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Gabriela Błażejowska 1, Łukasz Gruba 2, Bipin Indurkhya 3,* and Artur Gunia 3

1 Nextbank Software, 30-085 Krakow, Poland
2 Kitopi, 30-383 Krakow, Poland
3 Cognitive Science Department, Institute of Philosophy, Jagiellonian University, 31-007 Krakow, Poland
* Correspondence: bipin.indurkhya@uj.edu.pl

Abstract: In recent years, there have been many approaches to using robots to teach computer
programming. In intelligent tutoring systems and computer-aided learning, there is also some
research to show that affective feedback to the student increases learning efficiency. However, a few
studies on the role of incorporating an emotional personality in the robot in robot-assisted learning
have found different results. To explore this issue further, we conducted a pilot study to investigate
the effect of positive verbal encouragement and non-verbal emotive behaviour of the Miro-E robot
during a robot-assisted programming session. The participants were tasked to program the robot’s
behaviour. In the experimental group, the robot monitored the participants’ emotional state via their
facial expressions, and provided affective feedback to the participants after completing each task. In
the control group, the robot responded in a neutral way. The participants filled out a questionnaire
before and after the programming session. The results show a positive reaction of the participants
to the robot and the exercise. Though the number of participants was small, as the experiment was
conducted during the pandemic, a qualitative analysis of the data was carried out. We found that
the greatest affective outcome of the session was for students who had little experience or interest in
programming before. We also found that the affective expressions of the robot had a negative impact
on its likeability, revealing vestiges of the uncanny valley effect.

Keywords: human–robot interaction; programming education; social robots; Miro-E; emotion
recognition; affective computing

1. Introduction

There is a long history of using robots to teach computer programming to children
and college students [1–5]. A robot is a tangible, physical device that can be programmed
to make different movements, and display different behaviours. This makes robots more
interesting to novice programmers compared to writing “Hello World” on a display.

In using a robot as a vehicle to teach programming, one critical factor is what kind
of personality should be given to the robot to make it more effective. Previous research
on intelligent tutoring systems has demonstrated that an affective interface yields better
learning outcomes [6]. However, for a robot tutor, the results are mixed. Some studies have
found that endowing a robot with an emotional personality is effective [7,8], but others
were not able to find any significant effect [9,10].

To explore this issue further, we conducted a pilot study where a dog-like robot (Miro-
E) was used to teach programming to children (11–15 yrs) under two different conditions:
a neutral-personality condition and an emotional-feedback condition. In the emotional-
feedback condition, the robot sensed the emotional state of the students through their facial
expressions, and gave encouragement through verbal and non-verbal modalities. The
verbal feedback took the form of praising the student, and non-verbal feedback included
wagging the tail, moving the head, and wiggling the ears. Throughout the experiment, we
monitored the emotional state of the students through their facial expressions.

Sensors 2023, 23, 1181. https://doi.org/10.3390/s23031181 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031181
https://doi.org/10.3390/s23031181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3798-9209
https://orcid.org/0000-0002-4186-5516
https://doi.org/10.3390/s23031181
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031181?type=check_update&version=2


Sensors 2023, 23, 1181 2 of 17

This study was conducted during the pandemic, so the number of participants was
small. However, we carried out a qualitative analysis of our observations, which is re-
ported here.

This paper is organised as follows. In Section 2 we review the related research.
Section 3 presents our experimental design, followed by the details of the experiment
in Section 4. The results and discussion are presented in Sections 5 and 6, respectively,
followed by the conclusions in Section 7.

2. Related Work
2.1. Robots in Education

Over the years, there have been many attempts at using robots for educational pur-
poses. For example, in an older study [7], a robot was used to teach an artificial language to
primary-school students. The robot was designed to offer two levels of social behaviours—
neutral and supportive. Participants who studied with the supportive robot achieved
significantly higher results and reported higher motivation levels.

In an earlier survey [3], it was observed that 74% of the reviewed studies found support
for robots as an effective teaching tool. A later survey [5] reported that the introduction of
robotics in the curriculum increases children’s interest in engineering, and allows children
to engage in interactive and engaging learning experiences.

Sharma et al. [11], while studying how collaboration and engagement affect children’s
attitudes towards programming, asked the children to manipulate digital robots (avatars)
as a priming activity before starting programming exercises. Van den Berghe et al. [12]
directly compared how robots as opposed to avatars affected children’s cooperation while
learning programming, and found robots to be more effective than avatars.

