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Abstract

Cell cycle synchronization of donor cells is an important step in mammalian somatic cell nuclear transfer (SCNT). This study was de-
signed to compare the efficiency of serum starvation (Ss) and contact inhibition (cI) on cell cycle synchronization of jaguarundi, manul,
and domestic cat skin fibroblasts, in the production of G0/G1 cells suitable for SCNT in felids. Ss was performed after the growing (G)
cells reached 40-50% (G50+Ss), 60—70% (G70+Ss) and full confluency (Fc), i.e. in association with cI (cI+Ss). Frozen-thawed cells were
cultured to the given state of confluency (d0; controls), and subjected to Ss or cl for 1, 3, and 5 days (d). In manul, the effect of Ss on ar-
resting fibroblasts in the G0/G1 phase was noted after just 1d of culture at G70 confluence, while G50+Ss and cI+Ss were effective after
5d of treatment. In jaguarundi, 1-5d of G50+Ss and Sd of G70+Ss increased the percentage of G0/G1 cells versus d0 (P<0.01), with 5d of
G70+Ss producing more (P<0.05) quiescent cells than after the same period of G50+Ss, cI+Ss and cl. In the domestic cat, Ss was efficient
only after 3 and 5d of G50+Ss. In all species, cI alone failed to increase the proportion of G0/G1 cells compared to d0, however in the
domestic cat, 5d of cI was more efficient than the same period of G50+Ss. In jaguarundi, >93% of cells were already in G0/G1 phase at d0
of Fc, suggesting that culture to Fc could be also a valuable method for fibroblast cell cycle synchronization in this species. In contrast to
cl, prolonged Ss generated cell loss and could induce apoptosis and/or necrosis. In conclusion, Ss was the more efficient method for skin
fibroblast cell cycle synchronization at the G0/G1 phase in manul, jaguarundi and the domestic cat. The response of cells to the treat-
ments was species-specific, depending on cell confluence and duration of culture. This research may find application in preparing donor
karyoplasts for SCNT in felids.
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The first attempts to generate feline somatic cell nu-
clear transfer (SCNT) embryos were conducted at the
beginning of the 21st century (Fahrudin et al., 2001;
Shin et al., 2002; Skrzyszowska et al., 2002), with the
birth of the first SCNT-derived kitten reported in 2002
(Shin et al., 2002). Despite a further 20 years of research,
the efficiency of somatic cloning in felids, as in other
mammals, is still low, with generally fewer than 5% of
transferred SCNT embryos developing into healthy live
offspring (Wilmut et al., 1997; Shin et al., 2002; Gomez
et al., 2004; Yin et al., 2007; Loi et al., 2016). The suc-
cess of the SCNT procedure is affected by a variety of
factors, the most important of which are: i) appropriate

synchronization of cell-cycle stage between the donor
cell nucleus and the enucleated recipient oocyte (cyto-
plast/ooplast); ii) the ability of the ooplast to reset the
epigenetic memory of the cell nucleus inherited from the
differentiated donor cell, in order to restore its totipotent
status and iii) the epigenomic reprogrammability of the
donor cell nucleus in the SCNT-derived oocyte and em-
bryo (Campbell et al., 1996; Wilmut et al., 1997; Samiec
and Skrzyszowska, 2005; Loi et al., 2016). It appears that
when the recipient cytoplast originates from a metaphase
IT stage oocyte, the transferred donor nucleus should be
in the GO or G1 phase of the cell cycle, as the chroma-
tin of the somatic nucleus is likely to be more amenable
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to proper reprogramming by the recipient cytoplast and
maintenance of the correct ploidy of the resultant embryo
(Campbell et al., 1996; Wilmut et al., 1997; Rideout et
al., 2001). Incomplete/abnormal epigenetic reprogram-
ming leads to developmental anomalies in the resultant
embryos/fetuses and/or placenta, stillbirth or the birth
of animals with different types of malformations and
high perinatal mortality (Blelloch et al., 2006; Cho et al.,
2007; Bang et al., 2011; Imsoonthornruksa et al., 2012;
Kallingappa et al., 2016; Samiec and Skrzyszowska,
2018 a, b; Veraguas et al., 2020).

