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SPECIAL LINES ON CONTACT MANIFOLDS

by Jarosław BUCZYŃSKI,
Grzegorz KAPUSTKA & Michał KAPUSTKA

Abstract. — In a series of two articles Kebekus studied deformation theory of
minimal rational curves on contact Fano manifolds. Such curves are called contact
lines. Kebekus proved that a contact line through a general point is necessarily
smooth and has a fixed standard splitting type of the restricted tangent bundle. In
this paper we study singular contact lines and those with special splitting type. We
provide restrictions on the families of such lines, and on contact Fano manifolds
which have reducible varieties of minimal rational tangents. We also show that
the results about singular lines naturally generalise to complex contact manifolds,
which are not necessarily Fano, for instance, quasi-projective contact manifolds
or compact contact manifolds of Fujiki class C. In particular, in many cases the
dimension of a family of singular lines is at most 2 less than the dimension of the
contact manifold.
Résumé. — Dans une série de deux articles, Kebekus a étudié la théorie des

déformations des courbes rationnelles minimales sur des variétés de contact de
Fano. De telles courbes sot appelées lignes de contact. Kebekus a montré qu’une
ligne de contact passant par un oint quelconque est nécessairement régulière et
que le type de décomposition du fibré tangent restreint est fixe. Dans le présent
article, nous étudions des lignes de contact singulières et celles qui possèdent un
type de décomposition particulier. Nous donnons des restrictions sur les familles
de telles lignes, et sur les variétés de contact de Fano qui possèdent des variétés
réductibles d’espaces tangents rationnels minimaux. Nous montrons aussi que les
résultats concernant les lignes singulières s’étendent naturellement aux variétés de
contact complexes qui ne sont pas nécessairement de Fano, par exemple les variétés
de contact quasi-projectives ou les variétés de contact compactes de la classe de
Fujiki C. En particulier, dans de nombreux cas, la dimension de la famille de lignes
singulières est au plus la dimension de la variété de contact moins 2.

1. Introduction

A contact manifold is a complex manifold of odd dimension 2n+ 1 with
a contact structure, that is, an exact sequence

(1.1) 0 −→ F −→ TX
θ−→ L −→ 0,
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where F is a subbundle of TX, L is a line bundle, and such that the locally
defined derivative of θ induces a symplectic structure on each fibre of F .
This article addresses the problem of classification of contact manifolds.
A lot of work has already been done in this direction, see [11, 12] for an
overview and motivation in the projective case. The major remaining part
of the task, is to classify contact Fano manifolds, which are expected to be
always homogeneous spaces. In addition non-projective contact manifolds
recently gained attention, see [13, 22, 29, 45], and the classification in the
non-projective case is widely open. Even in dimension three, the classifi-
cation of rationally connected compact contact manifolds with b2 > 2 is
unknown. Although projective contact manifolds are our main object of
study, in this paper we also provide some extensions of our results to the
settings involving generically contact manifolds or non-projective contact
manifolds.
Among the main tools to approach the classification problem is the the-

ory of minimal rational curves. This article is among the first attempts
to study minimal rational curves on a projective manifold X without as-
suming that they are general, or that they pass through a general point.
In the case of contact Fano manifold X of dimension 2n + 1 it amounts
to study contact lines, that is, rational curves for which the pullback of
the restriction of the canonical bundle on X through the normalisation is
OP1(−n− 1). Equivalently, the degree of the pullback of the line bundle L
as in (1.1) is 1. It is well known that unless X ' P2n+1, those contact lines
exist, cover X and form a family of pure dimension 3n − 1. Moreover, for
a general contact line with a parametrisation f : P1 → X the pullback of
the tangent bundle TX has a standard splitting type:

(1.2) f∗TX ' O⊕(n+1) ⊕O(1)⊕(n−1) ⊕O(2) = O(0n+1, 1n−1, 2).

Contact lines satisfying (1.2) are called standard. Unfortunately, it is not
known if all contact lines on a contact manifold are standard. This is the
case for homogeneous manifolds, which are expected to be all Fano contact
manifolds. In general, by results of Kebekus [32] any contact line through
a general point is smooth and standard.
Moreover, [34, Thm. 3.1] claimed that for general x ∈ X the variety

Hx parameterising contact lines passing through x is irreducible. Unfor-
tunately, there is a gap in the proof, see [11, Rem. 3.2] or Section 2.2 for
more details. The argument of Kebekus only shows that if for a general
x ∈ X the variety Hx is reducible, then the set of non-standard lines forms
a divisor in a component of all the lines. In this article, we proceed to fur-
ther study the properties of the potential contact Fano manifold X, which
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contains many non-standard lines. More precisely, we provide a description
of the locus in X swept out by the non-standard lines.

Theorem 1.1. — Let X with F and L as in (1.1) be a contact Fano
manifold. Let H be an irreducible component of the Hilbert scheme param-
etrising contact lines on X. Suppose that B ⊂ H is an irreducible codimen-
sion 1 subset, consisting only of non-standard lines. Let B ⊂ X be the
locus swept by those lines. Then:

(1) B is a non-normal irreducible divisor on X.
(2) Denote by ξ : U → B the normalisation map. There exists a normal

varietyR, a vector bundle E of rank n+1 onR, and an isomorphism
U ' P(E) such that E is isomorphic to (π∗ξ∗L)∗, where π : U → R
is the canonical projection.

(3) The restriction ξ|Pn to any fibre of π : U → R is the normalisation
of the image ξ(Pn) and (ξ|Pn)∗L = OPn(1).

The theorem is proved in Section 7. The proof of part (1) can be ex-
tracted from the arguments in [34, §3]. See also Lemma 7.2, which shows
dimB = 2n, and Section 2.2, which reviews the content of and the gap
in [34, Prop. 3.2]. An alternative way to see that B is not normal is us-
ing (2), see the last paragraph of the proof of the theorem.
Our further results concern singular and non-standard lines on generali-

sations of projective contact manifolds.
Let X be a complex manifold and suppose that there exist a vector

bundle F and a line bundle L admitting an exact sequence as in (1.1), but
that the derivative of the locally defined 1-form θ : TX → L determines a
symplectic form only on an open dense subset of X. In such situation we
will say that (X,F ) is a generically contact manifold.
In this setting we can measure the degree of rational curves using the

intersection with L. In particular, the contact lines are the (complete) ra-
tional curves C ⊂ X with the intersection number L.C = 1. The notion
of standard line extends to this context. However, contrary to the Fano
case, there is no guarantee that lines exist, and the intersection of L with
a rational curve may potentially be zero or negative. This is a major issue,
however, assuming that lines exist, we obtain many results that are parallel
to the contact projective case.
Recall that a complex manifold is of Fujiki class C, if it is bimeromorphic

to a compact Kähler manifold [23].
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Theorem 1.2. — Suppose that X is either quasi-projective or compact
of Fujiki class C and in addition (X,F ) is a generically contact manifold.
We have the following restrictions on the families of singular contact lines.

(1) Singular contact lines do not cover X.
(2) If X is projective and L is ample, then the dimension of the space

parametrising the singular lines is at most dimX − 2.
(3) If (X,F ) is contact and a family of singular lines sweeps out a locus

of codimension 1 in X, then the dimension of this family is equal
to dimX − 2.

This theorem generalises [32, Prop. 3.3] which is a similar statement for
a contact Fano manifold (X,F ). We prove the theorem in Subsection 6.3,
Corollaries 6.6 and 6.7.

Proposition 1.3. — Suppose that (X,F ) is a contact manifold. If X is
either quasi-projective or compact of Fujiki class C, then any line through
a general point x ∈ X is standard.

This result generalises [32, Lem. 3.5], which again is for contact Fano
(X,F ). We show the proposition in Subsection 5.1, Corollary 5.5.
The structure of the paper is the following. In Section 2, we outline the

content of relevant literature and sketch our arguments. In Section 3, we
discuss and review parameter spaces for subvarieties and cycles, namely
Barlet spaces and Chow varieties. In a setting of polarised complex mani-
folds we define lines, linear spaces and their families and relate these families
to cycle spaces. We describe the situation when there are plenty of lines on
a variety. Section 4, describes the notions of a distribution and a manifold
with a global corank 1 distribution. In Section 5, we review the literature
on contact manifolds and discuss possible splittings of tangent bundle re-
stricted to lines. In Section 6, we investigate singular lines on polarised
manifolds. In Section 7, we show that if there are many non-standard lines
on a contact Fano manifold, then their configuration must be very special.
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2. Context and history

In this section we present some of the relevant facts from the literature
about contact manifolds. In several cases, if the references are not explicit,
but the statements we present are well known to the experts, we fill in
the arguments. Typically, these brief proofs simply combine a couple of
references. We also set some notation which is relevant for the main parts
of the article. The most important is the following setting.

Setting 2.1 (contact projective setting). — Suppose that X is a com-
plex projective manifold of dimension 2n + 1 with a contact distribution
F ⊂ TX. Denote L = TX/F .

2.1. Historical remarks on classification of contact manifolds

We recall the major classification result:

Theorem 2.2 ([16, 36]). — In Setting 2.1, eitherX = P(T ∗M) for some
projective manifold M and L ' OP(T∗M)(1), or X is Fano and PicX =
Z[L], or X = P2n+1 and L = OP2n+1(2).

If we suppose in addition to the assumptions of Theorem 2.2 that X is
Fano, then the case of P(T ∗M) becomes more specific, and we have the
uniqueness of the contact structure.

TOME 72 (2022), FASCICULE 5
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Proposition 2.3. — In Setting 2.1, assume in addition that X is Fano.
Then either X = P(T ∗Pn+1) (and L ' OP(T∗Pn+1)(1)), or PicX = Z[L],
or X = P2n+1 (and L = OP2n+1(2)). In the first two cases the contact
distribution F ⊂ TX is unique. More precisely, for every point x ∈ X, the
subspace Fx ⊂ TxX is the smallest linear subspace containing all tangent
directions to contact lines in X.

Proof. — By [39, Cor. 4.2] either X = P(T ∗Pn+1) or b2(X) = 1. In
the latter case, by Theorem 2.2 either PicX = Z[L], or X = P2n+1, as
claimed. The uniqueness for the case with PicX = Z[L] is proved in [32,
Cor. 4.5]. The uniqueness for the case X = P(T ∗Pn+1) follows since we
have two projections P(T ∗Pn+1) → Pn+1 and P(T ∗Pn+1) → (Pn+1)∗ and
the tangent spaces to the fibres of both projections are contained in F

by [32, Rem. 2.3], or Lemma 4.13 below. �

In the case X = P2n+1, the contact distribution is not unique, and it is
determined by a choice of symplectic form on a vector space C2n+2, see [10,
§E.1] for discussion and references. The two cases of contact Fano manifolds
X = P(T ∗Pn+1) and X = P2n+1 are relatively well understood, in particu-
lar the contact lines are all smooth and standard (in case X = P(T ∗Pn+1))
or do not exist (in the case X = P2n+1, because L ' OP2n+1(2)). Thus
Proposition 2.3 shows that in the context of our main goals (investigating
singular or non-standard lines) it is harmless to work in the more restricted
setting.

Setting 2.4 (contact Fano setting). — In Setting 2.1, that is X is a
projective manifold (over C) of dimension 2n+1 with a contact distribution
F ⊂ TX and the quotient line bundle L = TX/F , assume in addition that
PicX = Z[L].

We will add more notation to this in Setting 2.6.
The classification of contact Fano manifolds is known in low dimension.

Theorem 2.5. — In Setting 2.4, we have n > 2 and if n = 2, then X is
the five dimensional homogeneous G2-manifold.

The case n = 1 has been claimed first by Ye [48], but his argument
contains a gap. In fact, the cited article only shows Theorem 2.2 in the case
n = 1 and it does not comment on the case b2(X) = 1. However, it is not
difficult to treat the missing case, there are at least two approaches. Firstly,
there are few Fano threefolds with Picard number 1 and index 2, and one
can just check all the possibilities. Alternatively, one can use Hirzebruch–
Riemann–Roch theorem and cohomological criterions for a manifold to be
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a projective space. This latter approach has been implemented in [13] in a
more general situation.
The case n = 2 has been proved by Druel [20] using results of [6, 43, 44].

Further extensions of Theorem 2.5 are studied in [14].

2.2. Lines on contact Fano manifolds

Setting 2.6 (contact Fano setting in detail). — Suppose that X is
a complex Fano manifold of dimension 2n + 1 not isomorphic to P2n+1,
nor to P(T ∗Pn+1). Suppose further that there exists a contact distribution
F ⊂ TX on X, that is we work in Setting 2.4. Then F is unique by Propo-
sition 2.3. Denote by L = TX/F the quotient line bundle, and pick H to be
any irreducible component of the subset of the Chow variety parametrising
contact lines on X. Finally, let Hx be the set of lines through a fixed point
x ∈ X. Note that H and Hx are non-empty and dimH = 3n − 1 (see [32,
Equation (2.1) and Prop. 4.1]; alternatively, see Corollary 5.9 for details).
Moreover, every irreducible component of Hx has dimension n − 1 ( [32,
Prop. 4.1] or Proposition 5.8).