According to a meta-analysis of studies on the efficacy of social robots in education [13],
robot tutors are not at the same level as human tutors: students show lower learning out-
comes when directly comparing studying with a robot versus a human tutor. However,
there are some benefits of robots over humans in education. It is more economically viable
to provide devices to each student than one-on-one tutoring with a human teacher. Tech-
nology also allows the curriculum to be customised to the learning pace of each student.

Robots have an advantage over screen-based educational applications, because they
increase cognitive learning gains [14] and elicit more social engagement from students [15],
compared to screen educational content. The use of robots also appears to be effective
for interactive courses where technology is the subject of the course. In this case, the
robots engage students in critical and computational thinking, problem solving, and
collaboration [16–19]. Moreover, the use of robots is motivating for both the student and
the teacher designing the course [20,21].

In particular, when it comes to teaching programming, physical devices have an
advantage that the student can see the effect of executing an algorithm. Devices such as
micro:bit [22] and robots [19,23] have been found to be effective.

As robots do not yet have the capability to be general all-round teachers and perform
better than humans, many studies choose to compare two different robot behaviours
with each other, instead of measuring one robot behaviour against a human tutor. For
example, one could compare a socially supportive behaviour that engages in a social
dialogue with a neutral behaviour that focuses on a plain knowledge transfer [7]. Or, one
could compare the tutor condition—a robot that is focused on guiding a learner in solving
increasingly complex problems in a scaffolding fashion—with the peer-like behaviour to
support engagement [7,8]. This is the approach adapted in our study.

2.2. The Role of Affective Feedback

Affective feedback is known to have a major impact when a human is the teacher or
the trainer [24,25]. In computer-based tutoring systems, affective feedback is also found to
be effective [6].
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In human–robot interaction, however, incorporating an emotional personality into the
robot has yielded mixed results. For instance, Saerbeck et al. [7] found that incorporating
a life-like social personality in a virtual actor increases the learning efficiency of students.
Zaga et al. [8] compared the effect of two different social personalities of a robot—a peer and
a tutor—and found the peer personality to be more effective. However, Konijn & Hoorn [10]
used the humanoid robot NAO to teach primary-school children the multiplication table.
Their study compared a robot using neutral language (providing feedback with only
variations of ‘correct’ and ‘incorrect’) to a more social and encouraging robot. Techniques
used to create social interaction included addressing the participant by name, having the
robot follow their gaze, and using encouraging gestures and language (such as ’well done’,
’fantastic’). The results showed no significant difference between the two groups when
comparing across all participants. Students with below-average test scores performed
worse with social robot tutoring than with a neutral robot. Similarly, another study [9] did
not find benefits of social behaviours of the robot for a lesson on prime numbers.

One reason for this effect might be that social behaviours from a robot can distract
from the lesson and increase cognitive load. It could also be that students are surprised or
unsettled by robots showing such behaviours. Studies showing a lack of benefit from social
behaviours in a robot [10,26] have compared the cognitive outcomes, measuring differences
in test scores. In our study, we chose to focus on qualitative feedback from the participants
to assess the effect of affective feedback on learning.

2.3. Emotion Recognition

Knowing the emotional state of a student is important from the point of view of
teaching. Having the ability to recognise if a student is bored, frustrated, excited, or in any
other emotional state is a valuable skill for every teacher. For example, if a student is bored,
it could be an indicator that they have lost focus or that they may already be familiar with a
particular topic and are ready to move on [27]. Another example could be when a student
is frustrated, which most probably means that they are experiencing some difficulties with
the learning material.

There are several aspects of emotions and many available techniques for measuring
them [28]. One key issue is the dimensions of emotions, and the literature [29] provides the
following list: (1) arousal—whether an emotion turns on, activates an action, or inhibits it;
(2) value—whether an emotion has positive or negative value for a person; (3) intensity—
whether the strength with which the emotion is perceived is low or high; (4) duration—time
duration of a given emotion; (5) frequency of occurrence—how often does a given emotion
occur; (6) time dimension—whether the emotion is retrospective (e.g., relief), real (e.g.,
pleasure), or prospective (e.g., hope). Another factor is the set of basic emotions in terms of
which all other emotions can be expressed. The Plutchik model [30] provides one such set
of basic emotions.