Somatic cloning allows the generation of geneti-
cally identical copies of an individual, thus representing
a universal tool for asexual reproduction. It is believed
that SCNT creates the possibility of preserving species
threatened with extinction, and so might be useful for the
conservation of genetic biodiversity as well as for vari-
ous types of basic, biomedical, agricultural, and phylo-
genetic research (Gémez et al., 2003, 2006; Holt et al.,
2004; Loi et al., 2016; Samiec and Skrzyszowska, 2021;
Skrzyszowska and Samiec, 2021). According to the cur-
rently revised taxonomy of the Felidae, this mamma-
lian family is represented by 14 genera, 41 species and
77 subspecies (Kitchener et al., 2017), with most of these
species listed in the [IUCN Red List of Threatened Spe-
cies as Endangered, Vulnerable or Near Threatened, de-
pending on their region of habitat. Some of them, such as
the European wildcat (Felis silvestris) or African wild-
cat (Felis silvestris lybica), are further threatened by the
loss of genetic purity due to crossbreeding with domestic
cats (Pierpaoli et al., 2003; Kochan et al., 2019). Others,
such as the Caspian Tiger (Panthera tigris virgata), Pan-
thera tigris balica, or Panthera tigris sondaica became
extinct in the 20th century (Jackson and Nowell, 2008
a, b, 2011). Increasing SCNT efficiency as well as other
assisted reproductive techniques (ART) such as oocyte
in vitro maturation and in vitro fertilization, artificial in-
semination, biobanking of gametes and somatic cells, are
therefore of particular importance for maintaining these
animal species (Prochowska et al., 2017; Mtodawska et
al., 2019).

In felids, as in other mammals, serum starvation
and contact inhibition are commonly used methods for
the synchronization of donor cell nuclei in the G0/G1
phase (Gomez et al., 2003; de Barros et al., 2010; Wit-
tayarat et al., 2013; Veraguas et al., 2017), and their use
in SCNT protocols has resulted in live born kittens (Shin
et al., 2002; Gomez et al., 2004; Yin et al., 2005, 2007).
However, it remains unclear which of these methods of
cell cycle synchronization produces a higher proportion
of GO/Glcells (Goémez et al., 2003; Hayes et al., 2005;
Khammanit et al., 2008; de Barros et al., 2010; Ma et al.,
2015; Veraguas et al., 2017), or whether the reconstruct-
ed embryos have an equal capacity to cleave and create
a functional genome and/or to develop to term (Goémez et
al.,2003,2006; Hayes etal.,2005; Samiecetal.,2013 a, b).
The available literature on fibroblast culture and cell
cycle synchronization does not contain data concerning

Pallas’s cat (Otocolobus manul; Felis manul) or jagua-
rundi (Puma yagouaroundi; Harpailurus yagouaroundi).
Pallas’s cat, commonly referred to as manul, is distrib-
uted widely, but unevenly and fragmentarily, across Cen-
tral and Western Asia. The core populations are in Mon-
golia and China, but it can be found along the border of
Russia-China, Russia-Mongolia, and in Transbaikal re-
gions of Russia, as well as in Kazakhstan, Western Iran,
Afghanistan and the eastern Himalayan region; it is pos-
sibly extinct in Armenia and Azerbaijan. On the [UCN
Red List of Threatened Species, manul is currently quali-
fied as Least Concern (Ross et al., 2020). Jaguarundi is
also a widespread species with low population density,
inhabiting South America, from Argentina through Brazil
up to Venezuela and Columbia, across Central America,
and up to Mexico in North America. Jaguarundi is also
listed as Least Concern, however, it is considered Vulner-
able in Brazil, Near Threatened in Argentina, Threatened
in Mexico, and is probably extinct in the United States
(south Texas) (Caso et al., 2015). Therefore, the aim of
this study was to compare the effects of serum starvation
and contact inhibition on cell cycle synchronization and
survival of dermal fibroblasts from manul and jaguarundi
— the two representatives of wild Felidae species — and
domestic cat, as research models in terms of increasing
the efficiency of somatic cloning of endangered felids.