We now discuss in more detail the gap in [34]. The gap has been pre-
viously mentioned in [10, Footnote 4 on p. 7] and in [11, Rem. 3.2]. In
Setting 2.6 Kebekus claims that for a general point x ∈ X, the set Hx
is irreducible [34, Thm. 1.1(2) or Thm. 3.1]. The argument is presented
in [34, §3] and begins with the statement of [34, Prop. 3.2]. Unfortunately,
Step 2 of the proof of this proposition is incorrect. It constructs a family
of varieties denoted V → D0, where V ⊂ D0 × X. (In this article D0 is
denoted by B, see Theorem 1.1, or Section 7.) The family is of pure di-
mension n, and Kebekus claims that V → D0 is “a well-defined family of
cycles in X in the sense of [37, Ch. I.3.10]”. By “Ch. I.3.10” Kebekus means
Definition 3.10 in Chapter I of the book. This definition has four items. It is
indeed straightforward to verify that the first three items (3.10.1)–(3.10.3)
are satisfied in the situation of V → D0. However, the final one (3.10.4)
very roughly says that for every w ∈ D0, and a curve containing w as a
special point, the limit of the cycle over a generic point of the curve is
equal to the cycle over w (see Comment (3.10.5)). A simple situation when
this property fails is the family of 0-dimensional cycles in P1, with the base
of the family parametrised by a nodal rational curve C. Then we let the
universal family U be P1 ⊂ C × P1, with the first projection equal to the
normalisation map and the second projection equal to the identity map.
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Such a family satisfies (3.10.1)–(3.10.3), but fails to satisfy (3.10.4), be-
cause near the singular point the limit is either one or the other point in
the normalisation. This last property (3.10.4) is not justified in the proof
of [34, Step 2, Prop. 3.2], and it is not at all obvious.
In [37, Thm. I.3.17] it is shown that if the base is normal, then the

property (3.10.4) is automatic. Thus the claim of [34, Step 2, Prop. 3.2] is
fine if D0 is assumed in addition to be normal. This observation, together
with Lemma 7.2, proves Theorem 1.1(1). One could hope to fix the issue
by replacing D0 with its normalisation. However, the normalisation of D0

needs not to have b2 = 1. For instance, there exists an example of a non-
normal cubic hypersurface in P4, whose normalisation is P1 × P2, thus has
Picard rank 2, see [40, Lem. 2.2(1)c, Thm. 3.1(a.5)]). Consequently, the
further part of the proof of Step 2 fails: the induced map to the Chow
variety needs not to be finite. In fact, one consequence of Theorem 1.1 is
that all the fibres must have dimension n.

2.3. Sketch of proofs and intermediate results

The arguments for Theorem 1.2 rely on a technical Proposition 6.5, whose
proof follows the method of [32, Prop. 3.3], carefully adapted to the setting
of quasi-projective varieties and analytic varieties. Proposition 1.3 is proved
by a standard analysis of possible splitting types of the tangent bundle
restricted to lines. See Corollary 5.5 for a stronger version of this statement.

The proof of Theorem 1.1 is more tricky. It is centred around the following
concept:

Definition 2.7. — Suppose that X is a complex manifold X and L is
a line bundle on X. A linear subspace in (X,L) is a compact subvariety
Γ ⊂ X such that the normalisation of Γ is a projective space and the
restriction of L to Γ is a line bundle of degree 1, see Section 3.2 for more
details. A linear subspace of dimension 1 is a called a line.

In particular, this concept generalises the notion of contact line to higher
dimensions (and to more general varieties). In the situation of the definition
we say that two points x, y ∈ X are connected by a line, if there exists a
single line C ⊂ X, such that x, y ∈ C. Clearly, any two points on a linear
subspace Γ ⊂ X of any dimension are connected by a line. In fact, this
property characterises linear subspaces.

Theorem 2.8. — Suppose that Γ is a projective variety with an ample
line bundle L, such that two general points x, y ∈ Γ are connected by
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a single line. Then Γ is a linear subspace of itself, that is, it admits a
normalisation µ : Pk → Γ, where k = dim Γ and µ∗L = OPk(1).

This theorem is an easy consequence of a characterisation of projective
spaces by Kebekus [33, Thm. 3.6], taking into account that in our case Γ
may be not normal.
Proof. — First let us reduce to the case in which Γ is normal. So let

µ : Γ′ → Γ be the normalisation, and pick two general points x′, y′ ∈ Γ′.
Their images µ(x′) and µ(y′) are connected by a line C ⊂ Γ. Let C ′ be the
proper transform of C. Then µ|C′ : C ′ → C is birational and C is also a
rational curve, and the normalisation of f : P1 → C factorises through C ′.
So the degree of C ′ with respect to µ∗L is also 1. Thus it is sufficient to
prove the theorem for normal Γ.
The set of lines in the Chow variety of Γ is closed by [37, Thm. I.3.21] (or

Proposition 3.7(3) and the comment following its proof for more details),
therefore also special points x and y are connected by curves of degree 1.
Then this is a special case of [33, Thm. 3.6]. �

To show Theorem 1.1, we suppose that there is a component B of the set
of non-standard lines of dimension 3n−2. In particular, a general element of
B is a smooth rational curve (Proposition 6.3). By results of Kebekus, there
is a divisor B on X swept out by the lines from B (see Lemma 7.2). The
main aim is to prove that B is dominated by a family of linear subspaces
of dimension n. To construct these linear subspaces we use Theorem 2.8
twice. In the first place we construct a large family of linear subspaces of
dimension 2, that is planes. Next we bundle together these planes, to obtain
a family of linear subspaces of dimension n. More precisely, the tangent
spaces to B naturally determine a distribution G of rank 1, that is, a line
subbundle of TB defined on an open dense subset of U ⊂ B. Suppose that
c ∈ B is a general non-standard line and C ⊂ X is the corresponding curve
in X. We take the union of leaves of G through points of C, and we let Γc to
be the Zariski closure of this union. Then we show in Lemma 7.9 that every
two points in Γc are connected by a contact line. Thus the normalisation of
Γc is a projective space Pk. We carefully study the distribution G restricted
to Γc and conclude using Lemma 4.4 that the leaves of G actually are lines
from B. In particular, dim Γc = 2, and its normalisation is P2.

This construction also equips each P2 with a distinguished point y, and
its image in X. We consider Y ⊂ X to be the union of all the distinguished
points in X obtained by varying c ∈ B. The critical step in the proof is the
dimension count: we show that dimY = n, see Lemma 7.14. The conclusion
is that there are many surfaces Γc with the same distinguished point y. On
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the other hand the locus P y of these projective planes is always contained
in the locus swept by lines through a fixed point y, which is known to have
dimension at most n. We use this information to show that two general
points x1, x2 in P y are contained in a single Γc, whose distinguished point
is y. The line in the plane P2 normalising Γc is the required line connecting
x1 with x2. Thus P y is normalised by a projective space, and its dimension
is calculated to be n. This is the way to construct the family of linear
subspaces of dimension n, whose locus sweeps out the divisor B.
We also show that there is exactly one such linear space through a general

point of B, and only a finite number of them through any point of B. This is
used to compare the family to the normalisation of B. Finally, we conclude
using [2, Prop. 4.10] or Proposition 3.7(1), which characterises projective
space bundles over normal varieties, by analogy to Fujita’s characterisations
for bundles on smooth varieties.

3. Parameter spaces for lines and linear subspaces

Throughout this article we suppose that X is a complex analytic variety
with a distinguished line bundle L. We will say L is a polarisation of X,
as it will be used to measure degrees of some special rational subvarieties.
Although we will often assume X is a projective manifold and L is ample,
for some of the statements below it is not necessary. In particular, we do
not want to assume X is compact or nonsingular to obtain valid statements
for open subsets of X, and subvarieties Y ⊂ X polarised by L|Y .

3.1. Barlet space and Chow variety

In this subsection we overview the properties of the cycle space, which
in the context of complex geometry is called the Barlet space [3], while in
algebraic geometry it is called the Chow variety [37, Section I.3]. We are
only interested in compact cycles, and in fact mainly in irreducible ones.
The reducible ones (that is, either those with more than one components,
or those with multiplicity higher than 1 at one of the components) appear
in our considerations mainly as limits of irreducible cycles (which are just
compact subvarieties). See also [5, Ch. IV] or [25, Ch. VIII, §2].
Throughout our proofs we exploit some minimal assumptions on the cycle

spaces (and also some other parameter spaces), so that the local geometry
of (for instance) singular rational curves determines its global properties.
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As an example, we want the dimension of the closure of the locus swept
out by the singular rational curves to be determined by their infinitesimal
deformations. This is guaranteed if either X is quasi-projective or X is
compact of Fujiki class C.
Note that throughout this section, whenever we speak about pull-back in

the context of cycles, we always mean the Chow pull-back [37, Def. I.3.18],
or cycle-theoretic base change [3, Def. IV.3.1.1]. Similarly fibre refers to
the cycle theoretic notion. The main difference between the cycle theoretic
and scheme theoretic pull-backs and fibres is that we ignore the scheme
structure, but remember the multiplicity of components instead.
We summarise a list of properties of the Chow variety and Barlet space

that we are going to freely use. The main purpose of the lengthy proposi-
tions below is to clarify the meaning of, for example, “the set of singular
rational curves of degree 1 with respect to a line bundle” and their irre-
ducible components. In particular, the proposition illustrates that these
irreducible components have sensible structures of analytic or algebraic va-
rieties. We restrict our attention to a compact analytic space of Fujiki class
C (that is, it is compact and bimeromorphically equivalent to a compact
Kähler manifold) and quasi-projective varieties.
We say a cycle is reducible (respectively, irreducible), if it consists of at

least two (respectively, exactly one) components counted with their mul-
tiplicity. Note that the closed reduced analytic spaces or algebraic sub-
schemes appearing in items (6)–(8) below can be reducible thus it is not
correct to say that they are varieties.

Proposition 3.1. — Suppose that X and R are irreducible analytic
varieties (respectively, algebraic varieties) and L is a line bundle on X.

(1) If there is a holomorphic (respectively, algebraic) map from R to
the Barlet space (respectively, Chow variety) of X, then there is
UR ⊂ X ×R consisting of the proper cycles represented by points
in the image of points in R. The map UR → R is proper.

(2) Conversely, if UR ⊂ X×R is an analytic (or well defined) family of
(proper) cycles in the sense of [25, Ch. VIII, Def. 2.5] or [37, I.3.10],
then there is a map from R to the Barlet space (respectively, Chow
variety), such that UR is the family constructed in (1).

(3) In the situation of (1) and (2) the dimension and degree with re-
spect to L of the cycles represented by the points of R are constant.

Furthermore, suppose that X is compact of Fujiki class C (respectively,
projective).
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(4) If X is a compact manifold of Fujiki class C, then the connected
components of the Barlet space are compact of Fujiki class C.

(5) If X is projective, then the connected components of the Chow
variety are projective.

(6) The set of reducible cycles in every connected component of the
Barlet space (respectively, Chow variety) is a closed reduced ana-
lytic subspace (respectively, a closed reduced algebraic subscheme)
of that component. Thus the set of irreducible cycles is open in the
cycle space, and in each irreducible component of the cycle space,
this open subset is either empty or dense.

(7) The set consisting of proper rational curves is a closed reduced an-
alytic subspace (respectively, closed reduced algebraic subscheme)
in each connected component of the set of irreducible cycles. More-
over, the closure of the set of proper irreducible rational curves in
the cycle space is a closed reduced analytic subspace (respectively,
closed reduced algebraic subscheme).

(8) The set of singular rational curves is closed reduced analytic sub-
space (respectively, closed reduced algebraic subscheme) in each
connected component of the set of proper rational curves.

Proof. — Items (1) and (2) are the merits of the definitions of cycle
spaces, see for instance [25, Ch. VIII, Thm. 2.7] or [37, Thm. I.3.21]. Fur-
ther, the dimension part in (3) is again part of the definition of the cycle
space, while the degree part is shown in [37, Prop. I.3.12] for the algebraic
case. For the analytic case, we imitate the algebraic proof. It is enough
to argue locally on R and it is enough to consider the case when R is
1-dimensional. We may also normalise R and hence assume R is a holo-
morphic disc in C around 0. Now, with these assumptions, the components
of UR are flat over R. For flat maps the degree is preserved along the fibres
and summing over the components we obtain the statement.
Item (4) is quoted in [25, Ch. VIII, Prop. 3.17], and the details are

attributed to [23]. Analogously, (5) is shown in [37, Thm. I.3.21.3].
Item (6) is an immediate conclusion from [5, Prop. IV.7.1.2].
The set of rational 1-dimensional cycles (in the sense of [4], that is,

those cycles, whose every component is a rational curve) forms a closed
analytic subset of the cycle space by [4] (which is projective by (5), if X
is projective). Irreducible rational curves form a Zariski open subset in the
set of rational 1-dimensional cycles by (6), which shows both claims of
item (7).
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To show (8) suppose that R is the set of proper rational curves in the
cycle space and UR is the universal family as in (1). Let S ⊂ UR be the set
of singular points of the fibres. It is a closed analytic or algebraic subspace
as it is locally the zero locus of some minors of differentials. Its image under
the proper map to the cycle space is again closed and analytic by Remmert’s
mapping theorem [25, Ch. III, Cor. 4.3] (in the algebraic geometry setup,
it follows directly from the definitions of a proper morphism [27, p. 100]
and the Zariski topology). �

We are also going to use the analogous properties for a quasi-projective
variety X with a projective compactification X. In this situation, the Chow
variety of X is the open subset of the Chow variety of X consisting of
those cycles that do not intersect the boundary X \ X. Hence the proofs
of the properties below boil down to just applying the projective case and
restricting to the open subset. The numeration in the statements below
corresponds to the analogous statements in Proposition 3.1. As before, the
purpose of the proposition is to give a sensible structure of a variety to
irreducible components of various sets parametrising singular or nonsingu-
lar cycles, reducible or irreducible cycles, or rational curves, perhaps with
prescribed additional properties.

Proposition 3.2. — Suppose that X is a quasi-projective variety.
(5) The connected components of the Chow variety of X are themselves

quasi-projective.
(6) The set of reducible cycles in every connected component of the

Chow variety is Zariski closed, in particular it is a closed reduced
algebraic subscheme of that component. Thus the set of irreducible
cycles is open in the cycle space, and in each irreducible component
of the cycle space, either empty or dense.

(7) The set consisting of proper rational curves is Zariski closed in each
component of the set of irreducible cycles, in particular, it is a
reduced algebraic scheme.