Tools for measuring emotions can be divided into three groups: (1) psychological,
mainly subjective, and retrospective reporting of one’s own emotional states (e.g., via
verbal reports, questionnaires); (2) physiological objective tests that measure physiologi-
cal responses using sensors (e.g., electrocardiogram (ECG), electroencephalogram (EEG),
galvanic skin response (GSR)); and (3) behavioural objective measures based on bodily
manifestations (e.g., facial expression, voice prosody, body posture) [31].

A commonly used emotion recognition technique is based on the set of emotions pro-
posed by Paul Ekman [32,33], and it has been used successfully in educational tests [34,35].
It is a discrete model with six basic emotions: anger, disgust, fear, happiness, sadness, and
surprise. Later on, the list was expanded to include emotions of contempt, guilt, embar-
rassment, relief, or satisfaction. However, the original model is often used, especially for
automated emotion recognition [36], as it is based on a relatively small set of well-defined
and easily distinguishable states.

The Ekman model can be used in automated techniques for detecting emotions, which
in practice consist of detecting emotions from changes in a facial micro-expression (a facial
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expression that only lasts for a short moment). Detecting emotion from a micro-expression
is not without its drawbacks, such as the ability to assess only basic emotions or the
fact that it does not always work for all respondents. However, thanks to information
technology (IT) solutions, it is a quick and relatively simple method used to evaluate
emotions in changing conditions. Though emotions can be recognised from facial images
using automated techniques, some sort of an image and pattern recognition algorithm
has to be involved. Creating any image recognition algorithm manually can be difficult
and error prone. In recent years, the most popular approach to this is to use machine
learning [37–39].

Dimensional models present a different approach to classifying emotions. As opposed
to discrete models, where emotions are defined as distinct states, in dimensional models all
emotional states are described by two or more dimensions. Thus, emotional states form
a spectrum rather than separate groups. The dimensions used to describe emotions are
usually based on intensity and whether the emotion is positive or negative. One of the
dimensional models was proposed by James Russell [40]. It is known as the circumplex
model of emotions [40]. It is a two-dimensional model where the dimensions are valence
(whether the emotion is positive or negative) and arousal (the level of activation, e.g., calm
vs. excited). Placing valence on the horizontal axis and arousal on the vertical axis, all
emotions are placed in the circular space defined by these two dimensions [41]. This is the
model used in our study.

3. Study Design

The main objective of this research was to study how the emotional response of
the robot affects the learning process and the emotional attitude of the student. More
specifically, our aim was to address whether the process of learning can be more effective
when assisted by an AI that can engage emotionally with the student by managing the
difficulty of the task based on the emotional feedback and by providing encouraging verbal
feedback. Consequently, the hypothesis of our study was that participants who receive
encouragement and emotional support from an empathetic robot will be more engaged in
the lessons, will be less frustrated by failures, and will have a higher interest in continuing
their development in the field of computer science.

To validate this hypothesis, we conducted a study where children (11–15 yrs) were
asked to complete the task of programming a robot while interacting with it. A Miro-E
robot was used in the study; this is described below.

3.1. The Miro-E Robot

Miro-E is a small robot developed by Consequential Robotics (Figure 1), and has
animal-like features. It is designed to look like a hybrid of different pet animals. It has an
articulated head with ears and eyes, haptic sensors in the head and the body that react to
touch, and a microphone to detect sound. The eyes, ears, tail, and head can be moved to
express affective states. The robot’s behaviour can be programmed using a block interface
based on the Blockly library. By combining sensor readings with conditional logic, one
can create programs so that the robot reacts when touched or when it hears a clap. The
programming interface also allows for running separate scripts on the robot in parallel: this
feature is used so that the robot can run programs written by the participants during the
study while running reaction scripts to provide affective feedback at the same time.

The reaction scripts were written in Python (URL: https://www.python.org/ accessed
on 4 January 2023), using the Rospy library (URL: http://wiki.ros.org/rospy accessed on 4
January 2023) and the Miro Interface modules to control the hardware. The script files were
uploaded to the robot’s memory, and were executed on demand by running them with a
Python interpreter from the command line via secure shell protocol (SSH).

https://www.python.org/
http://wiki.ros.org/rospy
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Figure 1. Miro-E robot.