Material and methods

All chemical reagents were purchased from Sigma-
Aldrich Poznan, Poland, unless otherwise indicated.

Skin biopsy

Skin biopsies were obtained from jaguarundi (n=1),
Pallas’s cat (manul; n=2) and domestic cats (n=4), with
the consent of the owners and according to the guidelines
issued by the Ethics Committees (Krakow, Wroctaw).
Wild cats were sourced from the Zoological Garden in
Krakow, and domestic cats from private owners. The
skin biopsies (0.25-0.4 cm?) were collected from the in-
guinal area following anesthesia of the animal, and were
then submerged individually in phosphate-buffered sa-
line (PBS; Polfa, Lublin, Poland) supplemented with 1%
antibiotics (AAS: Antibiotic-Antimycotic-Solution) and
transported on ice to the laboratory.

Fibroblast cultures and freezing

After rinsing in 70% ethanol and in PBS contain-
ing AAS (3 times), the skin samples were cut into
small (~1 mm?) pieces, seeded on the bottom surface of
25-cm? tissue culture flasks and cultured in DMEM (Dul-
becco’s Modified Eagle’s Medium) or in DMEM/F12
(Dulbecco’s Modified Eagle’s Medium/Nutrient F-12
Ham’s Medium) supplemented with 10% Fetal Bovine
Serum (FBS), at 37°C in a humidified atmosphere con-
taining 5% CO,, as previously described (Mlodawska
et al., 2019). Briefly, after reaching 70-80% confluence
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around the explants, the cells were routinely trypsinized
in 0.25% trypsin-EDTA solution, centrifuged (467 x g; 7.5
min), suspended in the appropriate medium, counted us-
ing a hemocytometer, stained with 0.4% trypan blue (for
viability estimation using the trypan blue exclusion test)
and passaged in equal numbers to the new flasks. The cells
were then cultured, passaged 3—4 times and/or frozen and
stored in liquid nitrogen (Mtodawska et al., 2019).

Cell cycle synchronization

After thawing, the cells were suspended in 10 ml
DMEM supplemented with 10% FBS and centrifuged
to remove the freezing medium. The supernatant was
then discarded, and the cells were resuspended in culture
medium, counted, seeded in 6-well plates (100 000 vi-
able cells/well; trypan blue negative) and cultured as de-
scribed above. The cells were exposed to cell cycle syn-
chronization using two methods: serum starvation (Ss)
and contact inhibition (cI). Ss was performed when the
growing (G) cells reached: 1) 40-50% (G50; G50+Ss),
i1) 60-70% (G70; G70+Ss) and iii) full confluency, i.e.
in association with cl (cI+Ss). When the cells reached
the appropriate confluency (day 0 for each treatment), the
culture medium was replaced with serum-deprived medi-
um (DMEM supplemented with 0.5% FBS) and the cells
were cultured for a further 1, 3, or 5 days. For cl, after
reaching full confluency (day 0), the cells were cultured
in regular culture medium for an additional 1, 3 or 5 days.
The media were changed every 1-2 days, if required. For
each treatment, cell cycle analysis was estimated by flow
cytometry at day O (control for each treatment), and after
1-, 3-, and 5-days’ culture. At least two trials were per-
formed for the cells from each animal.