(8) The set of singular rational curves is Zariski closed in each com-
ponent of the set of proper rational curves. In particular, it is a
reduced algebraic scheme.

Thus if X is compact of Fujiki class C or quasi-projective, then for in-
stance the set of irreducible singular rational curves is a union of its irre-
ducible components. Say one of these components is S and suppose that
Y is an irreducible component of the cycle space of X (if X is compact
of Fujiki class C or projective; in this case denote X := X) or of X (if X
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is quasi-projective) containing S. Let Y ⊂ Y be the open dense subset of
irreducible cycles contained in X. Then S ⊂ Y and S is a closed analytic
(respectively, algebraic) subvariety in Y. Let S be its closure in Y which is
an irreducible analytic (respectively, algebraic) subvariety in Y.
The locus S ⊂ X swept by S is the union of cycles in S, which also can be

obtained as the image of the universal family US as in Proposition 3.1(1).
By Remmert’s mapping theorem it is a closed analytic subvariety (or closed
algebraic subvariety). Note that it is irreducible by construction.
Similarly, the locus S ⊂ X swept by S is the union of cycles in S, or

the image of the universal family US over S. Since US ⊂ US is an open
subset, a complement of a closed analytic subspace (respectively, algebraic
subscheme), the image S is constructible by Chevalley–Remmert Theo-
rem [41, Thm. on p. 291 and Rem. on p. 293]. In particular, S is dense in
S and contains an open subset also dense in S. So it makes sense to speak
about the tangent space TsS to S at a general point s ∈ S and by Sard
Theorem TsS is the image of a tangent space to US at a (general) point
u ∈ US such that u 7→ s.
Analogously, we may define the loci of other sensible families of sub-

varieties, such as; proper rational curves through a fixed point x ∈ X,
rational curves with a non-standard splitting type of the tangent bundle
(see Section 5.1), linear subspaces (see Section 3.2). The sensibility of a
family of cycles R is guaranteed if its closure R in the cycle space of X is
a closed reduced analytic subspace (respectively, closed reduced algebraic
subscheme) and also the boundary R\R is a closed analytic subspace (re-
spectively, closed algebraic subscheme). In Corollary 3.10 we also show that
it is sometimes sensible to consider the loci of “small” families of curves.

3.2. Lines and linear subspaces of a polarised analytic set

Recall from Definition 2.7 the notions of line and linear subspace of a
polarised complex analytic space.

Definition 3.3. — A family of linear subspaces of dimension k is:
• a proper surjective morphism π : UR → R between reduced an-
alytic spaces (respectively, algebraic varieties) with all the (cycle
theoretic) fibres isomorphic to Pk, and

• a map ξ : UR → X,
such that all the images in X of fibres of π are linear subspaces and
ξ|Pk : Pk → X is the normalisation map of the image. The map ξ is called
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the evaluation map. If k = 1, we simply say a family of lines, rather than
a family of linear subspaces of dimension 1.

If necessary, we may always replace R with its normalisation, and UR
with the pullback, so it is harmless to assume that R is normal. Usually,
we may also assume that UR is normal, as shown in Lemma 3.4. Solely for
the purpose of this lemma we define a condition (?). We say a morphism
π : U → R of analytic spaces satisfies (?), if:

(?) each set theoretic fibre of π is Pk and there exists a line bundle on
U , which restricts to O(1) on each (set-theoretic) fibre.

Lemma 3.4. — Suppose that π : U → R is a morphism of analytic
spaces that satisfies (?) and R is normal. Let Unorm be the normalisation
of U . Then the composed map πnorm : Unorm → R satisfies (?).

Proof. — The normalisation map Unorm → U is finite and birational, in
particular it is finite and birational when restricted to a general fibre of
πnorm and π. Thus, it is an isomorphism of the general, reduced fibres. Let
L be the line bundle on U , that restricted to the fibres is O(1), and Lnorm
be its pullback to Unorm. Then Lnorm has degree 1 on a general fibre and
thus on every fibre. Therefore πnorm is birational on every fibre, and all the
set-theoretic fibres are Pk. Furthermore, Lnorm restricts to O(1) on every
fibre. �

The following lemma shows that a general fibre of a morphism of normal
varieties is necessarily normal.

Lemma 3.5. — Let f : Y → Z be a proper morphism of irreducible nor-
mal analytic varieties (or irreducible normal complex algebraic varieties).
Then there is an open dense subset U ⊂ Z such that for all u ∈ U the fibre
f−1(u) is normal. Moreover, U may be chosen as a complement of a closed
analytic subset of Z, respectively, of a closed algebraic subvariety.

Proof. — By Hironaka’s Flattening Theorem [28, Cor. 1] we may assume
in addition that f is flat, because the flattening procedure does not change
the general fibre. Let N(f) :=

{
p ∈ Y : Yf(p) is not normal at p

}
⊂ Y ,

where Yf(p) is the fibre of f over f(p). The set N(f) is a (closed) analytic
subset of Y by [21, Prop. 3.22 on p. 160], or a (closed) algebraic subva-
riety of Y by [26, Thm. 12.1.6(iv)]. By Remmert’s mapping theorem [25,
Ch. III, Cor. 4.3] the image f(N(f)) is a closed analytic subset of Z. In the
algebraic case f(N(f)) is a closed algebraic subset of Z by the definition of
proper morphism, see for instance [27, Ch. II.4]. It remains to prove that
f(N(f)) 6= Z.
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Since our base field C is algebraically closed, “normal” is the same as
“geometrically normal”. We are going to reduce the analytic setting to the
local algebraic setting using completions. Without loss of generality, Z is
smooth (by replacing Z with its smooth locus). Further, we may argue lo-
cally and replace Z with a local complete neighbourhood of a smooth point
z ∈ Z and Y with its preimage. That is Z ' SpecC[[z1, . . . , zn]]. Further,
since normality is a local property, we may replace Y with a completion of
the local ring of a closed point in y ∈ Y .
Thus we have a dominant morphism Y → Z of local Noetherian schemes

that corresponds to an inclusion of algebras C[[z1, . . . , zn]] → OY (Y ). The
claim of the lemma is that the preimage Yη of the generic point η ∈ Z is
normal. Indeed, Yη = Spec(C[[z1, . . . , zn]] \ {0})−1OY (Y ), which is normal,
as it is a spectrum of a multiplicative set times an integrally closed ring. �
The following proposition explains the relation between the families of

linear subspaces and the corresponding subvarieties of the Barlet space
(respectively, the Chow variety).

Proposition 3.6. — Let X be a complex analytic variety (respectively,
complex algebraic variety) with a line bundle L.

(1) Suppose that π : UR → R is a family of linear subspaces of (X,L)
with evaluation map ξ : UR → X. Suppose in addition that R is
normal. Then there is a morphism from R to the Barlet space of
X (respectively, to the Chow variety of X), such that for all points
r ∈ R, the image of r in the Barlet space (respectively, in the
Chow variety) of X is the point representing the linear subspace
ξ(π−1(r)).

(2) Suppose that R′ is an irreducible analytic subvariety of the Barlet
space (respectively, the Chow variety) of X, whose all elements
represent linear subspaces of (X,L) of fixed dimension k. Then
there exists a family of linear subspaces π : UR → R, such that
R ⊂ R′ is an open dense subset and for each r ∈ R, the image
ξ(π−1(r)) is the linear subspace corresponding to the point r ∈ R′
of the Barlet space (respectively, Chow variety).

Proof. — To see the first item, consider the incidence subvariety U ′ ⊂
R×X, U ′ :=

{
(r, x)

∣∣x ∈ ξ(π−1(r))
}
, that is, U ′ = (π× ξ)(UR). Note that

the projection U ′ → R is proper and U ′ is reduced as it is an image of
reduced U . Hence U ′ → R is a well defined family of cycles in the sense
of [37, Def. 1.3.10] (note that property (1.3.10.4) is implied by the normality
and Theorem 1.3.17 in the same book), or analytic family of cycles in the
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sense of [25, Ch. VIII, Def. 2.5]. Thus by the universal property of Chow
variety or Barlet space (Proposition 3.1(2)), there is a morphism from R
to the cycle space of X satisfying the required properties.
To see the second item, we may assume that R′ is smooth by restricting

to an open dense subset. Let U ′ be the normalisation of the universal family
of the Barlet space (respectively, Chow variety) restricted to R′, so that
U ′ → R′ is a proper surjective morphism with fibres mapped onto linear
subspaces of X. Since both U ′ and R′ are normal, the general fibre is also
normal by Lemma 3.5. DefineR ⊂ R′ to be an open dense subset containing
only points with normal fibre, and U is the restriction of U ′ to R. The map
U → R is proper, since it is a base change of a proper map U ′ → R′. Let
r ∈ R and Ur be the fibre. Then the evaluation map Ur → X, whose image
is the linear subspace corresponding to r, is finite and birational. Since Ur
is normal, it must be the normalisation map and Ur ' Pk. This shows that
U → R is a family of linear subspaces. �

For the rest of this subsection we suppose that X is in addition projective
and L is ample. In this setting we may strengthen Proposition 3.6 using [2,
Prop. 4.10]:

Proposition 3.7. — LetX be a projective variety with a line bundle L.

(1) Suppose that π : UR → R is a family of linear subspaces of (X,L)
of dimension k with R and UR normal and with evaluation map
ξ : UR → X. Let E := π∗(ξ∗L). Then E is a vector bundle of rank
k + 1 on R and UR ' P(E∗) with OP(E∗)(1) = ξ∗L.

(2) Suppose that L is ample and R is an irreducible normal variety
with a morphism to the Chow variety of X, such that all points in
the image represent linear subspaces of (X,L) of a fixed dimension
k. Then there exists a family of linear subspaces π : UR → R with
evaluation map ξ, such that for each r ∈ R, the image ξ(π−1(r))
is the linear subspace corresponding to the image of r in the Chow
variety.

(3) Suppose that L is ample. The set of linear subspaces of dimension
k is a Zariski closed subset of the Chow variety of X.

In the following proof and in the further sections of this article we will use
the Hom-scheme Hom(Y → X). It is the scheme that parametrises all mor-
phisms Y → X between two varieties or schemes. Formally, its definition
uses [37, Def. I.1.9]. The construction of Hom(Y → X) as an open sub-
scheme of the Hilbert scheme of Y ×X is presented in [37, Thm. I.1.10] (to
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each morphism one associates its graph). See also [46, §4.6.6]. For the exis-
tence of Hom-scheme in the setting of analytic spaces see [25, Thm. VIII.1.5]
or [19, §10.2, Thm. 1].

Proof. — To prove (1) observe that ξ∗L is ample on every scheme the-
oretic fibre of π, since it is OPk(1) on every set theoretic fibre and am-
pleness does not depend on non-reduced part of the scheme structure [38,
Prop. 1.2.16(i)]. Thus ξ∗L is π-ample by [38, Thm. 1.7.8] and π is equidi-
mensional. The claim of (1) follows from [2, Prop. 4.10].
Now we show (2). Let UR be the normalisation of the pullback of the

universal family from the Chow variety. Let ξ : UR → X be the composed
map and π : UR → R be the projection. We continue as in the proof of (1):
ξ∗L is ample on all fibres of π, since ξ restricted to such fibre is finite. Thus
ξ∗L is π-ample [38, Thm. 1.7.8] and equidimensional, with general fibre Pk
by Proposition 3.6(2), and ξ∗L|Pk ' O(1), thus by [2, Prop. 4.10] all fibres
are Pk and π is a family of linear subspaces.

Finally, (3) is also similar: let R′ be the subset of the Chow variety con-
sisting of linear spaces of dimension k. By [37, Thm. I.3.21] the setR′ is con-
tained in a projective reduced scheme parametrising cycles of degree 1. We
have to prove thatR′ is Zariski closed. First we show that it is constructible.
Indeed, consider the Hom-scheme Hom(Pk → X) and inside this Hom-
scheme the reduced subscheme of linear homomorphisms Homlin(Pk →
X). This subscheme consists of the points representing homomorphisms
φ : Pk → X such that φ∗L ' OPk(1). Let Homlin,n be the normalisation
of Homlin(Pk → X). Then the projection map Homlin,n×Pk → Homlin,n

together with evaluation map Homlin,n×Pk → X is a family of linear sub-
spaces of X. By Proposition 3.6(1) there is a morphism from Homlin,n to
the Chow variety of X. By construction this morphism is surjective onto
R′. In particular, R′ is constructible and R′ contains a Zariski open subset
which is dense in closure of R′. Let R be the normalisation of the closure
of R′, π : UR → R the Chow pullback of the universal family and suppose
that ξ is the composed evaluation map. Clearly π is equidimensional and
ξ∗L is π-ample as above, with general fibre Pk, and ξ∗L|Pk ' OPk(1). Again
by [2, Prop. 4.10] all fibres are Pk and π is a family of linear spaces. Thus
all points in the closure of R′ represent k-dimensional linear subspaces. �

Therefore if X is projective and L is ample, then we may briefly say that
the reduced scheme (that is, a union of algebraic varieties) parametrising
lines or linear subspaces is also projective. In particular, the property of
being connected by a line is Zariski closed, that is, the set of pairs (x, y) ∈
X×X, such that x and y are connected by a line is Zariski closed in X×X.
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3.3. Lines on projective varieties

We have the standard consequence of the Mori’s Bend and Break Lemma:

Lemma 3.8 ([37, Cor. II.5.5.2]). — Suppose that X is a projective va-
riety and L is an ample line bundle on X. Consider a positive dimensional
family of distinct lines, that is a map UR → R as above, with R irreducible,
dimR > 0, and distinct fibres P1 ⊂ UR mapped to distinct lines in (X,L).
Then the family may have at most 1 common point.

The following is a generalisation, which is also standard, but hard to
reference explicitly. In fact, the proof is very similar to the proof of Mori’s
bend and break theorem. It treats the case when the family has a common
point and claims that the lines in the family have distinct tangent direc-
tions. Similar statements appear in [35, Thms 1.3 and 1.4], but here we
do not assume that the point x is general, or that the tangent direction is
general.

