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Abstract 

Quality inconsistency due to uncertainty hinders the extensive applications of laser powder bed 

fusion (L-PBF) additive manufacturing process. To address this issue, this study proposes a new 

and efficient probabilistic method for the reliability analysis and design of the L-PBF process. The 

method determines a feasible region of the design space for given design requirements at specified 

reliability levels. If a design point falls into the feasible region, the design requirement will be satisfied 

with a probability higher or equal to the specified reliability. Since the problem involves the inverse 

reliability analysis that requires calling the direct reliability analysis repeatedly, directly using Monte 

Carlo simulation (MCS) is computationally intractable, especially for a high reliability requirement. 

In this work, a new algorithm is developed to combine MCS and the First Order Reliability Method 

(FORM). The algorithm finds the initial feasible region quickly by FORM and then updates it with 

higher accuracy by MCS. The method is applied to several case studies, where the normalized 

enthalpy criterion is used as a design requirement. The feasible regions of the normalized enthalpy 

criterion are obtained as contours with respect to the laser power and laser scan speed at different 

reliability levels, accounting for uncertainty in seven processing and material parameters. The results 
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show that the proposed method dramatically alleviates the computational cost while maintaining high 

accuracy. This work provides a guidance for the process design with required reliability. 

Keywords: additive manufacturing; probabilistic process design; reliability; uncertainty 

quantification  
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1. Introduction 

Additive manufacturing (AM) is a group of layer-upon-layer fabrication processes based on 

computer-aided design (CAD) models [1]. AM has become a popular fabrication method of metal 

components due to its capability of producing parts with complex geometries. Among the 

processes of metal components, laser powder bed fusion (L-PBF) is a popular AM technique that 

uses a high-energy laser to selectively melt or sinter a metallic powder bed. For each layer in a 

typical L-PBF process, a recoating blade first pushes a layer of fresh powder from the powder tank 

to the top of the previously built surface or the substrate. Then, a laser beam passes through a 

system of lenses and is reflected by a mirror that controls the laser beam spot moving along the 

designed path. This process is repeated in a layer-by-layer manner [2]. 

A major challenge in the current L-PBF field is the process variability and quality 

inconsistency. This is primarily due to the physical complexity involved in the laser melting 

process and the uncertainty involved in the processing parameters and material properties. To 

resolve this issue, efforts have been made in many aspects, including parametric experimental 

study [3-6], in situ experimental monitoring [7-9], process modeling [10-15], surrogate modeling 

[16-18], and uncertainty quantification (UQ) [19-22]. A recent review of the latest applications of 

machine learning (ML) in the AM field is also available in the authors’ work [23]. These efforts 

will be summarized in the following two paragraphs. 

To date, the mechanisms of laser melting process have been extensively studied from 

experiments and simulations, which provide the guidance for selecting processing parameters in 

the process-structure-property (P-S-P) relation chain. For example, two major causes of pores 

formation, keyhole mode [3] and spattering [24, 25], are found to be related to the laser energy 

density controlled by some processing parameters, such as laser power and scan speed. With this 
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guidance, surrogate models [16-18], usually based on machine learning, can then generate a 

process map with a clear relationship between processing parameters and target properties or 

performance indicators such as melt pool dimension. This capability has been demonstrated in Ref. 

[17, 18, 26]. The process map, though is helpful for process design, does not take the uncertainty 

of the input variables into account. The reliability remains unknown on the process map. 

Additionally, the Gaussian process models were employed to capture the surface changes and 

variation over the polishing process of 3D-printed Ti–6Al–4V alloy samples[27]. The correlation 

parameters associated with polishing stages revealed the subtle features of the surface as well as 

their changes during the polishing process [27]. In Ref.[28], a deep neural network (NN)-based 

machine learning (ML) technique was used to mitigate the scattering effect in light-based 3D 

printing methods. The NN was employed to study the highly sophisticated relationship between 

the input digital masks and their corresponding output 3D printed structures. Furthermore, the NN 

was used to model an inverse 3D printing process, where it took desired printed structures as inputs 

and subsequently generated grayscale digital masks that optimized the light exposure dose 

according to the desired structures’ local features [28]. 