Cells fixation

On the designated days, the medium and any floating,
detached cells were removed prior to trypsinization, and
the cells from each animal were then harvested separate-
ly from each culture well, counted, and their viability es-
timated (using the trypan blue test). After centrifugation
(467 x g for 7.5 min), the supernatant was removed, and
the cells were resuspended in 200 pl culture medium and
then fixed by gradual (dropwise) addition of 800 ul cold
methanol, according to method proposed by Khammanit
et al. (2008). The fixed cells were stored at —20°C until
the day of analysis.

Flow cytometry cell cycle analysis

Before analysis, the fixed cells were centrifuged
(500 x g for 5 min) to remove the methanol and re-
suspended in 1 ml PBS; 30 pul RNAse stock solution
(10mg/ml)wasthenadded, and the cells were incubated for
30 min at room temperature. Subsequently, 30 pug pro-
pidium iodide (PI) was added and incubation was con-
tinued for a further 30 minutes. Cell cycle analysis was
performed using a CytoFLEX flow cytometer (Beckman
Coulter) and at least 12000 cells were analyzed per sam-
ple. Kaluza 2.1.1 (Beckman Coulter) software was used

to calculate the GO/G1, S and G2/M cell cycle phase dis-
tribution. Cell doublets were gated out on a P/ Peak vs.
PI Width dotplot.

Statistical analysis

Data were analyzed with SigmaStat 3.5 Software, using
ANOVA followed by Tukey’s test. For data not normally
distributed, the Kruskal-Wallis ANOVA was used. The re-
sults are presented as means = SEM. Differences between
means were considered statistically significant at P<0.05.

Results

Cell cycle synchronization of feline fibroblasts by
serum starvation and contact inhibition

The results of the flow cytometry cell cycle analysis
of feline fibroblasts are presented in Table 1. For all three
species, the percentage of GO/G1 cells was dependent
on the degree of cell culture confluency and treatment.
In jaguarundi and domestic cat, the lowest proportion of
GO0/G1 cells occurred on the day that the growing cells
reached 40-50% confluence (i.e. day 0 — G50 vs. day 0
— G70+Ss, cI+Ss and cl; P<0.01; Table 1), when there
was also a higher percentage of cells in the S and G2/M
phases than during the remaining days of culture.

In jaguarundi, 1 day of G50+Ss was sufficient to in-
crease significantly the proportion of cells arrested in the
GO/G1 phase (to over 89%), while prolonged Ss did not
further increase the percentage of quiescent cells com-
pared to day 0. For G70+Ss, 5 days of culture were re-
quired to achieve a significantly higher percentage of G0/
Gl cells than was observed at day 0, yet this was the most
efficient treatment, generating a significantly higher pro-
portion of quiescent cells (~ 96%) than G50+Ss, cI+Ss, or
cl alone after the same period of culture (Table 1; Figure
1). On the day of reaching full confluency (cI+Ss and cl
— day 0), over 93% of jaguarundi fibroblasts were in the
GO0/G1 phase, and neither 1-5 days of cI+Ss nor cI alone
increased the percentage of quiescent cells. In manul,
1-5 days of G70+Ss resulted in a higher percentage of
GO0/G1 cells compared to the control (P<0.01), while
for G50+Ss and cl+Ss, 5 days were needed to increase
the proportion of GO/G1 cells significantly; cI alone had
no effect on fibroblast cell cycle synchronization (Table
1; Figure 2). For domestic cat fibroblasts, only 3 and 5
days of G50+Ss resulted in a higher proportion of cells
arrested at the GO/G1 stage compared to day 0 (P<0.01),
however, this treatment was less efficient than 1 day of
cl+Ss, and 5 days of cl alone (Table 1; Figure 3).