Lemma 3.9. — Suppose that X is a projective variety and L is an ample
line bundle on X. Consider a positive dimensional family of distinct lines
on (X,L) parametrised by a proper and irreducible R with dimR > 0 and
a point x ∈ X common to all the lines in the family. If all the lines have at
worst nodal singularities at x, then there are at most finitely many lines in
this family that have a fixed tangent direction at x.

Proof. — Suppose on the contrary that there is a positive dimensional
set of lines with a common tangent direction. Without loss of generality,
we may assume that R is a projective curve and all the lines in the family
have a common tangent direction. Normalising R we may assume the curve
is smooth. By Lemma 3.4 we may also assume the total space UR for the
family is normal. By Proposition 3.7(1) the total space UR is a projectivi-
sation of a vector bundle E of rank 2 over R, UR ' P(E). The evaluation
map ξ : P(E)→ X contracts the image of a section σ : R → P(E) to x ∈ X.

To make a further simplification, we may replace X with the image of
the evaluation map ξ. Hence X is a surface. We may also replace X by its
normalisation, that is, assume X is normal.
In this setting, let X̃ be the blow up of X at x with an exceptional divisor

which is the projectivisation of the tangent cone ofX at x. In particular, the
strict transform of each line in the family passes through a single point x̃ by
our assumption about the tangent directions. Let D ⊂ X̃ be an irreducible
component of the exceptional divisor of the blow up containing x̃.
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Let ξ̃ : Ũ → X̃ be the minimal resolution of the rational map P(E) →
X 99K X̃:

Ũ
ξ̃ //

��

X̃ ⊃ D

blow up of x
��

P(E)
ξ //

π

��

X 3 x

R

σ

II

Thus Ũ is a blow up of the smooth ruled surface P(E) in several points
s1, . . . , sk. Consider the strict transform of the section σ(R). It is contracted
by the morphism to X̃ to the point x̃. We claim that none of the blown up
point si is on the section σ(R). Otherwise, let C be the fibre of π through
such si ∈ σ(R). The strict transform C̃ of C in Ũ is disjoint from the strict
transform of σ(R), and by minimality of the resolution, ξ̃(C̃) is also disjoint
from x̃, a contradiction. Thus the rational map P(E) 99K X̃ is regular near
σ(R).

It follows that the preimage of D under P(E) 99K X̃ has an irreducible
component Q which intersects properly σ(R), and is contractible in P(E).
Elementary intersection theory shows that such divisor cannot exist on the
ruled surface P(E). That is, suppose that Q is numerically equivalent to
ασ(R) + βF , where F is a class of a fibre of π. Then:

σ(R)2 < 0, σ(R) · F = 1, F 2 = 0,

α(ασ(R)2 +2β) = Q2 < 0, ασ(R)2 +β = Q · σ(R) > 0, α = Q · F > 0,

which has no solutions for α and β. �

The following conclusion can be informally interpreted as follows. In the
projective setting, if R is a family of lines through a fixed point, then for
any sufficiently small locally closed analytic space R′ containing a general
point of R the locus of lines from R′ is generically an analytic locally closed
submanifold. In particular, it makes sense to discuss the tangent space of
such locus, as we do in Section 7.1.

Corollary 3.10. — Suppose that X is a projective variety with an
ample line bundle L. Consider a family of lines U → R such that R is
irreducible and projective and the evaluation map ξ : U → X is generically
finite to one. Fix a general point c ∈ R and any locally closed analytic
submanifold R′ ⊂ R such that c ∈ R′. Let C ⊂ X denote the curve
corresponding to c. Denote by R′ ⊂ X the locus of R′, that is, R′ is the
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union of lines in X that are represented by points of R′. Then R′ contains
locally closed submanifold T of X that contains a Zariski open subset of
C, and such that dimT = dimR′+ 1. In particular, the Zariski closures of
R′ and T coincide.

Note that indeed, if R is a family of pairwise different lines passing
through a fixed point x ∈ X then the evaluation map ξ : U → X is gener-
ically finite to one by Lemma 3.8, thus the assumption of the corollary is
satisfied.
Proof. — For simplicity, assume ξ : U → X is dominant (hence surjec-

tive) by replacing X with the image of ξ. The evaluation map ξ : U → X

is generically étale by [27, Lem. III.10.5]. Denote by U0 ⊂ U the open sub-
set where ξ is étale. Since ξ is projective and generically finite to one, the
image Z := ξ(U \ U0) ⊂ X is closed and strictly contained in X (which is
irreducible). Let U1 ⊂ U0 be the preimage of the complement of this strict
subset,

U1 = ξ−1 (X \ Z) .

Thus U1 is a Zariski open dense subset of U , while ξ(U1) = X \Z is Zariski
open and dense in X. The restricted map ξ1 : U1 → ξ(U1) is:

• étale, since it is a restriction of the étale map ξ|U0 to an open subset,
and

• projective, since it is the base change of the projective map ξ under
the open embedding X \ Z ⊂ X [47, Tag 01WF],

• finite by [24, Cor. 12.89],
• a finite topological covering.

Let P1
c ⊂ U denote the preimage of {c} under U → R, so that C = ξ(P1

c).
Since c is general in R, U1 ∩ P1

c is a non-empty (hence dense) Zariski open
subset of P1

c , and thus also U1∩U|R′ is (Euclidean) open and dense in U|R′ .
Consider

(ξ1)−1(ξ1(U1 ∩ P1
c)
)

= (U1 ∩ P1
c) t Y,

where Y ⊂ U1 is a (Zariski) closed submanifold. By the topological T4-
axiom for U1 considered with the Euclidean topology, there exists a Eu-
clidean open subset U2 ⊂ U1 which separates U1 ∩ P1

c from Y , or more
precisely, U1 ∩ P1

c ⊂ U2 and the Euclidean closure U2 is disjoint from Y .
Denote T 2 := ξ1(U2∩U|R′), which locally is a finite union of locally closed

analytic submanifolds of dimension equal to dimU|R′ = dimR+ 1, hence
T 2 is a locally analytic subvariety of X of the same dimension. Moreover,
T 2 ⊂ R′, T2 contains a Zariski open dense subset of C, and T2 is smooth
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at a general point of C by the choice of U2. Hence the smooth locus T of
T 2 satisfies the required properties. �

4. Distributions

In this subsection we summarise some basic material about distributions.
We essentially follow the convention of [30, §2], where a distribution is an
equivalence class of subbundles defined on some open subsets.

Definition 4.1. — Suppose that E is a vector bundle on an analytic
space or an algebraic variety X. Consider a pair (GU , U), where U ⊂ X is
an open dense subset and GU is a vector subbundle of E|U (in particular,
GU is itself a vector bundle on U). Two pairs (GU , U) and (G′U ′ , U ′) are
equivalent if and only if GU |U∩U ′ = G′U ′ |U∩U ′ as subbundles of E|U∩U ′ . A
distribution G in E (also denoted G ⊂ E) is an equivalence class of such
pairs.

An alternative definition of a distribution is as a subsheaf.

Lemma 4.2. — Let X, E be as in the definition above. Given a distri-
bution G ⊂ E, we can define its sheaf (also denoted G) of sections as the
subsheaf of sections of E whose images over U are contained in GU , when-
ever (GU , U) is a pair in the equivalence class G. The quotient sheaf E/G
is torsion free. Conversely, a subsheaf G ⊂ E, such that E/G is torsion
free, uniquely determines a distribution in E, whose sheaf of sections is G.

The proof is elementary, and since we are not going to use the sheaf
definition, we skip the proof.

Let X, E, and G be as in Definition 4.1. The rank of G is the rank of GU
as the vector bundle on U . Note that rank does not depend on the choice
of U as any two open dense subsets must intersect. We let U(G) be the
maximal open (dense) subset of X such that a pair (GU(G), U(G)) is in the
equivalence class G. Note that if X is normal, then X \ U(G) is always of
codimension at least 2 in X. In particular, if X is a smooth curve, then G
is always a vector subbundle of E.

The word “distribution” is usually associated with a vector subbundle of
a tangent bundle. In this article we need a slightly more general situation:
we will also consider distributions (for example) in the restriction of the
tangent bundle TX|Y or in the normal bundle NY⊂X , where Y is a closed
subvariety of X.
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All sorts of natural operations can be applied to distributions. If G1 and
G2 are distributions in E, then G1+G2 and G1∩G2 also are. If f : Z → X is
a morphism, and the image of f intersects U(G), then f∗G is a distribution
in f∗E, etc. We write G1 ⊂ G2, if the inclusion holds over U(G1)∩U(G2).
One of the situations we will often consider is when Y ⊂ X is a subvariety

or an analytic subspace, and the distribution is G ⊂ TX|Y . For example,
the tangent bundle TY ⊂ TX|Y is a distribution (note that Y need not be
smooth, U(TY ) is the smooth locus of Y ). We will say that a subvariety, or
an analytic subset Z ⊂ Y is G-integral, if Z intersects U(G) and TZ ⊂ G|Z
as distributions in TX|Z . We say Z is a leaf of G, if Z is G-integral and
dimZ = rkG.

4.1. Singularities and rank 1 distributions

In Section 7 we will work with a rank 1 distribution on a projective
variety B, which will be restricted to various subvarieties in B (or their
normalisations). In that setting B is singular, but nevertheless, we will
slightly abuse (or abbreviate) our notation and write G ⊂ TB to mean the
following:

Notation 4.3. — Whenever B ⊂ X is a singular subvariety of a smooth
variety X and G is a distribution G ⊂ TX|B such that G ⊂ TB as a
distributions in TX|B , we simply write G ⊂ TB, even though TB is not
defined everywhere on B.

Note that the choice of smooth X containing B is irrelevant to the ques-
tions about the distribution G ⊂ TB. In particular, we do not need to
mention X explicitly.
If G ⊂ TB is a rank 1 distribution, then G is a foliation, that is ana-

lytically locally there exist leaves of G through general points of B. More
precisely, such leaves exist through any (smooth) point of U(G), and they
are locally unique (that is, if ∆1 ⊂ B and ∆2 ⊂ B are two leaves containing
a common point x ∈ ∆1 ∩∆2, such that x ∈ U(G) is a smooth point, then
∆1∩∆2 is also a leaf and it is open in both ∆1 and ∆2). In this subsection
we review some elementary lemmas about such distributions.
The following lemma (in a more general setting) is found in [17, Thm. 3.8]

or in [1, §4.1].

Lemma 4.4. — Suppose that G ⊂ TPk is a rank 1 distribution on a
projective space Pk, which after the restriction to a general line P1 ⊂ Pk is

OP1(1) ⊂ TPk|P1 ' O(1k−1, 2).
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Then there exists a point y ∈ Pk such that all the lines through y are
tangent to G, that is, the leaves of G are those lines. In particular, the
leaves of G are algebraic.

Another classical fact about rank 1 distributions is the following rectifi-
cation property. Briefly, it claims that it makes sense to consider “the union
of leaves of G in B through general points of a curve”.

Lemma 4.5. — Subject to Notation 4.3, let B be a projective variety,
and C ⊂ B is a closed curve intersecting the smooth locus of B. Consider a
rank one distribution G ⊂ TB, which is generically transversal to C. Then
there exists a Euclidean open subset U ⊂ B, which intersects C in a dense
Zariski open subset C ∩ U ⊂ C, and a closed analytic submanifold Γ ⊂ U ,
such that dim Γ = 2, C ∩ U ⊂ Γ, and G|Γ ⊂ TΓ.

This lemma is similar to the discussion in [8, §1.2]. It also resembles [9,
Prop. 4.5] or [15, §4.1]. However, in all these approaches one can extract
appropriate surface near (in the Euclidean topology) each point of C. The
missing part we need is gluing these locally defined surfaces to one surface
containing a Zariski dense subset of C. Since we do not have compactness
neither of smooth locus of B or of regular locus of G (even after restricting
to C), it is a little subtle to obtain finiteness of the local covers. For instance,
in [15, §4.1] the authors construct an universal leaf Λ, which is an analytic
submanifold of the product B ×B containing an open dense subset of the
diagonal and the surface Γ we are looking for should be just the image
under second projection of the preimage of C under the first projection
Λ → B. However, since the relevant subsets are not compact, we are not
aware of any statement that would guarantee that this image is an analytic
subspace.
The argument is elementary and uses standard topological methods, but

tedious, so we skip the details, leaving only the following sketch.

Proof of Lemma 4.5 (sketch). — Let Y ⊂ B be a Zariski open dense
subset contained in the smooth locus of B, where G is defined and such
that C is smooth and transversal to G at points of C∩Y . The construction
of U is such that C ∩U = C ∩Y , and U is a union of small neighbourhoods
of points of C ∩ Y . On each such small neighbourhood we can find the
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appropriate analytic surface using Rectification Theorem [31, Thm. 1.18].
Then use the paracompactness of Y and its subsets [18] to observe that it
is enough to consider only a locally finite family of such small open subsets.
Conclude that the small analytic surfaces glue together to a well defined
surface Γ with the desired properties. �

Definition 4.6. — We say that Γ as in Lemma 4.5 is a surface obtained
as the union of leaves of G through general points of C.

4.2. Manifolds with global corank 1 distributions

Definition 4.7. — Suppose thatX is a complex manifold and F ⊂ TX
is a distribution, such that U(F ) = X, that is, a distribution defined on the
whole of X. Suppose that rkF = dimX − 1 and let θ : TX → TX/F =: L
be the quotient map, so that the following is a short exact sequence of
vector bundles on X:

0 −→ F −→ TX
θ−→ L −→ 0.

In this situation we say that (X,F ) is a manifold with a global corank 1
distribution.

We stress the word global. In the definition above we assume F ⊂ TX

is a vector subbundle.

