn in the reservoirs section. When the

pore pressure profiles of the northern (A, B, C, and D) and

southern (E, F, G, and H) El Morgan oil field wells are compared,

the pore pressure is the same for all formations except the middle

Miocene reservoir sections. It should be noted that pore pressure

magnitude differentiation in the Middle Miocene reservoirs is

related to reservoir connectivity, where the studied wells are

located in different compartmentalizations within the field

(Figure 5).

Overpressure generation mechanisms

The mudstone compaction trends are slowed or even

stopped by disequilibrium compaction, but they do not

deviate from them. On the other hand, fluid expansion or

overpressure transfer can lead to unloading, which will result

in a sonic transit time reversal and little response in density

(Figure 2). Disequilibrium compaction during rapid

sedimentation of sediments is one of the main mechanisms

that contributed to the development of non-hydrostatic

conditions in low-permeability layers in the Gulf of Mexico,

Australia, South Caspian Basin, Asia, and the North Sea (e.g.,

Swarbrick and Osborne, 1998; Lee et al., 1999; Carcione and

Gangi, 2000; Gutierrez and Wangen, 2005; Berhmann et al.,

2006; O’Connor et al., 2011a; O’Connor et al., 2011b). This

mechanism is applicable when fluids cannot be expelled out of

the fine-grained sediments due to vertical compaction, and

consequently, the entrapment fluids will share in the

sediment load. The magnitude of abnormal pressure, in this

case, is related to permeability, or how the entrapment fluids

will move within the rock pores considering the balance

between the continuous creation of PP by sediment loading.

It is expected that the degree of abnormal overpressure tends to

develop at greater depths based on the expected significant

decrease in permeability at deeper depths (Neuzil and Pollock,

1983; Marín-Moreno et al., 2013; Luo and Vasseur, 1996).

Other excess-pressure mechanisms are attributed to fluid

phase changes and diagenesis of clay minerals (Swarbrick and

Osborne, 1998). The diagenetic process of clay illitization occurs

at temperatures ranging from 80°C to 150°C (Nadeau, 1985), but

the maximum temperature at the Kareem reservoir is 78°C,

excluding this process as a candidate for the overpressure

generation mechanism in the studied field. Lateral

compression is usually common in compressional basins

(McPherson and Garven, 1999; Xie et al., 2001), which is not

the case here, where the investigated basin is an extensional rift

basin, so this process has been also excluded in this case. The

reservoir overcharging mechanism (Grauls and Baleix, 1993) was

considered in this case as a potential contributor to the

overpressure generation. In the El Morgan field, fluid

movement from source rocks to the field reservoirs was

proven as up-dip migration from the Campanian-

FIGURE 10
Cross plot of velocity and density for the studied wells.
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Maastrichtian source rocks to the Miocene reservoirs through

faults (EGPC, 1996; Radwan et al., 2021c; Radwan, 2022b), which

could increase the pore pressure and develop excess pressure in

the reservoirs. In such a case, fluid volume and charging rate are

the main controlling factors of the overpressure value. In

addition, drainage efficiency, pore and fluid compressibility,

and reservoir extension all contribute to the generated

overpressure value or magnitude. The overpressure

magnitude was increased by 0.7 ppg (0.05 and 0.04 PSI/

feet) at the reservoir levels, which could be called low-

overpressure (Xie et al., 2001). To gain a better

understanding of the overpressure generation mechanism

in the El Morgan oil field, the density vs. sonic velocity was

plotted as per previous studies (Figure 10) (Swarbrick and

Osborne 1998; Hoesni, 2004; O’Conner et al., 2011a;

O’Conner et al., 2011b; Lahann and Swarbrick 2011). From

the cross-plot, disequilibrium compaction was interpreted as

the main mechanism that generates overpressure across the

Miocene sediments in the El Morgan oil field (Figure 10). The

plotted points remain on the loading curve, suggesting that

overpressure in the El Morgan oil field is generated by

disequilibrium compaction. The plot results are indicative

that the higher sedimentation rate in the late and middle

Miocene was responsible for retaining the connate water in

the shales and thus exerting hard overpressure. Based on the

previous plot results, it is inferred that disequilibrium

compaction is the main overpressure generation

mechanism in the studied area, while the reservoir

overcharging mechanism could contribute to the

overpressure generation mechanism with lower magnitude

at the level of the studied reservoirs.

Model uncertainty

The variable burial history of the Gulf of Suez

encompasses varying timings and magnitudes of sediment

burial, uplift, and hiatus from one area to another. Because of

the high variability of the sedimentation conditions,

predicting pore pressures is difficult, and evaluating pore

pressures is prone to uncertainty. For the studied case, the

results were calibrated by the multi-available data, and the

estimated pore pressure showed good matching between

geophysical and basin modeling analysis of the late

Miocene shales, where both of them indicated 10.5 ppg

(EMW). On the other hand, there is no uncertainty related

to the middle Miocene reservoirs, where it represents the

actual measured data for both sandstone intervals as direct

measurements and shale intervals as indirect measurements

based on the equilibrium theory. Acceptable uncertainty can

be found along the stratigraphic section in the studied field,

but with no or few implications on the developed PPFG model

based on the multi-proxy approach. Hence, the integration of

multidisciplinary data from geology, geophysics, reservoirs,

and drilling can decrease the uncertainties and lead to a more

reliable PPFG model.

Basin modeling, geophysical logging,
drilling events based interpretations, and
reservoir data integration outstanding
features

Pore pressure prediction in exploratory and development

wells depends mainly on seismic and basin modeling methods.