Morphology and viability of feline fibroblasts un-
der different culture conditions

After thawing, the cell lines of each species varied
in terms of the time needed to reach 40-50%, 60—70%
and full confluence, requiring 3—4, 4-5 and 6 days of cul-
ture, respectively, for jaguarundi, 3, 3—4 and 67 days for
manul, and 3, 3—6 and 7-8 days for domestic cat.
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Figure 2. Representative histograms of the flow cytometry analysis of manul dermal fibroblast cell cycle obtained at day 0 (d/0; control) and
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and 100% (C/d0, D/d1-d5) confluency and in contact inhibition alone (C/d0, E/d1-d5); Phases of the cell cycle: GO/G1 (G1 [), S (S [) and
G2/M (G2[0)



1250

W. Mtodawska et al.

P
[osop— aidsOe20 ‘gort V. Vison s1dsOe0] Ngertm 14 Wetion sidsOe20 Agorthr= v Visson cis0e0]
i Control —— o iplod 9478 5 %0piog 9251 o cipcd:9376
(G50) st Tesam 5 wceasaan e ot so2tatsn
wum wseer e 522
o G2 S68 2t B33 o GZ 547 at 324 %62 7.07 2t 850
© v 502 w57 %50v:608
» 610 P atias x i
tn ] A vets: 3357 b A Events 835 g Aot a3t
= = =2 =
S 8 & a3 glaas
i2 K LI B GO T T ) W o A W ko W oW
FL3INT FL3INT
[ —— ci0s0e garthn: Wictpe . Fox ailsOc20 Agoritm: V. Watson c10sO60 Agerthn L. atsen ctdsOe
w{ Control iplci: 5633 0. sid: 100 & Diloid 0245 o 0iplid: 5364
(G70) ot 99521259 ot 91031874 <6t 52063271 w5t 22720150
- o sa01 P o P
ez st - G206 3136018 “a22973t508 %22 16124368
WOV 54 %CV:858 w. %V:517 %CVI526
- G2/G1:189 G2/61:197 G2G1:188 o G261:193
=l = z N
5. [RI— g « Albvers: 160 ge r— S Albers: 1959
O | B/dO O |B/dl O |B/d3 O - B/dS
T f wA T T T 9 .
& B w @ o w s o WM Wm0 % & e s W o W m W w m @ W % w0 [ R R P A A A St ¥
FL3-A FL3A FL3-A FL3-A
[ reey— ais0e0 o e cidsOe0 o] Woorthm: v a0sOe0
Diplid: 5409 “Diploid:9272 «Diplod: 9264
zm gt 51741 30 st o123t - st sisazu
%5383 0- %5659 xsi514
- 5 P 2 219335 *c232472
jorith : LV. Wazscny BCU56S wov:8s2 100- wov:as2
- aBOed oo e o ]
Control ADipeid: 9347 = = . = e
" [ s 11840
ot 5535307
- (full confluency) = 2 2 Eh
e | O (DAl ] S | D5
i e
W m w

™

cue1:13s

et 6678

EA R

oW W W
FL3-A

™% W 0

-
Ngcrithm 1Y etson cidsOe20 Agorithm: 1. Wat cidsOe20 200] Algarithm: 1V, Watson ctdsOe20
#Dpig 9632 «Diploid: 5275 <0ipid: 9472
Aot w17 189 i AGLN2a 268 - w7
506 %5403 w44
oz AT o353 Gz aT4at 85 wc2 2231515
%V:606 .. wov:sss
G118 Gttt
° E
Alvents 5634 Algvents: 122
2 2*
[&] O {E/Md5
o4 - v -
W om W 0 W W W W % 10 WM W M W W W W
FL3-A FL3-A