Observation 4.8. — Suppose that (X,F ) is a manifold with a global
corank 1 distribution, and Y ⊂ X is an analytic subset. Let Y0 be the
smooth locus of Y and consider a distribution G ⊂ TY0, which is defined
as G := TY0∩F . Then either Y is F -integral, or there exists an open dense
subset Y ′ ⊂ Y , such that (Y ′, G|Y ′) is a manifold with a global corank 1
distribution.

The above observation captures the motivation for our treatment of man-
ifolds with global corank 1 distributions. That is, even though our primary
interest is in contact manifolds (see Section 5), in our arguments we will
prove claims about subvarieties of contact manifolds, and they have the
property of being (generically) manifolds with corank 1 distributions. As
a side result, some of our intermediate results apply to a more general
situation, than just contact manifolds.
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Proposition 4.9 ([10, Prop C.1(i) and (iv)]). — Let (X,F ) be a man-
ifold with a global corank 1 distribution and L as in Definition 4.7.

(1) the locally defined derivative dθ determines a well defined homo-
morphism of vector bundles:

dθ :
∧2
F −→ L.

Specifically, θ : TX → L locally is a 1-form on X (after choosing
a local trivialisation of L). The locally defined derivative of θ is a
2-form, which depends on the choice of the trivialisation of L. Its
restriction to F does not depend on this choice, and thus it glues
to a globally defined map

∧2
F → L.

(2) If ∆ ⊂ X is F -integral, ∆0 is the smooth locus of ∆, then dθ|∆0 ≡ 0.
In particular:

dim ∆ 6 rkF − 1
2 min
x∈∆

(rk dθx) .

Notation 4.10. — Suppose that (X,F ) is a manifold with a global corank
1 distribution, as in Definition 4.7.

(a) Item (1) of Proposition 4.9 implies that for every x ∈ X there
is a skew-symmetric bilinear form dθx : Fx × Fx → Lx ' C. Its
rank rk dθx (that is, the rank of the induced linear map Fx →
F ∗x ⊗ Lx) is an even integer due to skew-symmetry. Moreover, the
rank is semicontinuous as a function of x, that is, the subsets
{x ∈ X| rk dθx 6 2k} are closed analytic subspaces for any integer
k. In particular, for every subvariety Y ⊂ X, there is an open dense
subset of Y , where rk dθx is constant.

(b) Suppose that Y ⊂ X is a subvariety. Consider the vector bundle
TX|Y on Y and another distribution G in this vector bundle TX|Y
(we stress, that G is not assumed to be a distribution in TX, that
is, it needs not to be defined over a general point of X; it is only
defined on an open subset of Y ). In this situation by G⊥F we denote
the distribution in TX|Y :

(4.1) G⊥F := (G ∩ F |Y )⊥dθ ⊂ F |Y .

Here ⊥dθ denotes the perpendicular subspace with respect to the
skew form defined in (a). This distribution is defined on an open
dense subset of Y where the rank of G∩F |Y is constant and where
rk dθ is constant.
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(c) For any x ∈ X, the degeneracy locus of F at x is (Fx)⊥dθ ⊂ Fx. The
degeneracy subdistriution of F is the distribtion in TX determined
by the degeneracy loci at general points of X. Equivalently, the
degeneracy subdistribution of F is F⊥F . For consistency, we say
that the degeneracy subdistribution of TX is TX (this would be a
degenate case, when θ = 0, and arises from restricting F to smaller
subvarieties which are integral).

Definition 4.11. — In the situation of Definition 4.7, consider the open
dense subset X0 ⊂ X, where rk dθx is constant and equal to 2r for x ∈ X0.
Suppose that ∆ ⊂ X0 is an analytic submanifold. We say ∆ is maximally
F -integral if ∆ is F -integral and dim ∆ = dimX − r − 1.

This is an analogue of a Legendrian subvariety in contact manifold, but
here F need not to be a contact structure on X (that is, dθx is not neces-
sarily non-degenerate).

Lemma 4.12. — Suppose that (X,F ) is a complex manifold with a
global corank 1 distribution, L, θ as in Definition 4.7, and X0 ⊂ X is the
open dense subset where rk dθx is constant. Pick x ∈ X0 and let v ∈ TxX.
Then v is in the degeneracy locus of F , if and only if v ∈ Tx∆ for every
maximally F -integral analytic submanifold ∆ ⊂ X0 containing x.

Proof. — We have (Fx)⊥dθ = {v ∈ Fx : ∀ w ∈ Fx,dθx(v, w) = 0}. Pick a
maximally F -integrable analytic submanifold ∆ ⊂ X0 with x ∈ ∆. We
first prove that (Fx)⊥dθ ⊂ Tx∆. Suppose otherwise that v /∈ Tx∆ and
v ∈ (Fx)⊥dθ . Let W = Tx∆ + v be the vector space of dimension (dim ∆ +
1) = dimX−r. It is an isotropic subspace, because v is perpendicular to all
vectors in Fx, and Tx∆ is perpendicular to itself. But the maximal possible
dimension for an isotropic subspace is dimFx − r, a contradiction.

We now prove the other implication. The problem is analytically local
around x, so we can assume X = X0 is an analytically open subset of
CdimX , x = 0, L ' OX is a trivial line bundle, and θ ∈ H0(T ∗X ⊗
L) ' H0(T ∗X) is in the Darboux normal form θ = dx0 −

∑r
i=1 xidxr+i.

Clearly Fx = {dx0 = 0} and (Fx)⊥dθ = {dx0 = · · · = dx2r = 0}. Let ∆1 =
{x0 = x1 = · · ·xr = 0} and ∆2 = {x0 = xr+1 = · · ·x2r = 0}. These are
maximally F -integral submanifolds of X0 containing x, so

v ∈ T0∆1 ∩ T0∆2

= {dx0 = dx1 = · · · = dxr = 0} ∩ {dx0 = dxr+1 = · · · = dx2r = 0}

= (Fx)⊥dθ . �
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All the manifolds with global corank 1 distributions come with a natural
polarisation in the sense of the opening paragraph of Section 3. Namely,
(X,L = TX/F ) is a polarised manifold. Here L is a line bundle, since it
is a quotient of the vector bundle of rank dimX by its subbundle of rank
dimX − 1.

Lemma 4.13. — LetX be a manifold with a global corank 1 distribution
F and L, θ as in Definition 4.7. If Γ ⊂ X is a linear subspace of (X,L),
then Γ is F -integral. In particular, lines are always F -integral.

5. Contact manifolds

Let (X,F ) be a manifold with a global corank 1 distribution, with the
short exact sequence 0 → F → TX

θ→ L → 0. In particular, L is a
line bundle that is going to be used to measure the degrees. Recall the
map dθ :

∧2
F → L from Proposition 4.9. As defined in Section 1, if dθ is

nowhere degenerate then (X,F ) is a contact manifold. In particular, dθ
makes Fx into a symplectic vector space for each x ∈ X and dimX is odd.

If X is a contact manifold of dimension 2n + 1, then −KX is a divisor
linearly equivalent to the Cartier divisor of the line bundle L⊗(n+1). Our
main interest is when X is projective, in fact Fano, which is therefore
equivalent to L being ample. However, some of the statements are true in
a more general setting.
Maximally integral submanifolds (or subvarieties) of contact manifolds

are called Legendrian. That is:

Definition 5.1. — A subvariety, or an analytic subspace (or a reduced
subscheme) Y ⊂ X is Legendrian, if it is of (pure) dimension n and TY ⊂
F |Y (as distributions in TX|Y ).

5.1. Splitting types on special lines

In this subsection we suppose that X is a complex contact manifold, with
a contact distribution F ⊂ TX and the quotient line bundle L = TX/F .
In particular, X does not need to be projective, or compact.
Suppose that f : P1 → X is a holomorphic map such that f∗L ' O(1),

that is f is a parametrisation of a line. We consider f∗TX. By [36, Prop. 2.8]
the splitting type of this vector bundle is

f∗TX = O(a1, . . . , an,−b1, . . . ,−bn+1)
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with ai > 0 and bj > 0. We also have c1(f∗TX) = n+ 1, so
∑
ai−

∑
bj =

n + 1. Since the differential gives a non-zero morphism TP1 ' O(2) →
f∗TX, we must have at least one ai > 2. In particular, in the case of a
standard line, as defined in (1.2), we have a1 = 2, a2 = · · · = an = 1,
b1 = · · · = bn+1 = 0.

Further consider f∗F . Since F ∗ ' F ⊗ L, we also have:

f∗F ' O(c1, . . . , cn, 1− c1, . . . , 1− cn)

for some integers ci > 0. In particular, there are exactly n strictly positive
entries in this splitting.

Lemma 5.2. — Suppose that (X,F ) is a complex contact manifold with
line bundle L = TX/F and f : P1 → X is a parametrisation of a line on
(X,L). Then the short exact sequence

0 −→ f∗F −→ f∗TX
f∗θ−→ O(1) −→ 0

does not split, and ci = ai.

Proof. — Suppose on the contrary, that the exact sequence splits. Then
one of the integers ai is equal to 1, say an = 1. Further

f∗F = O(a1, . . . , an−1,−b1, . . . ,−bn+1),

a contradiction, since there are only n − 1 strictly positive entries in this
splitting.
Consider the restriction f∗θ : O(a1, . . . , an) → O(1). Since ai > 1 and

the sequence does not split, this restriction must be identically zero. So the
positive part comes from f∗F and ci = ai. �

Now suppose that there is only one b = bn > 0 and the remaining
b1 = · · · = bn−1 = 0. Equivalently, there is at most one negative term in
the splitting of f∗TX. Then one of the integers ai, say an, must satisfy
1 − an 6 −b. So suppose that an = b + c for some c > 0. We must have(∑n−1

i=1 ai
)

+ c = n+ 1, and we conclude:

Lemma 5.3. — If there is at most only one negative term in the splitting
of f∗TX, then either

f∗TX = O(−b, 0n, 1n−2, 2, b+ 1) and

f∗F = O(−b,−1, 0n−2, 1n−2, 2, b+ 1),
or

f∗TX = O(−b, 0n, 1n−1, b+ 2) and

f∗F = O(−b− 1, 0n−1, 1n−1, b+ 2)
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for some b > 0. Note that in the second case the image of f must have
cuspidal singularities (unless b = 0), that is, the curve is not an immersed
curve.

The lemma applies to a situation where there is a set of lines filling in a
divisor.

Lemma 5.4. — Assume (X,L) is a polarised complex manifold and X
is either compact of Fujiki class C or quasi-projective. Suppose that B
is an irreducible (analytic or algebraic) variety parametrising lines on X,
and let B ⊂ X be the locus swept by those lines. Assume c ∈ B is a
general line from B, and let C ⊂ B be the corresponding curve, with a
birational parametrisation f : P1 → C. Then f∗TX has at most codim(B ⊂
X) negative terms in its splitting, and the distribution f∗TB ⊂ f∗TX is
contained in (f∗TX)>0.

Proof. — Since C is a rational curve, we can replace B with HomB, a
subvariety of Hom(P1 → X), consisting of the morphisms that are bira-
tional onto their images, and whose images are the curves in B. The locus
swept by HomB, that is, the union of images of all morphisms from HomB,
is equal to B. In this situation f ∈ HomB is a general point, in particu-
lar, it is a smooth point of HomB, even though f might be a singular or
non-reduced point of Hom(P1 → X). Similarly, if p ∈ P1 is a general point,
then f(p) is a general point in B.
Thus all the tangent directions in Tf HomB ⊂ Tf Hom(P1 → X) can be

realised as curves in HomB, that is, as deformations of C, which (in partic-
ular) are contained in B. We have Tf Hom(P1 → X) = H0(f∗TX) and the
differential of the evaluation map Hom(P1 → X)× P1 → X at (f, p) is the
evaluation of sections H0(f∗TX) → f∗(TX)p = Tf(p)X [37, Prop. II.3.4].
The deformations obtained from HomB sweep out B, so the image of the
evaluation contains Tf(p)B, which is only possible if the number of non-
negative terms in the splitting of f∗TX is at least Tf(p)B = dimB. Equiv-
alently, the number of negative terms is at most codim(B ⊂ X). �

Corollary 5.5. — Assume (X,F ) is a complex contact manifold and
X is either compact of Fujiki class C or quasi-projective. Suppose that B is
an irreducible analytic or algebraic subvariety of the Barlet space or of the
Chow variety, whose general member is a non-standard line. Then:

(1) the locus B swept by B does not cover X, and
(2) if, in addition, codim(B ⊂ X) = 1, then the splittings of f∗TX and

f∗F are as in Lemma 5.3, with b < 0, where f is the normalisation
of the general line from B.
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For future reference we note the following lemma:

Lemma 5.6. — Assume as above that (X,F ) is a complex contact man-
ifold and X is compact of Fujiki class C or quasi-projective. Suppose that
B is an irreducible analytic or algebraic subvariety of the Barlet space or
of the Chow variety, whose general member is a non-standard line and
codim(B ⊂ X) = 1, where B ⊂ X is the locus swept by B. Let G ⊂ TX|B
be the rank 1 distribution defined as

G = TB⊥F = (TB ∩ F |Y )⊥dθ .

Consider a general line in B and its parametrisation f : P1 → X. Then
f∗G ⊂ f∗TX is equal to O(b+ 1) ⊂ O(−b, 0n, 1n−2, 2, b+ 1) or O(b+ 2) ⊂
O(−b, 0n, 1n−1, b+ 2). In the first case, if in addition b = 1, we may choose
the splitting of O(2, 2) = O(2, b+ 1) = O(2)⊕O(b+ 1) in such a way that
G is the second summand. In the latter case, f∗G = TP1 as distributions
in f∗TX, that is, the general line in B is tangent to G.

Proof. — Generically, we have f∗TB = (f∗TX)>0 and

f∗TB ∩ f∗F = (f∗TX)>0 ∩ f∗F = O(−1, 0n−2, 1n−2, 2, b+ 1) or

= O(−1, 0n−2, 1n−1, b+ 2).