Built upon this knowledge, the uncertainty, which is the main cause of process inconsistency, 

unpredictability and unrepeatability, has been investigated using Monte Carlo simulation (MCS) 

[29] and polynomial chaos expansions (PCE) [19]. The outcome of these UQ efforts is the 

uncertainty of the output quantity in terms of a series of input random variables. This is desirable, 

but insufficient for process design optimization. UQ merely provides the reliability of the current 

design. If the current design is rejected by the design requirements, what improvement shall be 

made? UQ does not answer this question. In this regard, UQ is an appropriate tool for assessment 

of existing designs, but not for creating new design. In other words, the link between UQ and 
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optimal process design is still missing. Efficient tools for reliability analysis and process 

optimization in the L-PBF field are needed.   

With the above discussions in mind, we propose a new probabilistic method that links 

uncertainty quantification with the L-PBF process design and reliability. Instead of directly 

quantifying uncertainty and reliability, we specify a feasible design region for given design 

requirements at a specified reliability level. The feasible design region allows researchers to select 

process design variables in the feasible design region so that the required reliability can be ensured. 

It also provides constraints on design variables when optimization is used.  

The structure of the paper is arranged as follows. Probabilistic design and reliability analysis 

methods are reviewed in Section 2. Then the proposed new method using the combined First Order 

Reliability Method and Monte Carlo simulation is presented in Section 3, followed by a case study 

in Section 4, where a criterion based on normalized enthalpy [3, 30] is used to identify the conduction 

mode in the L-PBF process. The feasible design regions are determined by the given reliability levels. 

Section 5 provides conclusions and suggested future work.  

2. Review of Probabilistic Design and Reliability Analysis

This work focuses on the probabilistic process design of the L-PBF process and is based on

FORM and MCS. These methods are briefly reviewed here. The normalized enthalpy criterion is 

also discussed, since it is the design requirement in the case study for the L-PBF design. 

2.1. Probabilistic design 

In an L-PBF process, the design and manufacture of a component are subject to one or 

multiple requirements, such as strength, geometric accuracy, and other desired properties. These 
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quantities (output) corresponding to the requirements are determined by design variables (input), 

such as the laser power and scan speed. Since uncertainty exists in the input variables, the 

requirements may not always be satisfied. If the probability of satisfying a design requirement is 

denoted by reliability, the reliability may not be always 100% or 1.0. A typical probabilistic 

process design identifies the design variables so that the reliability is equal to or higher than the 

target reliability [31-33]. 

Probabilistic design uses limit-state functions. A limit-state function specifies the functional 

relationship between an output variable 𝑌𝑌 and input variables 𝐗𝐗 and is given by [34] 

𝑌𝑌 = 𝑔𝑔(𝐗𝐗), (1) 

where 𝑌𝑌 is the output quantity of interest, and 𝐗𝐗 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) is a vector of input variable 

with 𝑛𝑛  being the size of 𝐗𝐗 . When uncertainty is associated with the input variables, they are 

modeled as random variables with their probability density function (PDF) 𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛. 

In this study, we assume the input random variables are independent. Without losing generality, 

we assume that a design requirement is satisfied if 𝑌𝑌 = 𝑔𝑔(𝐗𝐗) > 0; in other words, a failure occurs 

if 𝑌𝑌 = 𝑔𝑔(𝐗𝐗) ≤ 0. The reliability 𝑅𝑅 is then given by  

𝑅𝑅 = Pr{𝑔𝑔(𝐗𝐗) > 0}, (2) 

where Pr{∙} denotes a probability. 

For the L-PBF process, 𝑌𝑌 can be one of the properties of the printed parts, as well as some 

quality indicator such as the melt pool dimension. 𝐗𝐗 usually includes processing parameters, such 

as laser power, laser scan speed, laser beam size, and layer thickness, as well as powder properties, 

including absorption coefficient, powder size distribution, and thermal conductivity.  

A limit-state function is usually derived from physical principles, and it may be a black-box 

model. It may also be obtained from experiments. If the limit-state function, such as a finite 
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element analysis model, is computationally expensive, its surrogate can be constructed. The 

computational cost of a surrogate model is low, typically in seconds or minutes. For a high 

dimensional and highly nonlinear limit-state function, the surrogate model can be built by machine 

learning methods [16-18]. 

 

2.2. Uncertainty quantification and reliability analysis 

During the probabilistic design, the reliability in Eq. (2) should be calculated, and this is the 

task of reliability analysis, whose objective is to find 𝑅𝑅 given PDFs 𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛 and 𝑔𝑔(𝐗𝐗).  

Data acquisition is essential to constructing a limit-state function 𝑔𝑔(𝐗𝐗) and estimating PDFs 

𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛. Conventional way for data acquisition is to use experimental measurements, 

and this may be time consuming and costly. A more actionable way is by means of computational 

models after experimental validation, in order to alleviate the need of the expensive experiments. 