The study participants used MiroCode (URL: https://www.miro-e.com/mirocode
accessed on 4 January 2023) (Figure 2) to program the robot. MiroCode is a visual interface
that uses a block representation of the robot’s actions. A program is created by chaining
together blocks that describe sequential actions of the robot. This web application was
created by Consequential Robotics specifically for teaching programming using Google’s
open-source library Blockly (URL: https://developers.google.com/blockly accessed on 4
January 2023).

Figure 2. An example program written in MiroCode’s visual interface.

Robot capabilities are divided into separate modules grouped by themes (motion,
time sequence, sensors, etc.). The programming interface is friendly to beginners as it
requires little knowledge of syntax, and each block explains the action taken by the robot.
The blocks can be executed in a sequence or in a loop. The cloud version of MiroCode,
MiroCloud, was used in this study.

https://www.miro-e.com/mirocode
https://developers.google.com/blockly
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3.2. Emotion Recognition Module

The emotion recognition module implemented for this study was divided into two
modules running in parallel. The first module was a standalone client-side application
that is responsible for collecting facial images from the laptop camera and generating their
valence and arousal values. The second module was a server-side application responsible
for storage, managing the collected data, and computing end results. The architecture is
shown in Figure 3.

Figure 3. Architecture diagram. Please refer to the text for an explanation of the acronyms.

The client-side module ran on the open-source software library Keras (Keras library
accessed on 15 December 2022; URL: https://keras.io/about/) with trained models for
valence and arousal. The video was captured from the laptop camera and the frames
were continuously fed into the model, which returned the valence and arousal values for
each frame. These values were sent to the server-side application via the http protocol. It
prepared the records and saved them in the database for further calculations. The server-
side application ran on Amazon Web Services (AWS) (cloud computing with AWS accessed
on 15 December 2022; URL: https://aws.amazon.com/what-is-aws/). A single Amazon
Elastic Compute Cloud (EC2) (Amazon EC2 accessed on 15 December 2022; URL: https://
aws.amazon.com/ec2/) instance served as the host for a Python application implemented in
the Flask (Flask accessed on 15 December 2022; URL: https://palletsprojects.com/p/flask/)
framework. It exposed a set of REST services (What is REST, accessed on 15 December
2022; URL: https://restfulapi.net/) which were being called by the client-side application
(emotion recognition application). An instance of the AWS Relational Database Service
(RDS) (Amazon Relational Database Service (RDS) accessed on 15 December 2022; URL:
https://aws.amazon.com/rds/) was hosted in the cloud, and was used to store all the data
collected through the experiment in the open-source database system PostgreSQL (URL:
https://www.postgresql.org/ accessed on 15 December 2022).

The server-side application also returned the results for a given time-frame. Times-
tamps were taken when a student started and ended solving a given task. These were
attached to the request sent to the server-side application, which retrieved all the data
during this time period to compute the end result according to the algorithm explained in
Section 3.2.2.

https://keras.io/about/
https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://palletsprojects.com/p/flask/
https://restfulapi.net/
https://aws.amazon.com/rds/
https://www.postgresql.org/
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3.2.1. Training the Emotion Recognition Model

For recognising emotions from facial images, a machine learning model was trained
using AffectNet, which is currently the largest facial expression data set, with each im-
age annotated with a categorical label, and its valence and arousal values based on the
circumplex model [42].

The AffectNet data set contains more than one million images, of which 440,000 were
annotated manually, and the rest were annotated automatically. We observed that these
images are distributed unevenly across the valence and arousal spectrum: most of the
images covered a small range of valence and arousal values, and there were few images
with very high or very low valence and arousal values. Such an uneven distribution of data
is not ideal for training.

To address this problem, we divided the entire range of values (from −1.0 to 1.0)
into small intervals (in steps of 0.01, so −1.00 to −0.99, −0.99 to −0.98, and so on) and
considered how many images fell in each interval. With trial and error, we found that by
taking at most 400 images from each interval (when an interval had less than 400 images,
we took all of them), we could create a more uniform distribution across the entire spectrum,
and still have a large enough dataset to train the model. This procedure was performed
once across the valence spectrum and once across the arousal spectrum.