(see Lemma 5.3 and Corollary 5.5). Thus f∗TB ∩ f∗F extends to a vector
subbundle of f∗TX, and the degree of its perpendicular line bundle

G = (f∗TB ∩ f∗F )⊥dθ ' (f∗F/(f∗TB ∩ f∗F ))∗ ⊗ f∗L

is b+1 in the first case or b+2 in the second case. The remaining statements
are straightforward. �

5.2. Parameter spaces for lines on contact Fano manifolds

Let (X,F ) be a contact Fano manifold of dimension 2n + 1. A lot of
attention aims to understand lines on X. Let us underline, that we mean
lines with respect to the polarisation L = TX/F , as in Section 3.2. In
particular, if X = P2n+1, then L ' OP2n+1(2) and there are no lines on
X. In all the other projective cases, the lines exist and cover X: for X =
P(T ∗M), the ordinary lines in the fibres are lines with respect to L; for X
Fano with PicX = Z[L], this is observed (for example) in [32, §2.3].

By Proposition 3.7(3) the set of lines on (X,L) is Zariski closed in the
Chow variety. Let H be an irreducible component of this set. Thus each
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point in c ∈ H represents an irreducible rational curve C ⊂ X with nor-
malisation f : P1 → C, and f∗L = OP1(1).
If Z is a scheme we denote by Zred the reduced subscheme of Z. As in

Section 3.2, from the definition of the Chow variety, H comes with the
following diagram:

UH
φ

  

π

~~
H X

where UH is the universal family, that is the subvariety of H × X, such
that the projection π : UH → H is equidimensional and the set-theoretic
fibre π−1(c)red is {c} × C, C is the curve corresponding to c. The map
φ : UH → X is a projection on the second factor.
For x ∈ X, we let Hx be the scheme of lines through x defined as

π(φ−1(x))red. Here, although Hx has a reduced scheme structure, we avoid
the word “variety”, since we cannot claim that Hx is always irreducible.
We also let Hx ⊂ X be the union of lines through x, that is φ(π−1(Hx))red.

Remark 5.7. — Kebekus in his presentation of [32, 34] assumes in addi-
tion that H dominates X, that is, there exits a line from H that passes
through a general point of X. However, this assumption is redundant, and
below we briefly explain why.

Proposition 5.8 ([32, Prop. 4.1]). — Suppose that X is a contact Fano
manifold of dimension 2n + 1, not isomorphic to P2n+1. Let x ∈ X be
any point, and H an irreducible component of the subset of Chow variety
parametrising lines. Suppose that Hx is the scheme of lines through x and
Hx is the union of lines through x as above. Then Hx ⊂ X is Legendrian, in
particular, it is of pure dimension n. Furthermore, Hx is of pure dimension
n− 1.

Proof. — By the standard dimension estimates, coming from the defor-
mation theory and Riemann–Roch for P1, we have dimHx > n−1 (compare
to [32, Equation (2.1)]). Moreover, dimHx = dimHx + 1 by Mori’s bend
and break (Lemma 3.8). Thus it remains to prove that Hx is F -integral.

Let y ∈ Hx be a general (smooth) point of an irreducible component
of Hx, let c ∈ Hx represent a curve C ⊂ X that contains x and y and
is smooth at y. Let f : P1 → C be the normalisation map with p ∈ P1

mapped to x. By [37, Prop. II.3.4]

TyHx ⊂ TyC +H0(P1, f∗(TX)⊗OP1(−p))|y.
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By Lemma 4.13 it is enough to show that the second summand is contained
in Fy. This follows from Lemma 5.2, since all the sections of f∗(TX) ⊗
OP1(−1) must come from sections of f∗(F )⊗OP1(−1). �

Corollary 5.9. — With X and H as in Setting 2.6 we have dimH =
3n− 1, and H dominates X.

Proof. — As in [32, (2.1)], dimH > 3n− 1. On the other hand

dimH = dimHx + dimH − 1,

where H ⊂ X is the locus swept by H (that is, the union of all the lines
from H), and x ∈ H is a general point. Since dimHx = n− 1 and dimH 6
dimX = 2n+ 1, we must have dimH = 3n− 1 and H = X. �

Similarly, if B,S ⊂ H are some subfamilies of lines, then we define
UB,US ⊂ UH, Bx,Sx ⊂ Hx, Bx, Sx ⊂ Hx in an analogous way. Typi-
cally, B will be the family of non-standard lines, and S will be the family of
singular lines, or rather they will be some irreducible components of these
families.

6. Singular lines

Throughout this section we will assume the following setting:

Setting 6.1. — Suppose that X is a complex manifold, and L is a
line bundle on X. In addition, we impose our favourite assumptions on X:
either X is compact of Fujiki class C or X is quasi-projective. Consider the
Barlet space of X or, respectively, the Chow variety of X. Inside the cycle
space consider an irreducible component S of the set of singular lines on
(X,L) (see Section 3.1). Let US ⊂ S ×X be the universal family for S and
let S ⊂ X be the image of the projection US → X. That is, S is the locus
swept by lines from S.

Note that we do not claim that S or S are closed in the cycle space or
in X. As explained in Section 3.1, S is locally closed with closure S, which
is an analytic variety, and such that the boundary S \ S is also locally
closed. Moreover, S is constructible by Chevalley–Remmert Theorem [41,
Thm. on p. 291 and Rem. on p. 293].

6.1. Kebekus results on singular lines in the projective case

Deformations of singular rational curves are studied by Kebekus in [33]
(in general setting) and in [32, §3] (in the setting of contact Fano manifolds).
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The summary of these results (restricted to the setting of lines) is presented
in the following proposition.

Proposition 6.2. — Let (Y, LY ) be a polarised projective variety (not
necessarily smooth, or normal). Suppose that LY is ample and y ∈ Y is a
general point. Then the set of singular lines through y is at most finite, and
all these lines are smooth at y. If Y is in addition a contact Fano manifold
with the contact distribution F ⊂ TY such that LY ' TY/F , then all the
lines through y are smooth.

For a proof see [33, Thm. 3.3(2)] and [32, Prop. 3.3]. We will also gener-
alise the latter result and proof in Proposition 6.5. We will need the follow-
ing combination of these two statements, that states that dimension of the
variety parametrising singular contact lines on a contact Fano manifold is
at most 2n− 1.

Proposition 6.3. — In Settings 2.4 and 6.1 combined we have dimS 6
2n− 1.

Proof. — By Proposition 6.2 applied to Y = X and LY = L (contact
case), S 6= X, thus dimS 6 dimX − 1 = 2n. Further, by Proposition 6.2
applied to (Y, LY ) = (S,L|S) (general case), there are finitely many singular
lines through a general point of S. Thus dimS = dimS − 1 6 2n − 1 as
claimed. �

6.2. Singular lines as morphisms

An integral singular rational curve can be always dominated by an in-
tegral singular plane cubic, that is, by a rational curve with a single node
or cusp. For that reason, (in Setting 6.1) let Q be a singular plane cubic,
and let Homlin(Q → X) be the normalisation of the space of morphisms
f : Q→ X such that the degree of the line bundle f∗L is 1. Note that such
morphism is automatically birational onto its image.

Lemma 6.4. — In Setting 6.1, there exists a singular plane cubic Q and
an irreducible component HomS of the analytic space Homlin(Q → X),
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which dominates S, that is, we have the commutative diagram:

HomS ×Q

ev

��

pr1

xx
imQ

��
HomS

im
��

US
φ

$$

π

xxS X

and the map im: HomS → S is dominant. Here ev(f, q) = f(q) is the eval-
uation map, pr1 is the projection map, im(f) is the image curve, considered
as a point in S, and imQ(f, q) = (im(f), f(q)). Moreover, fix a smooth point
q ∈ Q. Then the map imQ|HomS ×{q} : HomS ×{q} → US is dominant too.

Proof. — Pick a general point c ∈ S. If c represents a curve which has at
least one node, pick Q to be the nodal plane cubic. Otherwise, pick Q to be
the cuspidal plane cubic. Let P1 → Q be the normalisation map. The map
Homlin(Q→ X)× P1 → Homlin(Q→ X) together with a map ξ, which is
the composition of the normalisation and ev, makes a family of lines. Thus
there is a map from Homlin(Q→ X) to the cycle space by Proposition 3.6.
All singular lines with a node or a cusp (depending on the singularity of
Q) will be in the image of this map. In particular, by the generality of our
choice of c, the component S is dominated by an irreducible component of
Homlin(Q→ X), showing the first claim.

To see that imQ|HomS ×{q} is dominant, we note that the automorphism
group of Q acts transitively on the smooth points of Q. Compare also
with [33, Prop. 2.8]. �

6.3. Singular lines and distribution

For the rest of this section we will assume in addition to Setting 6.1 that
0 → F → TX

θ→ L → 0 is a short exact sequence of vector bundles as
in Section 4.2, so that X is a manifold with a global corank 1 distribution
(and the line bundle L from Setting 6.1 coincides with the quotient TX/F ).
Later, we will also assume that F is either generically or globally a contact
distribution.
The locus S swept by singular lines S contains an open dense subset S0,

that is a locally closed analytic subspace of X. Define the distribution G ⊂
TS0 by G := TS0 ∩ F |S0 (here, if S0 is not smooth, TS0 is a distribution
in TX|S0 , as discussed in Notation 4.3). By Observation 4.8, either S0 is
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F -integral, or there exists a further open dense subset S′ ⊂ S0, such that
(S′, G|S′) is a manifold with a global corank 1 distribution.

Proposition 6.5. — In Setting 6.1, assume in addition that X has a
global corank 1 distribution F such that L ' TX/F . Suppose that c ∈ S
is a general point corresponding to a singular line C ⊂ X. Then C ∩ S0 is
generically tangent to the degeneracy subdistribution of G|S0 .

The proof of this proposition follows quite strictly the lines of the proof
of [32, Prop. 3.3], however our statement is stronger.

Proof. — Since C ⊂ S, the claim is clear if S0 is F -integral. Thus, us-
ing Observation 4.8, we may suppose that S′ is a manifold with a global
corank 1 distribution, where S′ is open and dense in S.
Pick a singular plane cubic Q and an irreducible component HomS as in

Lemma 6.4, so that the map evq : HomS → S, evq(f) = f(q) is dominant
for any smooth point q of Q (compare to the discussion at the end of
Section 3.1).
For a general morphism f ∈ HomS the tangent map of evq has the

maximal rank at f , that is, rk Tf evq = dimS. The set of pairs (f, q) for
which the rank is maximal is open in HomS ×Q. By [27, II.6.10.2, II.6.11.4
and Ex. II.6.7] the smooth points of Q are in 1:1-correspondence with line
bundles of degree one. So fix a general f ∈ HomS , and a general point
q ∈ Q, such that OQ(q) � f∗(L) and rk Tf evq = dimS, see Lemma 6.4.
Note that also OQ(q′) � f ′∗(L) and rk Tf ′ evq′ = dimS for all q′ in a small
neighbourhood of q ∈ Q and f ′ in a small neighbourhood of f ∈ HomS .
Let s = f(q) and C = f(Q). Note that C and s are general. Suppose to

the contrary of the claim of the proposition that TsC is not tangent to the
degeneracy locus of G at s. By Lemma 4.12 applied to the manifold with
global corank 1 distribution (S′, G|S′), there exists ∆ ⊂ S′, a maximally
G-integral analytic submanifold of S′, which is transversal to C at s. Since
evq has the maximal rank, we can find a section Γ ⊂ HomS over ∆, that
is, a submanifold Γ such that evq |Γ : Γ→ ∆ is biholomorphic near f 7→ s.
By the construction, ev(Γ×Q) contains a small analytic submanifold ∆′ of
S′ of dimension dim ∆ + 1, that contains ∆ and C = f(Q). In particular,
∆′ cannot be G-integral.
So there exists (f ′, q′) ∈ Γ ×Q in a small neighbourhood of (f, q), such

that Tf ′(q′)∆′ 6⊂ Gf ′(q′), so θ(Tf ′(q′)∆′) � 0. But

Tf ′(q′)∆′ = T(f ′,q′) ev(Tf ′Γ + Tq′Q) = Tf ′ evq′(Tf ′Γ) + Tf ′(q′)f
′(Q)

⊂
{
σ(q′) | σ ∈ H0((f ′)∗TX)

}
+ Tf ′(q′)f

′(Q).
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Since θ(Tf ′(q′)f ′(Q)) = 0 by Lemma 4.13, there must exist a section σ ∈
H0((f ′)∗TX), such that (f ′)∗(θ)(σ)(q′) 6= 0. But (f ′)∗(θ)(σ) ∈ H0((f ′)∗L)
and

σ(q) ∈ Tf ′(q)Γ ⊂ Gf ′(q)
So (f ′)∗(θ)(σ) 6= 0 and it vanishes at q, a contradiction with our choice of
q. So TsC is tangent to the degeneracy locus of G at s as claimed. �

Suppose that X is a generically contact manifold as defined in Section 1.
Translating it into the language introduced in Section 4.2, X is a mani-
fold with a global corank 1 distribution and the rank rk dθx from Nota-
tion 4.10(a) is equal to dimX − 1 (maximal possible value) for a general
point x. We obtain the following corollaries which generalise Proposition 6.2
to the situation, where either X is a projective generically contact mani-
fold, or X is a contact manifold, which is not necessarily projective. In the
first situation, X could be for instance a birational modification of a projec-
tive contact manifold. In the second situation, X can be a quasi-projective
contact manifold (see [29]) or a compact contact manifold of Fujiki class C
(see [13, 22]).

Corollary 6.6. — In Setting 6.1, suppose in addition that (X,F ) is
a generically contact manifold of dimension 2n + 1 such that TX/F ' L.
Then S 6= X, that is, the singular contact lines do not cover X. If in
addition X is projective and L is ample, then dimS 6 2n−1 = dimX−2.