It should be noted that experimental measurements will introduce aleatory (random) uncertainty 

whereas computational models will have their model uncertainty [21]. The uncertainty sources and 

data acquisition are briefly discussed below, and will also be elaborated further for the case studies 

in Section 4.1. 

The sources of uncertainty involved in the L-PBF process have been summarized in Ref. 

[21]. They can be classified into two categories: (1) aleatory uncertainty, which refers to the 

irreducible natural variability, and (2) epistemic uncertainty, which refers to the reducible 

uncertainty due to lack of knowledge of parameters, as well as approximations and assumptions 

introduced during the modeling process. The epistemic uncertainty can be further classified into 

two subgroups: (1) data uncertainty due to the imprecise measurements, and (2) model uncertainty 

due to the assumptions, simplifications, and numerical discretizations involved in the model [21].  
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An example is the aleatory uncertainty and the data uncertainty in the laser power and scan 

speed, which strongly affect the input energy density and the melt pool dynamics, due to the 

variation of the laser 3D printer. Another example is the imprecise measurements (data uncertainty) 

of the material properties, such as the absorption coefficient to the laser energy and thermal 

diffusivity. There are many uncertainty and reliability analysis methods, and two of them are 

reviewed in Sections 2.3 and 2.4. 

  

2.3. Monte Carlo simulation 

Monte Carlo simulation (MCS) [19-21, 29, 35] is a numerical algorithm that relies on 

repeated random sampling. 𝑁𝑁 samples of 𝐗𝐗 are first generated from the distributions of 𝐗𝐗, and then 

the limit-state function is evaluated at the samples of 𝐗𝐗, resulting in samples of 𝑌𝑌. The number of 

failures 𝑛𝑛𝑓𝑓 is obtained by counting the number of samples of 𝑌𝑌 in the failure region 𝑌𝑌 < 0. The 

probability of failure is estimated by 

𝑝𝑝𝑓𝑓 =
𝑛𝑛𝑓𝑓
𝑁𝑁

, (3) 

and the reliability is given by 𝑅𝑅 = 1 − 𝑝𝑝𝑓𝑓. The advantage of MCS is that it is easy to use and its 

accuracy does not depend on the number of input random variables and their variation. Its 

computational cost, however, will be significant with a small probability of failure. For instance, 

if 𝑝𝑝𝑓𝑓 = 10−6, for sufficient accuracy approximately 108 samples are needed, and this means that 

the limit-state function has to be called 108 times. 

 

2.4. First Order Reliability Method (FORM) 

FORM is one of the most commonly used reliability methods [34]. It predicts the reliability 

𝑅𝑅 = Pr{𝑔𝑔(𝐗𝐗) > 0} , given the limit-state function and distributions of 𝐗𝐗. In this work, we use the 
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inverse FORM [36]. It solves an inverse problem: find the limit state 𝑔𝑔(𝐗𝐗) = 𝑐𝑐, given the limit-

state function, distributions of 𝐗𝐗, and reliability 𝑅𝑅, so that 

 Pr{𝑔𝑔(𝐗𝐗) > 𝑐𝑐} = 𝑅𝑅. (3) 

The first step is to transform the random variables 𝑋𝑋𝑖𝑖 (𝑖𝑖 = 1, … ,𝑛𝑛)  into standard normal 

variables 𝑈𝑈𝑖𝑖 by 

 𝐹𝐹𝑋𝑋𝑖𝑖(𝑋𝑋𝑖𝑖) = Φ(𝑈𝑈𝑖𝑖), (4) 

where 𝐹𝐹𝑋𝑋𝑖𝑖(𝑋𝑋𝑖𝑖) is the cumulative density function (CDF) of 𝑋𝑋𝑖𝑖, and Φ(𝑈𝑈𝑖𝑖) is the CDF of 𝑈𝑈𝑖𝑖. The 

transformation from the X-space to the U-space is denoted by 𝐗𝐗 = T(𝐔𝐔). We then have the limit-

state function in the U-space as follows: 

 𝑌𝑌 = 𝑔𝑔(𝐗𝐗) = 𝑔𝑔�T(𝐔𝐔)�. (5) 

The joint probability density of 𝐔𝐔 is symmetric with its peak point at the origin of the U-

space since all the elements 𝐔𝐔 follow standard normal distributions whose peaks are at the origin. 