To address the problem that the images were of different resolutions, we scaled all the
images down to 200 × 200 pixels. As the Xception network is designed for images of size
299 × 299 pixels, the first input layer had to be readjusted to work with different image
sizes. As a separate data set had to be used for training the valence model and the arousal
model, all the operations mentioned before had to be repeated twice, once for each model.
This resulted in two final data sets that could be used during training, one for valence and
the other for arousal.

A random split was performed to divide the data sets into training and validation
categories: 80% were assigned to the training data set and the remaining 20% to the
validation data set.

The parameter values used for the network were as follows. The network used was
an Xception pre-trained on the ImageNet data set (ImageNet accessed on 15 December
2022; URL: https://www.image-net.org/). The batch size was set to 32 images. The loss
function used during training was mean absolute error (MAE) [43]. The Paperspace (About
Paperspace Gradient, accessed on 15 December 2022; URL: https://docs.paperspace.com/
gradient/) platform was used to provide more computing capacity. Training occurred on
a single Free GPU + instance (Instance Types available in the Free Tier, accessed on 15
December 2022; URL: https://docs.paperspace.com/gradient/more/instance-types/free-
instances#instancetypes-available-in-the-free-tier) equipped with 8 CPUs, 30 GB RAM,
and a Quadro M4000 GPU. The value loss achieved after training was 0.244 for the valence
model and 0.258 for the arousal model. Considering that the values for both parameters
have a range from −1.0 to 1.0, this translates into a 12.2% error rate for the valence model
and 12.9% for the arousal model.

3.2.2. Emotion Computing Algorithm

An algorithm was created to aggregate valence and arousal values over time into one
of the three categories, positive, negative, or neutral. These aggregated values were used
by the experiment control system to control the task flow.

Only measurements taken while solving a particular task were considered. We as-
sumed that the participants would have a neutral facial expression most of the time. A
high-pass filter was used to filter out measurements of low significance. Euclidean distance
was used for filtering as follows:√

valence2 × arousal2 ≥ 0.3 (1)

https://www.image-net.org/
https://docs.paperspace.com/ gradient/
https://docs.paperspace.com/ gradient/
https://docs.paperspace.com/gradient/more/instance-types/free-instances#instancetypes-available-in-the-free-tier
https://docs.paperspace.com/gradient/more/instance-types/free-instances#instancetypes-available-in-the-free-tier
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Different threshold values were tried, and in the end, 0.3 was chosen as a good
compromise between filtering out noise and not filtering too much. This allowed most of
the unimportant measurements to be filtered out.

Weights were used to give more significance to the measurements taken at the end of
the task, as they would be related to the participant finding the final solution. A hyperbolic
tangent function was used to calculate the weights as follows:

weight(t) = tanh(rel_time(t)× π) (2)

where rel_time is a function to compute the relative time of the measurement compared to
the entire duration of the task execution. The relative time was calculated using the formula:

rel_time(t) =
t − tmin

tmax − tmin
(3)

where tmin and tmax are the start and end times of task execution.
After computing the weights for every measurement taken for a particular task, the

final result was computed as follows.

result =
∑m_size

i=1 mi × weight(ti)

∑m_size
j=1 weight(tj)

(4)

where m_size is the size of the measurement set, mi is a particular measurement value, and
ti is the measurement time.

This formula was applied to the valence and arousal measurements separately, and
the calculated values were used to determine the final outcome depending on where the
results fell in the circumplex model. A visualisation of this is shown in Figure 4.

Figure 4. Visualisation of the valence-arousal plane for the final result calculation.

3.3. Experimental Set-Up

The main activity in this study was for the participants to solve programming tasks
to control the Miro-E robot in a MiroCode environment. While they were engaged in this
task, their emotional states were analysed from their facial images (taken by the laptop
camera). Based on these emotional states, the robot provided appropriate affective feedback
in both verbal and non-verbal modalities. The feedback could be praising the participant
for completing a task successfully, or congratulating them on finishing a tricky task. Non-
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verbal feedback included wagging the tail, moving the head, and wiggling the ears. The
robot then presented the next task to the participant.

The system also decided whether the participant should skip some tasks. If the
participant completed the current task in a short time (less than the preset threshold), and
the emotion recognition module found that the participant had a positive reaction, then the
system would skip over the next task.

For the control group, the Miro-E robot was only a vehicle for the programming tasks
(it only performed the actions programmed by the participant): it took no actions of its
own. The robot announced the next task in a neutral manner: ’Start Task 3’.