Proof. — Suppose that S is non-empty, c ∈ S is a general singular line,
and s ∈ C is a general point on this line. Then by Proposition 6.5, one has
TsS ∩ Fs ⊂ TsC⊥ $ Fs. Thus TsS $ TsX and S 6= X.

If X is projective and L is ample, then by Proposition 6.2 (general case
applied to S) we get dimS 6 dimS − 1 6 dimX − 2. �

Corollary 6.7. — In Setting 6.1 suppose that (X,F ) is a (globally)
contact manifold such that TX/F ' L. If dimS = dimX − 1 = 2n, then
dimS = dimX − 2 = 2n− 1.

Proof. — Let S0 ⊂ S be the smooth locus of S. Since S has codimen-
sion 1 in X, hence G := (TS)⊥F is a rank one distribution in TS0, and by
Proposition 6.5, the singular lines in S must be the leaves of G. In partic-
ular, there is a unique such line through a general point of S, and we must
have dimS = dimS − 1 = dimX − 2 as claimed. �

7. Divisors of non-standard lines

Throughout this section we stick to the following setting.
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Setting 7.1. — In addition to Setting 2.6, we assume B ⊂ H is a
closed irreducible subset of codimension 1 containing only non-standard
lines, B ⊂ X is its locus. For x ∈ X we denote by Hx the locus of lines
from Hx. If in addition x ∈ B, then Bx is the set of lines in B that pass
through x, Bx is the locus of Bx. (See Section 5.2.) If c, c′ are points in
B, they represent non-standard lines in X, which we denote by C and C ′
respectively.

By Corollary 5.5 we must have B 6= X. The lemma below explains that
the claim of [34, Prop. 3.2] is equivalent to the claim that B as above does
not exist. (Recall from Section 2.2 that the proof of [34, Prop. 3.2] has a
gap which invalidates the claim of [34, Thm. 1.1(2)] that Hx is irreducible
for a general point x ∈ X.)

Lemma 7.2. — In Setting 7.1, for all x ∈ B the set Bx is a union of irre-
ducible components of Hx. In particular, dimBx = n− 1, and analogously,
Bx is a union of irreducible components of Hx and dimBx = n. Moreover,
B is a divisor, that is, dimB = 2n.

Proof. — Hx is of pure dimension n− 1, and Hx is of pure dimension n
by Proposition 5.8. Thus

n− 1 = dimHx > dimBx > dimB + 1− dimB > n− 1

and thus the pure dimension of Bx is n− 1 and Bx is a union of irreducible
components of Hx. Moreover, dimB = 2n. Since each component of Hx is
a locus swept by a component of Hx, it follows that Bx is also a union of
irreducible components of Hx. �

To prove Theorem 1.1 we must show that B is covered by linear subspaces
of dimension n. We jump up and down to get this result. By construction,
we start knowing that B is covered by lines, that is linear subspaces of
dimension 1. First we jump up and claim that B is covered by Pk’s for
some k > 2. Then we fall down and argue that k = 2. Finally, we jump
again and show that there is a lot of those planes, enough to fill in Pn.

7.1. The first jump

In this subsection we show that the locus B of an irreducible compo-
nent of special lines of dimension 3n − 2 is covered by linear subspaces of
dimension k for some k > 2.

The locus B comes with the rank 1 distribution G := (TB)⊥F ⊂ TX|B
as in Notation 4.10 and (4.1). We follow the abbreviation as in Notation 4.3.
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Below we compare the distribution G to another distribution G̃x ⊂ TBx
for a general point x ∈ B, which has the property that (in informal words)
moving a curve along G̃x is the same as moving general points of the
curve along G. This arises from comparing the locally closed submanifolds
constructed in Corollary 3.10 and from Lemma 4.5. In order to construct
G̃, we use the Hilbert to Chow morphism, and in fact we construct G̃ on a
subset of the Hilbert scheme.

Proposition 7.3 (Hilbert to Chow morphism). — In Setting 7.1, there
exists an irreducible and reduced component Hilb of the Hilbert scheme
of X and a projective birational morphism $ : Hilb → H which takes a
point of Hilb representing a subscheme of X to its underlying cycle in
H. Moreover, $ is an isomorphism on the set of smooth curves. More
precisely, if S ⊂ H is the subset of singular lines, then the restriction of $
to $−1(H \ S)→ H \ S is an isomorphism.

Proof. — Pick a general point cgen ∈ H in the irreducible component
of lines. This point represents a smooth and standard (in particular, free)
rational curve Cgen ⊂ X, which at the same time is a subscheme of X,
hence represents a smooth point of the Hilbert scheme of X. The tangent
space to the Hilbert scheme at this point is the space of sections of the
normal bundle H0(NC⊂X), see [37, Thm. I.2.8(1)]. By (1.2) the dimension
of this tangent space is 3n− 1.
Let Hilb be the (unique) irreducible and reduced component of the

Hilbert scheme that contains the point representing Cgen. The Hilbert to
Chow morphism is constructed in [42, Cor. 3.3] and maps $ : Hilb → H.
Note that this result of Mangusson is stronger than [37, Thm. I.6.3(1)],
where the Hilbert to Chow morphism is constructed only from the semi-
normalisation Hilbsn → H. Since Cgen is reduced and irreducible and it rep-
resents a smooth point of Hilb (so the seminormalisation is an isomorphism
near this point), by [37, Thm. I.6.3(2)] the Hilbert to Chow morphism is
injective near this point. By dimension count dim Hilb = dimH = 3n − 1
the map is also dominant. Since both varieties H and Hilb are projective,
the map is surjective. Since a general curve Cgen is represented by a single
point in both Hilb and H, it follows that the map is birational.
To complete the proof we must show that $ is an isomorphism on the

set of smooth curves. To see this we produce the inverse map H\S → Hilb.
The map comes from the universal property of the Hilbert scheme, as the
universal family UH\S ⊂ X × (H\S) is flat over H\S. Indeed, L is ample
on X, and the Hilbert polynomial χ(L|dC) = χ(OP1(d)) is constant on all
the fibres (independent of the smooth curve C ⊂ X represented by a point
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in H\S), so by [27, Thm. III.9.9] the family is flat and induces a map from
H\S to the Hilbert scheme. It is straightforward to verify that the map is
an inverse of the Hilbert to Chow map $|$−1(H\S). �

Corollary 7.4. — In Setting 7.1, pick a point x ∈ B.
(1) If c ∈ Bx is a point which represents a smooth curve C ⊂ X, then

TcBx ⊂ H0(NC⊂X ⊗mx) ' H0(NC⊂X(−1)),

where NC⊂X is the normal bundle of C in X and mx is the ideal
sheaf of the point x in the curve C.

(2) Suppose that c ∈ B is a general point. Then c represents a smooth
curve C ⊂ X, which is generically transversal to the distribution
G = TB⊥F , and NC⊂X(−1) ' OC(−b− 1, (−1)n, 0n−2, b) for some
integer b > 1.

(3) With c, C, and b as in (2), assume x ∈ C is a general point. We have
two distinguished subspaces of the (n + b − 1)-dimensional vector
space H0(NC⊂X(−1)): the (n− 1)-dimensional tangent space TcBx
(which depends on x) and the (b+1)-dimensional space H0(OC(b))
coming from the unique (up to rescaling) embedding OC(b) ↪→
NC⊂X(−1). Then their intersection G̃x,c := TcBx ∩ H0(OC(b)) is
1-dimensional (that is, of expected dimension).

Proof. — Since c represents a smooth curve C ⊂ X, the Hilbert to Chow
morphism $ is an isomorphism near the preimage of c by Proposition 7.3.
In particular, $ determines a natural isomorphism TcH = T$−1(c) Hilb,
and the latter is equal to H0(NC⊂X) by [37, Thm. I.2.8(1)]. Thus TcBx ⊂
H0(NC⊂X) and the infinitesimal deformations contained in Bx must vanish
at x. Therefore TcBx ⊂ H0(NC⊂X ⊗mx) as claimed in (1).

In the setting of (2), note that since c is a general element of B, thus
it is smooth and generically transversal to G by a dimension count: by
Theorem 2.5 we have n > 2, thus dimB = 3n − 2 > 2n − 1. Thus C
is smooth by Proposition 6.3 and there is a family of dimension at most
2n − 1 of algebraic curves tangent to G. The splitting type follows from
Lemma 5.3. The integer b is positive by our choice of B (it has non-standard
lines only).
Finally, in (3), reverting the order of choices of x and c, note that x

is a general point of B and c ∈ Bx is a general (in particular smooth)
point of an irreducible component of Bx. Since the locus of this irreducible
component of Bx is an irreducible component of Bx, which has dimension
n (Lemma 7.2), for a general point y ∈ C the evaluation of sections in
TcBx ⊂ H0(NC⊂X ⊗ mx) at y must be (at least) an (n − 1)-dimensional
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space (1 dimension tangent to Bx at y comes from the tangent space to C,
the remaining n−1 dimensions come from moving c). But if the intersection
of TcBx and H0(OC(b)) has dimension higher than 1, then the evaluation
of the sections from TcBx at any point y ∈ C can have dimension at most
n − 2, a contradiction. Therefore the intersection G̃x,c is 1-dimensional as
claimed. �

Definition 7.5. — In Setting 7.1, let x ∈ B be a general point. We
define the rank 1 distribution G̃x ⊂ TBx (with the abbreviation as in
Notation 4.3), to be G̃x,c ⊂ TcBx for a general point c ∈ Bx in any of the
irreducible components, where G̃x,c is as in Corollary 7.4(3).

Corollary 7.6. — In Setting 7.1, with c ∈ B general (and C ⊂ X

the corresponding curve), the restrictions of the distributions TB ⊂ TX|B
and G ⊂ TX|B to the smooth rational curve C are (more precisely, can be
extended to) the following vector subbundles:

TB|C = OC(0n, 1n−2, 2, b+ 1), G|C = OC(b+ 1),

such that the image of G|C under the quotient TX|C → NC⊂X is also
OC(b+ 1).

Proof. — This follows from Lemma 5.6 together with the fact that C is
smooth and TC is generically transversal to G|C , see Corollary 7.4(2). �

Since rkG = 1, the distribution G must be integrable, so locally there
exists a small leaf ∆x through a general point x ∈ B, that is T∆x = G|∆x

.
In the course of the proof, we will see that the Zariski closure of each leaf
of G is a line.
We will define a subset Γc ⊂ B (that depends on the choice of c), which

is extremely important for our arguments. Informally, Γc =
⋃
x∈C ∆x is

the union of leaves through general points of C (see Lemma 4.5 and Defi-
nition 4.6). The Zariski closure of Γc is our candidate for a linear subspace
of dimension k > 2, as in the claim of the first jump. In informal words,
Γc is a surface obtained by perturbing the points of C in the directions of
G. We will show that it is also obtained by perturbing the line C in the
direction of G̃.

Definition 7.7. — Suppose that Γ1 and Γ2 are two smooth connected
locally analytic subsets of a fixed variety. We say Γ1 and Γ2 generically
agrees, if their intersection Γ1 ∩ Γ2 contains a nonempty subset that is
Euclidean open in both Γ1 and Γ2.
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So if Γ1 and Γ2 generically agree, we may think of them as if they are
analytic continuations of one another. In particular, the Zariski closures of
Γ1 and Γ2 are equal.

Proposition 7.8. — In Setting 7.1, fix a general point c ∈ B, which
represents a smooth non-standard line C ⊂ X, and fix a general point
x ∈ C. Let Rx,c ⊂ Bx be a small leaf of G̃x ⊂ TBx (again, see Notation 4.3)
through c ∈ Bx. Consider the following smooth connected two-dimensional
locally analytic subsets of B that contain a Zariski open subset of points
of C:

• One which we denote by Γc that, in addition to the above con-
ditions, satisfies TΓC ⊃ G|ΓC , and is constructed in Lemma 4.5
(union of G-leaves through general points of C).

• One which we denote by Γ̃x,c that, in addition to the above condi-
tions, is Euclidean open in the locus of lines in R′ = Rx,c ⊂ Bx as
constructed in Corollary 3.10.

Then these subsets generically agree.

Proof. — Let y ∈ Γ̃x,c be a general point (that is, for any point y in an
unspecified open dense subset of Γ̃x,c the following arguments are going
to work). Thus there is a line C ′ corresponding to c′ ∈ Rx,c such that
y ∈ C ′. Then TyΓ̃x,c is equal to the evaluation at y of the set of sections
in H0(TX|C′) that are mapped to Tc′Rx,c = G̃x,c′ ⊂ H0(NC′⊂X) under
the quotient H0(TX|C′) → H0(NC′⊂X). Thus by the characterisations of
G̃x (Corollary 7.4) and of G (Corollary 7.6), we have TyΓ̃x,c = TyC

′ +Gy.
In particular, G|Γ̃x,c ⊂ T Γ̃x,c, and thus the (sufficiently small) leaves of G
through (general) points of Γ̃x,c are contained in Γ̃x,c.
Note that Rx,c generically agree with Rx,c′ , as they are both leaves of

the same distribution G̃x. In particular, by the generality of our choice of
c, the above statement also holds for points of C: the leaves of G through
general points of C are contained in Γ̃x,c.

To conclude, note that both subsets Γc and Γ̃x,c contain a Zariski dense
open subset of C, in particular, their intersection is non-empty. By the
construction of Γc and the above considerations, they both contain the
leaves of G through the general points of C. Therefore they generically
agree. �

Define Γc to be the Zariski closure of Γc. Note that potentially, Γc is of
a dimension higher than 2, but we will observe this is not the case.

ANNALES DE L’INSTITUT FOURIER



SPECIAL LINES ON CONTACT MANIFOLDS 1901

Lemma 7.9. — In Setting 7.1, let c ∈ B be a general point. Then any
two points x, y ∈ Γc are connected by a contact line from B contained in Γc.