Once the first well in an oil field has been drilled, well logs are

commonly recorded along the drilled section. Geophysical

logging data can be used to estimate pore pressure in

sedimentary basin drilled wells (Eaton, 1975; Bowers, 2001;

Zhang, 2011). Pore pressure estimation using well logging

works primarily in mud-rocks, but direct measurement in

reservoir sections can also provide accurate pore pressure data

in subsurface sandstone rocks. Considering the pressure

equilibrium between sand and shale in the virgin basins,

measured reservoir data, in this case, is equal to shale pore

pressure (Yardley and Swarbrick, 2000; Daniel, 2001). Basin

modeling and burial history development are widely used

tools for simulating hydrocarbon generation and

sedimentation processes that contribute to overpressure

distribution (e.g., Mudford et al., 1991; Borge, 2002; Nordgård

Bolås et al., 2004; Hansom and Lee, 2005). As a result, basin

modeling is the primary tool for providing an informative vision

and understanding of sedimentary basin developments,

indicating high potential abnormal pressure zones before

going through calculation methods to infer pressure

magnitudes. Drilling events-based interpretations can help in

the calibration process, and it is considered one of the key

elements in the PPFG evaluation process, where it represents

the actual observations inside the drilled wells (Bowers, 2001;

Radwan et al., 2019b). Using one method can result in

overestimated or underestimated results, which will have a

negative impact on the final PPFG model and deliver high

uncertainties in the developed PPFG model.

The developed approach in this work can be applied in PPFG

studies for both development and exploratory geomechanical

studies within other fields of the Gulf of Suez basin or elsewhere

in the world. The presented approach has the advantage of being

a multidisciplinary approach that integrates the geological basin

analysis, recorded logs, drilling problem based interpretations,

and reservoir measurement data to enhance the understanding of

subsurface pore pressure behavior in a specific region.

Consequently, the benefits of this integrated data are the

following: 1) The proposed integrated pore pressure

evaluation approach could lead to a boost in the pore

pressure evaluation process; 2) it has the potential to reduce

the uncertainty of the geopressure model and lead to a more
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accurate one; and 3) it has the potential to aid in the

determination of more reliable casing seats, which has

implications for successful drilling operations. The limitation

of this approach is the lack of any tool from previously collected

data, which may be the case in many regions, making the PPFG

development less accurate to some extent.

Conclusion

✓ The current study introduces a multi-proxy approach to

predicting the PPFG model in sedimentary basins, using

the El Morgan oil field as a case study.

✓ According to PPFG analysis, normal PP was detected in the

Messinian to recent zone and the Serravalian sediments of

(Feiran, Sidri, and Baba) members. Hard overpressure was

detected in the Tortonian sediments.

✓ The first mild overpressure was detected in the mudstone

interval of the Hammam Faraun Member, and the

second mild overpressure was detected in the

mudstone interval of the Kareem Formation. The

main hydrocarbon producing reservoirs, i.e., middle

Miocene (sandstone), showed sub-hydrostatic pressure

conditions that most likely resulted from production-

related depletion.

✓ Pore pressure magnitude differentiation in the Middle

Miocene reservoirs is most likely related to reservoir

connectivity, where the studied wells are located in

different compartmentalizations within the field.

✓ Compaction disequilibrium was identified as a key

mechanism for generating mild overpressure in the

studied basin; however, reservoir overcharging may

also contribute as a mechanism at the reservoir level.

✓ The presented approach has the advantage of being a

multidisciplinary approach that integrates the geological

basin analysis, recorded logs, drilling problems-based

interpretations, and reservoir measurements data to

improve understanding of subsurface pore pressure

behavior in the study area.

✓ By using multi-proxy integrated data, the presented

approach could reduce the uncertainty of the

geopressure model and lead to an adequate one, as

well as assist in the determination of more reliable

casing seats, which has implications for drilling

activities.

✓ This approach could be applied in PPFG studies for both

development and exploratory geomechanical studies within

other fields of the Gulf of Suez Basin or elsewhere in the

world.
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Glossary

AG air gap (foot)

D depth (foot)

EMW equivalent mud weight (ppg)

Fp fracture pressure (psi)

g gravitational acceleration (m/s2)

H true vertical depth value at the point of investigation (foot)

NCT normal compaction trend

OBG overburden pressure gradient (ppg)

P hyd hydrostatic pressure (ppg)

P wellbore pressure (psi)

PP pore pressure (Ppg or psi)

ppfg pore pressure fracture gradient

ppg pound per gallon

PPN normal pore pressure gradient (or hydrostatic pressure)

(ppg, psi)

RFT repeated formation test (ppg or psi)

RHOB bulk density log value (g/cc)

RN normal resistivity (ohm-meter)

Ro observed resistivity (ohm-meter)

TVD true vertical depth (foot)

Vs vertical stress (psi)

WD water depth (foot)

x Eaton exponent and its value is 1.2 for the resistivity and 3 for

the sonic in Eaton, 1975. Values are 0.9 for the resistivity and

1.65 for the sonic in the Gulf of Suez (dimensionless)

α exponent coefficient (0.85, for the Gulf of Suez) (unitless)

ΔTN normal sonic (ms/ft)

ΔTo observed sonic (ms/ft)

ρ(H) bulk density of the overlying rock, represented as function

of depth (H) (g/cc)

ρwg/cc ρw density of water column (taken as 1.02 g/cc)

σmudlineg/cm3 σmudline mud line density (2.15 g/cm3, for the

Gulf of Suez

σVAmoco Amoco vertical stress (ppg)

ѵ Poisson’s ratio. (Eaton, 1975, The used dynamic Poisson’s ratio

value in the Gulf of Suez region is 0.33). (Radwan et al. 2019b;

Radwan et al. 2020a) (unitless)
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