All participants were also asked to fill out a pre-test questionnaire to assess their
previous programming experience, and a post-test questionnaire to gather information
about their experience during the study. Data collected from the questionnaires were used
to determine the impact of affective feedback provided to participants in the experimen-
tal group.

4. Experiment
4.1. Participants

The experiment was conducted in the period June–July 2021. Because of the COVID-19
pandemic, it was difficult to find participants, but we managed to recruit nine participants
(3F, 6M; 11–15 yrs) to take part in the activity of learning to program a robot. All participants
had sufficient English knowledge to allow them to use the robot’s interface. English profi-
ciency was determined from the participant’s self-declaration—the call for participation
mentioned that English would be required. Moreover, all the participants had attended
several years of primary school with mandatory English lessons. Four participants were
placed in the control group and five in the experimental group.

4.2. Coding Tasks

The participants were given the task of writing programs to control the Miro-E Robot.
A set of ten programming tasks were prepared, which were expected to take about 40 min
to complete. The tasks were progressively more difficult, with later tasks building on earlier
tasks, and with each section of the worksheet introducing new concepts or block modules.

The first task in each section was to open an example program that had been saved on
the laptop, read the code, and explain what it does to the researcher. Then, the participant
was asked to run the program on the robot and observe if their predictions were correct.
This familiarised the participant with what the blocks in the program did, and provided
context for the next task.

The second task in each section was a coding exercise. The participant was given a
desired behaviour of the robot (for example, to make Miro-E walk in a square), and was
asked to write a program to make Miro-E behave in that way. The participants were asked
to do this independently: the researcher helped (if needed) only with language difficulties.

The final section, Functions, did not have a given outcome of the task, but introduced
the concept of functions as reusable blocks of code that are defined once, but then they can
be called from different places in the program. The example code contained three function
slots that participants could complete as they wanted using the knowledge gained from
the previous sections. The objective of this task was for the participants to understand how
a function code is triggered from the main program.

4.3. Procedure

Informed consent was obtained from the legal guardian of each participant after
explaining to them the following aspects of the study:

• The video of facial expressions from the laptop camera is used for emotion-recognition.
• No identifying information of the participants is disclosed in the study.
• Data from the participants are used anonymously and in aggregate.
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Before starting with the programming tasks, each participant was asked to fill out a
pre-test questionnaire containing the following questions (items 3 and 4 used a five-point
Likert scale):

1. Participant identification number.
2. Grade in school.
3. General interest in programming (1: ‘no interest’; 5: ‘great interest’).
4. Previous coding experience (1: ‘no experience’; 5: ‘much experience’).
5. Familiar programming environments.

Then, the participant was asked to sit at a large table with a laptop that showed the
MiroCode interface, with the Miro-E robot on an adjacent table. Throughout the study,
a researcher sat next to the participant to explain the experiment, help with language
problems, and provide input to the system when starting or finishing a task.

The experiment was started with the researcher showing the participant the worksheet
with tasks, and explaining the structure and the goal of each section. The participant was
then given a tour of the MiroCode interface: where to find blocks, how to run the code on
the robot, and how to open example programs. Participants were encouraged to explore
solutions even when they were not sure about their correctness. Finally, the researcher told
the participant to feel free to ask any questions about the language or meaning of certain
blocks during the experiment.

The participant then started the first task. When the participant started a task, the
researcher entered this into the system. The participant then completed the task, usually
running several versions of their code on the Miro-E robot before succeeding. In tasks that
involved moving the robot, the researcher positioned the robot next to the participant, or in
a location where the robot could complete the movement without encountering an obstacle.

When the participant completed a task, the researcher entered the task-end response
into the system using a mobile device.

This procedure was repeated until all the tasks were completed. The procedure was the
same for both the experimental and the control groups, with the only difference being that
(as explained above in Section 3.3) for the experimental group, Miro-E provided affective
feedback, and the progression of tasks depended on the participant’s affective state while
completing the tasks.

After the participant finished all the tasks, they were asked to complete the following
post-test questionnaire (items (1)–(4) used a five-point Likert scale):

1. Rate Miro-E’s behaviour (1: ‘unpleasant/rude’; 5: ’pleasant/nice’).
2. Rate your enjoyment of the session (1: ‘didn’t like it at all’; 5: ’liked it a lot’).
3. Rate your general interest in programming (1: ‘no interest’; 5: ‘great interest’).
4. Would you be interested in another session with Miro? (1: ‘no interest’; 5: ‘great

interest’).
5. Did any task make you feel frustrated?
6. If yes, which task(s)?
7. Did any task make you feel accomplished?
8. If yes, which task(s)?