Proof. — We will say that conn(Z1, Z2) holds for subsets Zi ⊂ Γc, if for
all x ∈ Z1 and y ∈ Z2, the points x and y are connected by a line from B
contained in Γc. First, note that if conn(Z1, Z2) holds, then conn(Z1, Z2)
also holds. Indeed, the set of lines contained in Γc is Zariski closed (see
Proposition 3.7(3)) and so the set of y ∈ Γc such that conn(x, y) holds for
a fixed x is also Zariski closed. Swapping the roles of x and y we obtain
the claim.
Suppose that x ∈ C is a general point and y ∈ Γc is a sufficiently general

point in a small neighbourhood of C. In the notation of Proposition 7.8,
we have a sequence of “generically agree” relations, which we denote by ∼:

Γc ∼ Γ̃x,c ∼ Γ̃x,c′ ∼ Γc′ ∼ Γ̃y,c′ ,

where c′ ∈ Rx,c represents a line that connects x and y ∈ Γ̃x,c. The first,
third and fourth ∼ follow from Proposition 7.8. The second ∼ follows since
Rx,c ∼ Rx.c′ . In particular, the Zariski closures of each of these five sets
are equal.

Let z ∈ Γc be any point. Thus z ∈ Γ̃y,c′ , hence conn(Γc, y) holds. By our
choice of y, also conn(Γc,Γc) holds. Taking the Zariski closure, we obtain
the desired conn(Γc,Γc). �

From Theorem 2.8 and Lemma 7.9 we conclude the claim of the first
jump:

Corollary 7.10. — The normalisation of Γc is Pk.

7.2. The fall

In this subsection we prove:

Proposition 7.11. — In Setting 7.1 and as in Corollary 7.10 we have:

k = dim Γc = 2.

Proof. — Let µ : Pk → Γc be the normalisation map, and consider the
distribution µ∗G ⊂ TPk. Consider C̃ ' P1 ⊂ Pk to be the line that dom-
inates C via the normalisation map µ. Note that C̃ is mapped isomor-
phically onto C. We have three distributions in TX|C̃ : TPk|C̃ , G|C̃ , TC̃.
The first one contains the latter two and they are generically transversal
to each other. We claim that G|C̃ as a distribution in TPk|C̃ is isomor-
phic to OP1(1) ⊂ OP1(1k−1, 2). To see that divide out by TC̃ ' OP1(2)
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and recall that the image of G|C̃ in TX|C̃ = OC̃(−b, 0n, 1n−2, 2, b + 1) is
the OP1(b+ 1) component (Corollary 7.6). Then, after a suitable choice of
splitting NC̃⊂Pk ' OP1(1k−2)⊕OP1(1), the derivative map restricted to C̃:

NC̃⊂Pk ' OP1(1k−2)⊕OP1(1) −→ NC⊂X ' OP1(−b, 0n, 1n−2, b+ 1)

is given by an embedding of OP1(1k−2) into OP1(1n−2), and the remaining
component OP1(1) is mapped non-trivially into OP1(b+1). Therefore G|C̃ ⊂
TPk|C̃ must correspond exactly to this component OP1(1), again after a
suitable choice of the splitting TPk|C̃ = NC̃⊂Pk ⊕ TC̃.
We have obtained a rank 1 distribution µ∗G ⊂ TPk, such that its re-

striction to a general line P1 ⊂ Pk is OP1(1) ⊂ TPk|P1 . Such a distribution
can only be obtained as tangent to lines through some fixed distinguished
point y ∈ Pk, see Lemma 4.4. In particular, the leaves of G are algebraic
and Γc is a union of one parameter family of algebraic curves, and thus
k = 2, which completes the proof of the claim of the proposition. �

In conclusion:

Corollary 7.12. — In Setting 7.1, the divisor B is dominated by a
family of linear subspaces of dimension 2 as defined in Section 3.2. Let P
be this family and UP be the universal family:

UP
φP

!!

πP

~~
P

υ

FF

B.

The fibres of πP are P2 and the image of a general fibre φP(P2) ⊂ B is
the surface Γc for some line c ∈ B. The restriction of φP to P2 → Γc is
the normalisation map. The rational section υ : P 99K UP is assigning to
a general plane P2 (the normalisation of the surface Γc) its distinguished
point y constructed in the proof of Proposition 7.11.

7.3. The final jump

We claim the locus B swept by B as above is covered by linear subspaces
of dimension n. Lemma 7.14 below implies the claim and contains more
details about these subspaces.
Let Y ⊂ B be the closure of the image of φP ◦ υ : P 99K UP → B,

that is the set of all distinguished points as in Corollary 7.12. This locus
of distinguished points is very important in our considerations below and
it will be used to “bundle” linear subspaces of dimension 2 into a linear
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subspace of dimension n. Eventually we claim that dimY = n, but first we
must observe that Y 6= B.

Lemma 7.13. — With X, B, B as above and throughout this section,
the locus Y of distinguished points is not equal to B.

Proof. — Let y ∈ B be the general point and suppose by contradiction
that y ∈ Y , that is, there exists P2 in P with the distinguished point
mapped to y. Since y is general, G is defined at y. The images of lines in P2

through the distinguished point form a one dimensional family of contact
lines tangent to G. In particular, they share the tangent direction at y.
This is impossible by Lemma 3.9. �

For y ∈ Y , let Py be the closure of the preimage (φP ◦ υ)−1(y), that is,
essentially, the set of the planes P2 with y as the distinguished point. The
locus P y ⊂ B of Py is the union of Γc corresponding to the points in Py.
This is our candidate for the linear space of dimension n.

Lemma 7.14. — We work in Setting 7.1, and we let Y ⊂ B be the locus
of distinguished points as above, and for y ∈ Y , the sets Py ⊂ P, P y ⊂ B

are as defined in the paragraph preceding this lemma. Then dimY = n and
for a general y ∈ Y , the locus P y is a component of By (the locus swept
by lines from B passing through y), whose normalisation is a Pn.

Proof. — We need to count the dimensions and relative dimensions of the
spaces appearing in our construction. Firstly, a general Γc in P is uniquely
determined by a general line c ∈ B. Thus we have a dominant rational map
B 99K P. The fibres are two dimensional: two lines c, c′ ∈ B determine the
same Γc = Γc′ if and only if the following three conditions are satisfied:

• both C and C ′ intersect the locus where G is defined;
• both C and C ′ are transversal to G at their general points;
• C ′ ⊂ Γc (assuming the above two conditions, this is equivalent to
C ⊂ Γc′).

The first two conditions are open in B. The final one says that C ′ is an
image of one of the lines in the normalisation P2 → Γc, and there is a two
dimensional family of such lines. Thus it follows that:

(7.1)
dimP = dimB − 2 = 3n− 4, and

dimPy = 3n− 4− dimY.

A priori, Py could be reducible. In such a case Equation (7.1) is about pure
dimension: every irreducible component of Py has dimension 3n−4−dimY .
Let S ⊂ B be the closure of the set of lines tangent to G. Note that

dimS = 2n− 1 since there is a unique line in S through each general point
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of B. Also for a general line c ∈ S the intersection C ∩Y is non-empty and
finite. To prove this claim, the general point s ∈ C is a general point of B
and belongs to a general P2 ∈ P. Thus C is the image of the line in the
plane P2, that connects s and the distinguished point of P2. This shows
that the intersection C ∩ Y is non-empty. Also C is not contained in Y ,
since otherwise Y = B contrary to Lemma 7.13. Thus C ∩ Y is finite.
Let y ∈ Y be a general point and suppose that Sy ⊂ S is the set of lines

in S containing y. Then

(7.2)
dimSy = dimS − dimY = 2n− 1− dimY and
dimSy 6 dimBy = n− 1, so that
dimY > n.

Furthermore, consider the locus Sy ⊂ By swept by these lines. Note that
P y ⊂ Sy, thus:

dimP y 6 dimSy 6 dimSy + 1 = 2n− dimY.(7.3)

Let UPy be the restriction of UP to Py, so that the image is P y =
φP(UPy ) ⊂ B. We also consider the fibre product

(7.4)
U2
Py := UPy ×Py UPy ,

so that dimU2
Py = dimPy + 4 (7.1)= 3n− dimY,

and its map to P y × P y. Less formally, U2
Py is the set of triples (P2, ũ, ṽ),

with ũ, ṽ ∈ P2 and the triple is mapped to two points u, v in Γc which
is the surface normalised by the plane P2. The two points in Γc are the
images of ũ and ṽ under the normalisation map. We claim that the map
U2
Py → P y×P y is generically finite onto its image. More precisely, the map

is generically finite onto the image of each irreducible component of U2
Py .

To prove the claim, suppose that there is a curve Z ⊂ U2
Py contracted

to a single point (u, v) ∈ P y × P y. Suppose moreover, that Z contains a
general point z0 of U2

Py (more precisely, z0 is a general point of any of
the components). The generality conditions on (P2

z0
, ũz0 , ṽz0) ∈ Z that we

need are:
• If ỹz0 ∈ P2

z0
is the distinguished point, then ũz0 , ṽz0 , ỹz0 are not on

a line in P2
z0
.

• G is defined at uz0 .
Then Z determines a curve in Py, such that each P2

z on this curve contains
all three of the points y, u, v. In particular, we can take the family of lines
connecting u and v on each of the planes P2. By Lemma 3.8, the family
of lines must be constant. This is a contradiction, since each plane P2 is
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uniquely determined by the line (because G is defined at u, so in particular,
it is defined at a general point of that line).
Thus U2

Py → P y × P y is generically finite onto its image, and

dimU2
Py 6 2 dimP y.(7.5)

We summarise our dimension counts:

3n− dimY
(7.4)= dimU2

Py

(7.5)
6 2 dimP y

(7.3)
6 2(2n− dimY )(7.6)

thus dimY 6 n and combining with Inequality (7.2):
dimY = n.(7.7)

Thus we obtain the first claim of the lemma. Moreover, rewriting (7.6):

2n = dimU2
Py

(7.5)
6 2 dimP y

(7.3)
6 2n

we obtain an equality in (7.3) and in (7.5):

dimP y = n

dimU2
Py = 2 dimP y.

Since the map U2
Py → P y × P y is generically finite onto its image, the

dimension count proves that the map is dominant. Equivalently, for two
general points in P y, there exists a P2 in Py, whose image in P y contains
both points. In particular, there exists a line connecting the two points.
Thus the normalisation of P y is Pn by Theorem 2.8, and the lemma is
proved. �

The lemma completes the proof of the claim of the final jump. Now we
can conclude our article with the proof of Theorem 1.1 about the structure
of the locus B.

Proof of Theorem 1.1. — With B and B as above, we have shown in
Lemma 7.14, that B is a divisor covered by linear subspaces of dimension
n. We claim that there is a unique such linear subspace through a general
point of B. To see this we will construct a distribution G′ ⊂ TB such that
each linear subspace is a leaf of G′.
Consider the lines tangent to G. They form a family of lines of dimen-

sion 2n − 1, which cover the divisor B. This is the same family as was
denoted by S in the proof of Lemma 7.14. Pick a general such line C. As in
Section 5.1, consider the subbundle (TX|C)+ =

⊕n
i=1O(ai), which is the

sum of positive line bundle summands, that is, ai > 0. Then this bundle
has a constant (independent of C) rank n. Since there is a unique such
line through a general point of B, the subbundles (TX|C)+ glue together
to a rank n distribution G′ in TX|B . Each linear space is swept out by
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the deformations of C with one point fixed. Thus the tangent space to the
linear space at its general point is equal to the fibre of G′.

In particular, there is a unique linear space through a general point of B.
Consider the (normalised) family of linear spaces π : UR → R of dimension
n, that dominates B. By Proposition 3.7 the base of the family might
be chosen to be projective, the sheaf E := π∗(ξ∗L) is a vector bundle of
rank n + 1, and UR ' P(E∗) with OP(E∗)(1) = ξ∗L. Moreover, we may
assume that the morphism to Chow variety as in Proposition 3.6(1) is
a normalisation of its image, in particular finite. The above uniqueness
argument shows that the evaluation map ξ is birational. Moreover, we claim
below that ξ is finite. The claim (proved in the next paragraph) implies,
that ξ is the normalisation map of B, thus completes the proof of items (2)
and (3) of the theorem.
Let UR

β−→ U ′ α−→ B be the Stein factorisation of ξ with β being a projec-
tive morphism with connected fibres, α a finite morphism, and U ′ normal.
We claim that β is an isomorphism. To see that, suppose by contradic-
tion that ξ contracts an irreducible closed positive dimensional subvariety
Z ⊂ UR to a point x ∈ X. If Z is contained in some fibre Pn, then ξ∗L|Z is
ample by our assumption on ξ∗L and trivial by our choice of Z, a contra-
diction. Thus Z maps onto a closed positive dimensional and irreducible
Z̃ ⊂ R. Let UZ̃ ⊂ UR be the restricted family. The image ξ(UZ̃) is an ir-
reducible subset of X, whose points are connected to x by lines. Therefore
ξ(UZ̃) ⊂ Hx and by dimension count ξ(UZ̃) = ξ(Uz̃), for any z̃ ∈ Z̃. In par-
ticular, Z̃ is contracted under the morphism from R to the Chow variety.
This is impossible, since the morphism is finite (it is a normalisation of a
subset of the Chow variety), and dim Z̃ > 0.
It remains to show (1). Recall from above, that dimB = 2n and UR is the

normalisation of B by (2). Moreover, the second Betti number b2(UR) > 2
since UR is a projective space bundle over a projective base, while b2(B) =
b2(X) = 1 by Lefschetz hyperplane section theorem [7, Thm. 2.3.1]. Note
that the divisor B on X is ample, since it is effective and PicX ' Z.
In particular, UR is not isomorphic to B and thus B is not normal as
claimed. �
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