Figure 3. Representative histograms of the flow cytometry analysis of domestic cat dermal fibroblast cycle obtained at day 6 (d/0; control) and
after 1 (d1), 3 (d3) and 5 (d5) days of culture in different condition: serum starvation at 40-50% (G50; A/d0—-d5), 60-70% (G70; B/d0—d5) and
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Figure 4. Representative microphotographs of feline dermal fibroblasts after O (control for each treatment) to 5 days of culture in different
condition: serum starvation at 40-50% (A-C), 60-70% (D—F) and 100% (G-I) confluency, and contact inhibition alone (J-L); scale bars = 100
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Regardless of the species or cell culture confluency,
a change in cell morphology and detachment of the cells
from the bottom of the culture wells was observed after the
first day of Ss. The cells were shrunken and were slightly
less elongated than under cl conditions. At the same time,
the regular medium cultures had considerably fewer cells
floating in the culture wells (Figure 4). In all serum-de-
prived media, the mean number of cells/ml harvested from
the culture wells after the first day of Ss was lower than for
day 0, and continued to decrease gradually over the fol-
lowing days of culture (Figure 5 A—C). In jaguarundi, the
number of cells/ml at days 3 and 5 of cI+Ss were 64.3%
and 83.4%, respectively, lower than at day 0 (P<0.01),
while for G70+Ss these values ranged from 49.0% to
65.7%, respectively (P<0.01; Figure 5 A). In manul, the
loss of cells under cl+Ss and G70+Ss conditions was com-
parable and at days 3 and 5, the mean cell counts/ml were
53-57% and 62—-68% lower, respectively, than at day 0
(P<0.05 vs. day 0; Figure 5 B). In the case of the domes-
tic cat, a significant loss of cells was observed only for
G50+Ss (day 3 and 5), compared to day 0 (Figure 5 C).
For all three species, there was no significant change in
the mean number of cells/well in regular medium through-
out the culture period (Figure 5 A—C), nor was there any
significant impact of either method on the proportion of
trypan blue negative cells (Figure 6).

Discussion

In this study, serum starvation and contact inhibi-
tion were used to synchronize manul, jaguarundi and
domestic cat dermal fibroblast cells in the GO/G1 phase,
in order to increase their suitability for SCNT in felids,
with Ss imposed after the cells reached 40-50% (G50),
60-70% (G70), and full confluency. Flow cytometric
analysis revealed that Ss was a more effective method for
cell cycle synchronization than cI, although the response
of the fibroblasts was species-specific, and depended on
the degree of cell confluency and duration of treatment.
A species-specific response of feline dermal fibroblasts to
different methods of cell cycle synchronization has also
been reported by other investigators (Gémez et al., 2003;
Wittayarat et al., 2013; Veraguas et al., 2017). In manul
and jaguarundi, culture of growing cells at both G50 and
G70 confluence under Ss conditions resulted in the arrest
of a high proportion of fibroblasts in the GO/G1 phase,
while in the domestic cat, this treatment was efficient
only at G50 confluence. In manul, the faster effect of Ss
on the fibroblast cell cycle (after just 1 day of treatment)
was observed at G70 confluence, while in jaguarundi, it
was noted at G50 confluence. A differential response of
growing cells to Ss, depending on the level of cell conflu-
ency and duration of treatment, has also been reported for
giant panda fibroblasts (Han et al., 2003).

Generally, Ss has been reported to have a rapid ef-
fect on the fibroblast cell cycle, with even a short (1-2
day) treatment successfully arresting a high proportion