5. Results

As this study was conducted during the COVID-19 pandemic, the groups were rela-
tively small: four participants were in the control group and five were in the experimental
group. Nonetheless, we analysed the affective outcomes: the feelings of the participants
towards the Miro-E robot, towards the experiment, and towards programming in general.
The results of the post-test questionnaire are summarised in Table 1.

All the participants finished all the given tasks—no one stopped the experiment before
it ended. For one participant in the control group, all the data could not be recorded due
to a technical difficulty, so this participant was excluded from the analysis. None of the
participants reported feeling frustrated by any of the tasks.
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Table 1. Average responses to the survey.

Question Total Control Experimental

Miro-E likeability 4.78 5 4.6
Session enjoyment 4.44 4.25 4.6
Programming experience 2.22 1.75 2.6
Interest in programming (pre-test) 3.77 3.75 3.8
Interest in programming (post-test) 4.11 4 4.2

Six participants (4 from the experimental group, 2 from the control group) reported
that a task made them feel accomplished or happy. One participant from the experimental
group reported that task one, moving the robot, affected her or him in this way. Five
participants (3 from the experimental group, 2 from the control group) pointed to task 10 as
making them feel accomplished.

The aggregate (over the participants) of the data collected by the emotion recognition
module is shown as heat maps in Figures 5 and 6. These heat maps can be interpreted
qualitatively by comparing a segment of the obtained valence/arousal predictions to the
ground truth values. Therefore, the heat map illustrates, in the 2-D valence and arousal
space, the histograms of the ground truth labels of the test set and the corresponding
predictions of the trained model. We can see that the heat points are mostly in the mid-
dle because the measurements were mostly neutral or shifted towards negative valence
and arousal.

Figure 5. Heatmap showing the valence and arousal for the control group participants.
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Figure 6. Heatmap showing the valence and arousal for the experimental group participants.

6. Discussion

The results of the survey show that all the participants rated Miro-E’s behaviour as
friendly: on a five-point Likert scale with a range from “unpleasant, unfriendly” to “nice,
friendly”, the average response was 4.8. In the control group, where the Miro-E robot
exhibited only neutral behaviour and language, all the participants responded with a 5.
The average in the experimental group was 4.6 (with two participants rating Miro-E’s
friendliness at a 4). This suggests that the robot’s attempts at friendliness had a negative
impact on its likeability. One participant in particular seemed visibly surprised, and moved
away from the robot when starting the script for completing a task. This could be due to
the uncanny valley effect [44].

These responses show that the Miro-E robot is perceived as friendly by itself, even
when no additional behaviour to support this is programmed. This is by the design of
the manufacturer, as the robot is aimed at younger children, and looks like a pet animal.
Moreover, the tasks the participants were performing made the robot appear more friendly.
The participants themselves were in charge of programming the robot and used its emotive
features in their programs—making the robot wag its tail and wink in response to being
touched. This kind of social behaviour did not trigger the same surprise reaction, as it was
expected and programmed by the participant.

Another question asked in the survey related to the participants’ enjoyment of the
programming session and whether they would like to take part in another session with
the Miro-E robot. The average for the control group was 4.25, and for the experimental
group was 4.6. Thus, fewer participants from the experimental group expressed an interest
in a future lesson with Miro-E. One reason for this could be that prior experience with
programming was higher in the experimental group compared to the control group, and
for participants having more prior experience with programming, the tasks seemed easy,
so they were not so interested in another session with Miro-E.

The aggregated heat maps of valence and arousal for participants in the control and
the experimental groups (Figures 5 and 6) show that the participants in the control group
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experienced higher overall valence and arousal values, while the experimental group’s heat
map is concentrated mostly in the neutral region.

This suggests that the control group experienced more positive emotions compared to
the experimental group. However, this could also mean that emotion recognition based
on computer vision and facial micro-expressions was not very effective. In future, we
need to incorporate other measures that are indicative of attention and interest besides the
emotional state of the user.

