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Abstract—The top-performing deep CNN (DCNN)
architectures are presented every year based on their
compatibility and performance ability on the embedded edge
applications, significantly for image classification. There are
many obstacles in making these neural network architectures
hardware friendly due to the limited memory, lesser
computational resources, and the energy requirements of these
devices. The addition of Bottleneck modules has further helped
this classification problem, which explores the channel
interdependencies, using either depthwise or groupwise
convolutional features. The classical inverted residual block, a
well-known design methodology, has now gained more attention
due to its growing popularity in portable applications. This
paper presents a mutated version of Harmonious Bottlenecks
(DHbneck) with a Flipped version of Inverted Residual (FIR),
which outperforms the existing HBONet architecture by giving
the best accuracy value and the miniaturized model size. This
FIR block performs identity mapping and spatial
transformation at its higher dimensions, unlike the existing
concept of inverted residual. The devised architecture is tested
and validated using CIFAR-10 public dataset. The baseline
HBONet architecture has an accuracy of 80.97% when tested
on CIFAR-10 dataset and the model’s size is 22 MB. In
contrast, the proposed architecture HBONext has an improved
validation accuracy of 88.30% with a model reduction to a size
of 7.66 MB.

Index Terms—Convolution Neural Networks (CNN),
Harmonious Bottleneck (HBO), Flipped Inverted Residual
(FIR), CIFAR-10.

I. INTRODUCTION

ImageNet classification challenge that started in 2012 has
been a driving force to develop today’s best performing
CNN architectures, which are growing deeper and becoming
more efficient with every passing year [1], [2]. With the
increasing quest of improving these architectures for higher
accuracy yield, many sophisticated mathematical approaches
are under development but at the cost of higher
computational and storage requirements. Many novel studies
have emerged to build further light-weight CNN models that
are compatible and feasible for actual real-time
implementation and to investigate this critical problem.

The basic building modules of any convolutional neural
networks (CNNs) are convolutional and pooling layers. In
comparison, the newly developed light architectures contain
depthwise separable convolutions that have phenomenally
improved accuracy performance. These commonly used
convolutional techniques deal with the input’s spatial
dimensions and depth dimension [3], [4]. The MobileNets
family of models uses standard convolution for the first layer

and build other layers using depthwise separable convolution,
which is a mix of pointwise and depthwise convolutions [5],
[6]. However, both the convolution methods give similar
results, just that the depthwise separable convolution is much
faster and so helpful. Residual block is the next
breakthrough, the skip-connection block that learns residual
function for the layer input and, in practice, used as
bottleneck blocks as they are less computationally intensive
[8]. The purpose here is to make residual blocks thinner to
increase the depth, reduce the total number of parameters,
and bring down complex matrix multiplications.
MobileNetv2 [9] is built using the inverted residual concept
with linear bottlenecks, which enhances information flow in
the representation space, and helps achieve better accuracy
results than its predecessors. To further study the inverted
residual, we investigate the sandglass approach that deals
with the high-dimensional residuals that transmit more
gradients back to enhance the network training in a better
fashion [4]. MobileNets [4], [5], [7], principles focus more
on the channel transformation but neglects the orthogonal
dimensions, and so with the introduction of HBONets this
dimension has been explored which helped for model
accuracy gains [3]. HBONet is a study that presents a unique
arrangement of spatial and channel transformations in a
bilaterally symmetrical fashion with a shared benefit that
yields improved performance than MobileNetv2. The goal is
to build the best possible light-weight image classification
architecture with a prospect of its real-time implementation
on the embedded edge. This work presents a combination of
the concept of HBONets embedded with a sandglass
approach for residual (FIR) and proposes a new architecture
called HBONext.

The paper composition is as follows: The literature history
is discussed in Section II, and the novel proposed
architectural design is described in Section III. The steps for
training and validating the architecture are described in
Section IV and Section V presents the detailed results to
understand the contribution of various parameters. The
conclusion and prospects are found in Section VI.

II. BACKGROUND

From the last few years, several variants of neural network
architectures have emerged, especially targeting mobile edge
devices. This section briefly reviews the already discovered
light models, and exclusively mentions transformational
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methods with spatial dimensions and gives an overview of
the inverted residual technique.