The close is a realization of 𝐔𝐔, the higher is the probability density. The key idea is to find the 

most probable point (MPP). The MPP is named due to it has the highest probability density at the 

limit state 𝑔𝑔�T(𝐔𝐔)� = 𝑐𝑐.  As a result, the MPP is the shortest distance point from the origin to the 

surface 𝑔𝑔�T(𝐔𝐔)� = 𝑐𝑐. The limit-state function is then linearized at the MPP, which minimizes the 

accuracy loss due to the linearization,   

The MPP 𝐮𝐮∗ is found by solving the following optimization problem: 

 �
min
𝐮𝐮
𝑔𝑔�T(𝐔𝐔)�

subject to ‖𝐮𝐮‖ = 𝛽𝛽
 (6) 

where ‖∙‖ denotes the magnitude of a vector, and 𝛽𝛽 is the reliability index, given by  

 Φ(𝛽𝛽) = 𝑅𝑅. (7) 

The limit state is then found by 
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 𝑐𝑐 = 𝑔𝑔�T(𝐮𝐮∗)�. (8) 

Since is 𝐮𝐮∗  is the shortest distance point to the surface or contour 𝑔𝑔�T(𝐔𝐔)� = 𝑐𝑐 , 𝐮𝐮∗  is 

perpendicular to 𝑔𝑔�T(𝐔𝐔)� = 𝑐𝑐. The direction of 𝐮𝐮∗ is towards the failure region or the direction 

along which the limit-state function decreases. Note that the gradient 𝑔𝑔�T(𝐔𝐔)� is in the direction 

along which the limit-state function increases and is perpendicular to the contour of the limit-state 

function. Then 𝐮𝐮∗  is in the opposite direction of the gradient of 𝑔𝑔�T(𝐔𝐔)�  at 𝐮𝐮∗ , where 

∇𝑔𝑔�T(𝐔𝐔)� = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈1

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈𝑛𝑛

��
𝐮𝐮∗

. This gives 

𝐮𝐮∗

𝛽𝛽
= −

∇𝑔𝑔�T(𝐔𝐔)�
�∇𝑔𝑔�T(𝐔𝐔)��

= −𝛼𝛼(𝐮𝐮∗), (10) 

where  

𝛼𝛼(𝐮𝐮∗) =
∇𝑔𝑔�T(𝐔𝐔)�
�∇𝑔𝑔�T(𝐔𝐔)��

, (11) 

which is a unit vector along the gradient direction.  

The goal of FORM now becomes searching for the MPP point 𝐮𝐮∗. According to Eq. (10), 

the MPP point 𝐮𝐮∗ satisfies 

 𝐮𝐮∗ = −𝛽𝛽𝛼𝛼(𝐮𝐮∗). (9) 

The MPP search process is iterative, and the search algorithm includes the Hasofer-Lind and 

Rackwitz-Fiessler (HL-RF) algorithm [34, 37]. For the work in this study, since 𝛽𝛽 is known, for 

the i-th iteration, we have 

 𝐮𝐮𝑖𝑖 = −𝛽𝛽𝛼𝛼(𝐮𝐮𝑖𝑖−1). (10) 

 

2.5. Normalized enthalpy criterion 
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To use probabilistic analysis and design, we need to create limit-state functions. We now 

discuss the construction of limit-state functions for the L-PBF process. We take the normalized 

enthalpy criterion as an example, which was proposed by Hann et al. [30] and quantified by King 

et al. [3] for keyhole mode identification for 316L stainless steel. The criterion was later applied 

in a Gaussian process (GP)-based machine learning model in Ref. [17] to predict the remelted 

depth of single tracks, as a function of combined laser power and laser scan speed in a laser powder 

bed fusion process. 

The criterion of the occurrence of keyhole mode is 

∆𝐻𝐻
ℎ𝑠𝑠

=
𝐴𝐴𝐴𝐴

𝜌𝜌ℎ𝑠𝑠�𝜋𝜋𝜋𝜋𝜋𝜋 �
𝑟𝑟
2�

3
≥ 30, (14)

 

where ∆𝐻𝐻  is the specific enthalpy, ℎ𝑠𝑠  is the enthalpy at melting, 𝐴𝐴  is the material absorption 

coefficient to the laser power, 𝐴𝐴 is the laser power, 𝜌𝜌 is density, 𝜋𝜋 is thermal diffusivity, 𝜋𝜋 is the 

laser scan speed, 𝑟𝑟 is the laser beam radius. For example, with increased laser power 𝐴𝐴, decreased 

laser scan speed 𝜋𝜋, increased absorption coefficient, or decreased laser beam radius (which make 

the laser more focused), the laser energy density will increase, and so does the quantity ∆𝐻𝐻
ℎ𝑠𝑠

 based 

on the criterion. This satisfies the fact that the keyhole mode occurs when the laser energy density 

is too high. The preferred conduction mode region is ∆𝐻𝐻
ℎ𝑠𝑠

< 30. 