of cells (~75-91%, depending on species) at the G0/G1
phase (pig: Kues et al., 2000; giant panda: Han et al.,
2003; dog: Khammanit et al., 2008; cattle: Miranda et al.,
2009; Felidae family: Wittayarat et al., 2013), which is in
agreement with our observations. Extending the starva-
tion period by a few days usually does not increase the
proportion of quiescent cells (Kues et al., 2000; Han et
al., 2003; Khammanit et al., 2008), while Ss negatively
affects cell viability in just the first days of application,
leading to cell loss and/or DNA fragmentation (Kues et
al., 2000; Yu et al., 2003). In a study using canine skin
fibroblasts, there was no increase in the percentage of
apoptotic cells after 1-3 days of Ss compared to control
(Khammanit et al., 2008), while in the case of feline fi-
broblasts, an increasing incidence of apoptosis was ob-
served after 4-5 days of Ss for Siamese cat and marbled
cat fibroblasts, but not for leopard or Asian golden cat
cells (Wittayarat et al., 2013). In our study, the greatest
loss of cells (>83%, compared to day 0) was noted for
jaguarundi cells after 5 days of ¢I+Ss. Such a huge num-
ber of detached cells floating in the culture wells suggests
that this treatment had a drastic and detrimental effect on
jaguarundi fibroblasts, increasing the incidence of apop-
tosis and/or necrosis. Furthermore, this treatment failed
to increase the proportion of G0/G1 cells, and thus could
not be recommended for jaguarundi fibroblast cell cycle
synchronization. In contrast, 5 days of cI+Ss effectively
arrested a high proportion (95%) of manul cells in the
GO0/G1 phase with a concomitantly less drastic effect on
cell survival, suggesting that it could be useful for cell
cycle synchronization in this species. Based on these re-
sults, we can infer that the cell lines of some species or
individuals might be more sensitive to a lack of nutrients
in culture medium at full confluency than during the log-
arithmic phase of growth. The synergistic effects of Ss
and full confluency on increasing the percentage of G0/
G1 cells were observed for domestic cat fetal (de Bar-
ros et al., 2010) and sheep dermal fibroblasts (Ma et al.,
2015). In sheep, a negative effect of prolonged Ss, both at
70-80% confluency and in conjunction with ¢l was also
noted (Ma et al., 2015). There is evidence that apoptotic
cells used as karyoplast donors could negatively influ-
ence the efficiency of SCNT (Yu et al., 2003; Park et al.,
2004; Miranda et al., 2009; Samiec et al., 2013 a, b), and
in cattle, culture of donor fibroblasts in the presence of
putative apoptosis inhibitors (such as f-mercaptoethanol
or hemoglobin) improved the quality and early develop-
ment of reconstructed embryos (Park et al., 2004). Inter-
estingly, the live birth of one cloned calf reconstructed
with an apoptotic (annexin-positive) cell implies, ac-
cording to the authors, that the recipient cytoplast is to
some extent capable of reversing apoptotic changes in
the donor cell generated by serum starvation (Miranda
et al., 2009).

It should be emphasized that under our culture condi-
tions, a vast majority (>86%) of fibroblasts in all three
Felidae species were already in the G0/G1 phase on the
day of reaching full confluency (day 0: cI+Ss and cl),
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with the highest proportion (>93%) found in jaguarundi
cells, and that further culture in cI conditions did not in-
crease the efficiency of cell cycle synchronization in any
of the species. A high percentage of fibroblasts in the G0/
G1 phase (85-87.4%) has also been reported in pigs (Bo-
quest et al., 1999) and cattle (Cho et al., 2005) at full con-
fluency, and in giant panda at just 90% confluency (Han
et al., 2003). It is well known that when the cells form
a monolayer and reach full confluency, they enter the so-
called plateau/stationary phase of cell growth (Liu et al.,
2008; Guan et al., 2010; Mtodawska et al., 2019). Under
high density conditions, the contact surface between ad-
jacent cells gradually increases (Curto et al., 2007), lead-
ing to contact inhibition which causes most cells to cease
dividing and remain at the early G1 phase, despite the
availability of nutrients and growth factors (Levine et al.,
1965; Davis et al., 2001). In the present study, jaguarundi
cells (like most other cell lines) reached full confluency
after 6 days of culture following thawing. Such a high
percentage of GO/G1 cells by day 0 suggests that in this
species, the inhibition of proliferation and entry into the
state of cl may have occurred before full confluency was
achieved. It may also be indicative of an inherently long
G1 phase of the jaguarundi fibroblast cell cycle, like oth-
er non-transformed mammalian fibroblast cells (Gadbois
et al.,1992). At the same time, the lack of a negative im-
pact of cI on cell viability and on their number in culture
wells leads us to conclude that in the case of jaguarundi,
achieving full confluency and possibly a few days’ ¢l can
be also a valuable method of obtaining a high propor-
tion of skin fibroblasts in the G0/Glphase. It should be
noted that in human fibroblasts, contact inhibition may
be achieved when the cells reach ~90% confluency (Da-
vis et al., 2001).