SqueezeNet [10], [11] is one of the first light models that
use smaller convolution layers with a 1x1 convolutional
squeeze layer followed by two parallel 3x3 convolutions
expand layer but with fewer parameters than AlexNet [1],
[10]. Then comes MobileNetv1 [5], which replaces
expensive layers with a cheaper depthwise separable
convolution to further improve computational efficacy.
MobileNetv2 [9] is exactly the opposite of SqueezeNet. It
first expands and then reduces the number of channels; it
also introduces an inverted residual block for further
parameter reduction compared to MobileNetv1. MnasNet-A1
[12] has an expansion, a depthwise, and a bottleneck layer,
with a residual connection to the previous bottleneck. It also
additionally introduces a squeeze and excitation method,
which compresses the channel vector first and then tries to
restore only important features. There are various types of
convolutions that are used to extract important characteristics
from an input image. In the Harmonious Bottleneck method,
depthwise separable convolutions are used to focus both on
the spatial and channel dimensions. This process is
comprised of two sections first down-sampling the spatial
dimension keeping the channels constant (H/s x W/s x C1)
and then expanding the channels (H/s x W/s x t x C1),
whereas up-sampling the spatial dimensions with channel
reduction by half (H x W x C2/2), and further concatenating
with the input’s partial channels (H x W x C2) or its pooled
version. Fig 1. represents the Operation Bottleneck block of
HBONet, in which (H x W) is the height and weight of the
input/output feature, t is the channel expansion factor, s is a
stride, C1 is the input channel, and C2 is the output channels
of the block. Thus, the final calculated value of this module
is:

B/s2 + (H/s×W/s× C1 +H ×W × C2)×K ×K (1)

Here, K denotes the kernel size, and B signifies the
calculated value of the inserted blocks between the two
operating sections. This implementation, if adopted in any
CNN’s architectures, produce lighter models and gives
impressive accuracy. Due to the limitations of lower
dimensionality at the start of inverted residual blocks, which
is expected to hinder the efficient capture of useful
information due to channel compression, we adopt the
technique used in sandglass block, which has a wider
architecture and is expected to better gradient confusion as
per the recent study [3], [4]. In this work, we successfully
integrate these two ideas and explore the design space
modifications.

The non-linearity activation function ReLU6 was used in
the original implementation of HBONet. Since it is able to
concentrate on the positive values only, in order to also
preserve the negative values with minimal cost of
computation, the use ELU activation is considered with the
HBONext version. It has alpha, which is a positive constant
value typically used between 0.1 and 0.3. ELU helps

generate more accurate results by converging to zero faster
but cannot overcome exploding gradient problems [13], [14].
This is represented as:

f(x) = x, forx > 0

= α(ex − 1), forx ≤ 0
(2)

Fig. 2: ELU non-linear activation [14].

This block is used in the DHBneck block of HBONext,
which has significantly boosted the model accuracy along
with the Cosine Annealing learning rate scheduling strategy
[18]. The plan is to also implement this architecture for
image classification using CIFAR-10 [15] on embedded edge
Bluebox by NXP using RTMaps [19]. This process will
validate the modified architecture HBONext for the achieved
accuracy to implement it any framework supported
embedded hardware.

III. PROPOSED HBONEXT ARCHITECTURE

This section presents the derived harmonious bottleneck
structure (DHbneck). It replaces the existing inverted
residual block of the baseline with a flipped inverted residual
(FIR), thus producing a new light-weight architecture called
HBONext, as seen in Table I. below:

In this table, t denotes the expansion factor, c is the channel
output, n is the number of times the block repeats, and s is
the stride value.

Here are few fundamental approaches followed for its
implementation.

• The non-Linear activation function is carefully replaced
from Relu6 with ELU in place.

• An element-wise skip connection is added, which helps
in overcoming the vanishing gradient problems. Also,
the FIR block’s modification proceeds as
Dwise-Pwise-Pwise-Dwise to achieve a sandglass
approach, unlike the one used in the baseline
architecture.

• Reconsidering the bottleneck module for its spatial
dimensions and channel dimensions significantly to help
further reduce the model size.



Fig. 1: Operation Bottleneck block of HBONet [1].

TABLE I: HBONext Architecture

Input size Operator t c n s
322 × 3 conv2d 3 ×3 - 64 1 2

162 × 64 FIR block 2 32 1 1
162 × 32 DHbneck 2 16 2 1
162 × 16 DHbneck 2 32 4 2
82 × 32 DHbneck 2 64 4 2
42 × 64 DHbneck 2 96 4 2
22 × 96 DHbneck 2 128 2 1

22 × 128 DHbneck 1 256 2 1
22 × 256 conv2d 1 x 1 1 512 1 2
22 × 512 FIR block 2 256 2 2
12 × 256 FIR block 2 128 1 1
12 × 128 FIR block 1 10 1 1
12 × 10 conv2d 1 x 1 - 1024 1 1

12 × 1024 avgpool 7 x 7 - - 1 -
12 × 1024 FC Layer - k - -
∗t, c, n, s are elaborated below

A. Derived Harmonious Bottleneck

A simple change is made by choosing the kernel of 3 x 3
and the ELU activation function. The block in Fig.3 gives
the detailed operational view of the HBONext bottleneck
structure, and the FIR skip connection with the appropriate
selection of stride value. Stacking smaller convolutional
layers is easier than stacking bigger ones. It also seeks to
adjust the outcome, built on the hypothesis that a positive
outcome would occur. In this implementation we make use
of 3 × 3 as a kernel size since the odd-sized filters
symmetrically split the previous layer pixels along the output
pixel and this size also help for lesser parameter goal unlike
that in the original work with kernel size of 5 × 5.