The results from the survey conflict with the results of the valence and arousal graphs.
This may be due to the courtesy bias, as the participants were rating the study while the
researchers were in the room. Moreover, it is hard to ascertain satisfaction with the robot-
based learning session by just comparing the results of the pretest and post-test surveys,
especially as the emotional state of the participants was changing during the session.

Nonetheless, these results can be explained as follows. The survey results show
considerable interest and satisfaction with the robot-assisted learning. However, the
emotional recognition based on facial expressions suggest that a robotic assistant does not
trigger a strong emotional state. This can also be interpreted positively in that the robot
assistant does not distract from the required task.

The affective outcome of the study was measured by asking the participants about
their interest in programming before and after the session (on a five-point Likert scale) with
the robot. This showed an overall increase of 0.34 for the entire group: the increase was 0.25
for the control group and 0.4 for the experimental group. It should be noted that most of
the participants did not change their answer (from pretest to post-test), but the participants
with a low pre-test interest in programming showed an increase in the post-test.

In response to the question about which task made them feel most accomplished, most
participants chose the last task. This was also confirmed by a graph of valence and arousal
for one of the participants, as shown in Figure 7. This could be due to the recency bias,
or because the last task was a free-form task where the participants could implement a
behaviour of their own choosing.

Figure 7. Graphs of valence and arousal over time.
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Figure 7 shows that the valence increased towards the end of the study. Peaks in the
arousal value were more frequent in the later part of the session. In the free-form task 10,
the participants were most interested in using emotive features of the robot—wagging the
tail, closing eyes, and moving ears. This suggests that the participants preferred to program
social behaviours in a robot.

The emotion recognition module worked well when the facial expression clearly
indicated a strong emotion like happy, angry, or sad. However, with micro-expressions,
the changes in valence and arousal were very small and could be considered as noise. It
was observed that the participants’ faces were mostly neutral during the experiment, and
their facial expressions barely changed regardless of whether they were doing well with
the tasks or were facing difficulties.

7. Conclusions

The goal of this research was to study how affective feedback by an educational robot
impacts learning outcomes; for example, in our particular case, does it lead to more interest
in programming and computer science?

Our experimental data suggest that the Miro-E robot was perceived as friendly and
likeable. However, we did not find a significant impact of the affective feedback of the
robot on the participants—most of the differences can be attributed to other factors, such as
programming experience or interest.

We did not find a strong positive or negative correlation of the robot’s behaviour to the
participants’ responses. Previous studies in this area also report conflicting outcomes [7,9,45],
suggesting that the link between social behaviour from robots and better outcomes for students
is not so straightforward.

Our results show that the greatest affective outcome of the session was for students
who had little experience or interest in programming before. This suggests that to maximise
the impact of robot-assisted learning, it should be introduced early on. We also found that
the affective expressions of the robot had a negative impact on its likeability.

7.1. Limitations

The sample size of nine participants was too small to draw statistical conclusions.
The feedback given by the robot was short and simple. This might have not been

enough to generate observable effects, as most of the time the robot acted the same in both
the experimental and the control groups.

As the study involved only one forty-minute session, the participants did not have
much time to become confident with the robot’s programming interface.

Having a more uniform level of programming experience among the participants
would have allowed creating tasks that were not too easy or too difficult for any participant,
thereby eliminating one source of variations in the responses.

Participants were assigned to the experimental and the control groups before filling
out the pre-test survey. Two participants with the most programming experience were
placed in the experimental group. Due to the small sample size, the groups ended up with
an unbalanced skill level and this difference had a visible effect on the answers.

7.2. Future Research

A study involving more participants over several sessions would answer the ques-
tions posed in this study with higher confidence. Future research could explore whether
students who are learning programming with a robot would benefit more from the robot
exhibiting social behaviours on its own, or from programming the robot to behave in social
ways. Comparing a friendly-looking robot like Miro-E with a less inherently friendly-
looking robot could give insight into how much the appearance of the robot influences its
effectiveness as an educational tool.
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Another issue for the future research is to study the potential drawbacks of affective
feedback. It has been shown that too much emotional engagement from the robot can be
a disadvantage and can lead to an increased cognitive load on the participant and worse
outcomes [46]. Ethicists also argue that too much emotionality can lead to false relation-
ships [47], or that the emotionality of robots is simply false [48]. These considerations must
be taken into account when designing an affective educational robot.
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