The available literature does not contain unambigu-
ous results as to the effectiveness of cl for generating G0/
G1 quiescence in felids. In the domestic cat, 3—5 days of
cl was effective at eliciting a higher percentage of G0/
Gl fibroblasts (~80-85%) compared to growing cells,
however in kodkod, cl was efficient after 1-3 days but
not after 5 days of treatment (Veraguas et al., 2017). In
other studies, 5 days of clI was sufficient to induce quies-
cence in fibroblasts of three species of the Felidae family,
but not in marbled cat cells (Wittayarat et al., 2013), and
significantly more GO/G1 cells in the fibroblasts of the
domestic shorthaired cat than in those of the African wild
cat (88% vs. 61%, respectively; Gomez et al., 2003). In
our study, after the same period of cl, the percentage of
GO/G1 cells in all species was higher, ranging from ~92
t0 94%. In the case of the domestic cat, this treatment was
more efficient than 5 days of G50+Ss, and so could be
also used for fibroblast cell cycle synchronization. These
variations between our and other authors’ findings might
be due to individual characteristics of the animal (spe-
cies, breed, sex, age) from which the cells were obtained,
as well as the cell types and the culture conditions used.

It is believed that Ss and cl are not functionally equiv-
alent, as they differ with respect to the mechanisms (sig-

naling pathways) by which they affect the cell cycle and
the extent to which they modulate different gene expres-
sion profiles (Gos et al., 2005; Coller et al., 2006; Shin et
al., 2008; Swat et al., 2009; Ma et al., 2015; Kallingappa
et al., 2016). Research implies that the inhibition of cell
proliferation resulting from cell-to-cell contact involves
upregulation (accumulation) of p27 (cyclin-dependent ki-
nase 2 inhibitor) via the p38a-Spry2-EGFR-p27 network
(Swat et al., 2009), while the mitogen/growth factor de-
pletion associated with culture in a serum-deprived me-
dium induces quiescence in cells through suppression of
the Skp2-CDK2 and CDK4 pathway (Shin et al., 2008).
It is unclear whether embryos reconstructed from cells
subjected to Ss or cl have the same quality and devel-
opmental potential. For example, in cattle, the cleavage
rate was higher for embryos derived from serum-starved
than from confluent fibroblast cells, but blastocyst forma-
tion did not differ between groups (Hayes et al., 2005). In
contrast, the morula/blastocyst formation yields in pigs
were higher when cl instead of Ss was applied in SCNT
procedures (Samiec et al., 2013 a, b). It is believed that
in felids (domestic shorthaired cat and African wild cat)
the method of cell cycle synchronization has no influence
on the frequency of fusion, and cleavage of reconstruct-
ed embryos or their development to the blastocyst stage
(Gomez et al., 2003, 2006).

In conclusion, serum starvation of growing cells
could be used successfully for manul, jaguarundi and do-
mestic cat dermal fibroblast cell synchronization in the
GO0/G1 phase. The response of the cells is species-spe-
cific and depends on initial cell culture confluence and
duration of treatment, and therefore the treatment should
be customized. In all three species, contact inhibition
alone did not elicit an important shift in the proportion
of quiescent cells, nevertheless in the domestic cat pro-
longed cl was more efficient than the same period of Ss at
40-50% confluency. In jaguarundi, culture of cells to full
confluence could also be a valuable method of obtaining
a high proportion of skin fibroblasts in the GO/G1phase,
without causing damage to the cells. In contrast to clI,
prolonged trophic deprivation may generate cell loss
and could induce apoptosis. This research may find ap-
plication in preparing donor karyoplasts for somatic cell
nuclear transfer in felids.
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