B. Flipped Inverted Residual Block (FIR)

The sandglass block in Fig.4(b) is mainly developed to
protect more feature information while transitioning from the
lower layer to top layers so that residual connection is
placed to connect higher dimension features. It consists of
light-weight 3 x 3 depthwise convolutions applied onto the
higher dimensions to extract rich spatial information.

IV. TRAINING SETUP

The main idea was to train our HBONext model on the
CIFAR-10 dataset for image classification purposes. CIFAR-
10 is a set of 60,000 images (32 x 32) classified into ten

Fig. 3: Harmonious Bottleneck module with different strides

Fig. 4: Residual blocks (a) traditional bottleneck arrangement,
(b) sandglass block with bottleneck arrangement

categories that is widely used in deep learning and machine
vision applications. This public dataset is further split into
two parts for testing and evaluation to better understand the
model’s efficiency depending on its accuracy parameter.

A. Hardware and Software Used

The complete model training was accomplished using
Google Colab environment, a simple to use platform which
provides free access to any available GPUs by the Google
servers. The preliminary results are also generated using
NVIDIA GeForce GTX 1080Ti GPU. The PyTorch based
packages like Livelossplot, torchsummaryX were used for
graphical representation and calculations of the number to
parameters. We implemented our proposed model with the



Fig. 5: Accuracy vs the number of epochs: (a) HBONet (baseline), (b) HBONext (proposed architecture)

standard values of width multiplier like 1, 0.75, 0.5, and
0.25. The purpose of using different widths is to make the
network thinner at each layer consistently. The entire model
is trained using the Stochastic Gradient Descent (SGD)
optimizer, with the momentum fixed to 0.9, the weight decay
adjusted to 4e-5, and Nesterov included. A batch size of 128
is used in the model, and a learning rate of 0.01. Also,
setting the learning rate using a cosine annealing scheduler
has helped us achieve competitive results.

V. RESULTS

The proposed model, HBONext, trained from scratch
using CIFAR-10 increased the accuracy gain by 9.06% with
a model size reduction of about 65.18% compared to the
baseline model, HBONet. The integration of harmonious
bottlenecks with the FIR strategy has helped in achieving the
below-mentioned results. The training graphs on the
CIFAR-10 is visualized using the Pytorch platform and the
Livelossplot package, as seen in Fig.5, which is a graph of
Accuracy versus the number of iterations for a width value
of 1.0. The proposed model HBONext has an 88.30%
accuracy for validation on CIFAR-10 and with a model size
of 7.66 MB, comparable to its reference model’s accuracy of
80.97% and initial model size of 22 MB.

TABLE II: Width Multiplier Variants

Width Value Accuracy Model’s size
HBONext(1.5) 89.60% 16.08 MB
HBONet (1.5) 82.75% 48.34 MB
HBONext(1.0) 88.30% 7.66 MB
HBONet (1.0) 80.97% 22.00 MB

HBONext(0.75) 87.70% 4.67 MB
HBONet (0.75) 79.93% 13.80 MB
HBONext(0.50) 85.30% 2.48 MB
HBONet (0.50) 76.25% 7.04 MB
HBONext(0.25) 79.80% 1.07 MB
HBONet (0.25) 71.22% 2.65 MB

TABLE II summarizes the model variants based on their
width multiplier values. This model was successfully trained
using the Google Colab environment on CIFAR-10 with a
specific width multiplier value. Its corresponding accuracy
and model size values are carefully noted to spot the
differences. The width multiplier values of 1.5, and 0.75,
significantly improved the results, and its respective accuracy
and model size is highlighted in this table.

VI. CONCLUSION

This work demonstrates an image classification
competency using the CIFAR-10 dataset with the proposed
HBONext architecture. HBONext is a derived version of its
primitive block harmonious bottleneck and a mutated version
called Flipped Inverted Residual (FIR) block. When trained
on CIFAR-10 using the Pytorch framework, the model gives
an improved validation accuracy of 88.30% with a model
reduction to a size of 7.66 MB. The study presents in detail
the comparison of our model with respect to the different
values of width multiplier trained with the optimizing
techniques and the cosine annealing scheduling methods for
learning. With the different values of width multipliers, the
lighter models are achieved that can be easily implemented
on any embedded vision application. The future scope
involves use of different techniques like data augmentation,
and learning rate scheduling meachnism to improve
performance metric and finally deploying this proposed
model on the embedded edge hardware to test its real-time
application for image classification purposes.
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