The limit-state function according to the criterion is constructed by 

𝑌𝑌 = 𝑔𝑔(𝐗𝐗) = 𝑔𝑔(𝐴𝐴,𝐴𝐴,𝜌𝜌,ℎ𝑠𝑠 ,𝜋𝜋, 𝜋𝜋, 𝑟𝑟) = 30 −
𝐴𝐴𝐴𝐴

𝜌𝜌ℎ𝑠𝑠�𝜋𝜋𝜋𝜋𝜋𝜋 �
𝑟𝑟
2�

3
, (15)

 

where 𝐗𝐗 = (𝐴𝐴,𝐴𝐴,𝜌𝜌,ℎ𝑠𝑠,𝜋𝜋, 𝜋𝜋, 𝑟𝑟). if 𝑌𝑌 > 0, we would have the preferred conduction mode region, 

and if 𝑌𝑌 ≤ 0, we would get a failure if we consider the keyhole mode as a failure. Note that in 
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reality a state in keyhole mode may not be necessarily a failed state, but it is the state we want to 

avoid. If the laser scan speed 𝜋𝜋 and laser power 𝐴𝐴 are the two processing parameters we can 

control during L-PBF process, we can plot the safe (conduction) region and failure (keyhole) 

region specified by the limit-state function as shown in Figure 1. 

Figure 1. Limit-state function constructed by the normalized enthalpy criterion for keyhole mode 

identification for L-PBF fabricated 316L stainless steel 

To avoid the keyhole mode, we can select the design variables (𝜋𝜋,𝐴𝐴) in the safe region. The 

curve that divides the safe and failure regions, however, is not fixed due to the randomness in 𝐗𝐗. 

To accommodate the uncertainty, we develop a probabilistic method, so that the safe region can 

ensure reliability equal to or higher than the target reliability. 
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3. A Probabilistic Method for Identifying a Feasible Design Region

The objective of this work is to identify a feasible design region for a given requirement at a

desired reliability level. If a design point falls into the feasible design region, the design 

requirement will be satisfied with a probability that is no less than the desired reliability. 

Identifying the feasible design region is computationally expensive if we use MCS to do so. This 

is the reason in this study that we develop an efficient method to generate a feasible design region 

for process design while maintaining the same accuracy level as MCS.  

3.1. Overview 

A limit-state function 𝑌𝑌 = 𝑔𝑔(𝐗𝐗) is available for a design requirement 𝑌𝑌 > 0, and the input 

variables 𝐗𝐗 are random. To satisfy the requirement 𝑌𝑌 = 𝑔𝑔(𝐗𝐗) > 0 at reliability 𝑅𝑅 = Pr(𝑔𝑔(𝐗𝐗) >

0), we need to change the design variables, which are a subset of 𝐗𝐗. Let the design variables be 

denoted as 𝐝𝐝 = (𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑚𝑚), which are deterministic variables, for instance, the means of some 

random variables in 𝐗𝐗, with 𝑚𝑚 being the number of design variables. Therefore, in Eq. (15), we 

could include the means of the laser scan speed, 𝜋𝜋, and laser power, 𝐴𝐴, as design variables. The 

other random variables, including 𝐴𝐴,𝜌𝜌,ℎ𝑠𝑠,𝜋𝜋, and 𝑟𝑟, are in the set 𝐗𝐗 but not in 𝐝𝐝. By considering 

the design variables, the limit-state function is rewritten as 𝑌𝑌 = 𝑔𝑔(𝐗𝐗;𝐝𝐝) . Since the X-to-U 

transformation also depends on 𝐝𝐝 if it contains distribution parameters 𝐗𝐗, the transformation is 

expressed by 𝐗𝐗 = T(𝐔𝐔;𝐝𝐝) . The limit-state function in the U-space is then given by 𝑌𝑌 =

𝑔𝑔(T(𝐔𝐔;𝐝𝐝);𝐝𝐝). In this study, we assume all the random variables in 𝐗𝐗 are independent. For the 

general case where dependent random variables exist, they can be transformed into independent 
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variables, and consequently, the proposed method can still be used [38]. The task is summarized 

as follows: 

Given: the distributions of 𝐗𝐗, limit-state function 𝑌𝑌 = 𝑔𝑔(⋅), and required reliability 𝑅𝑅  

Find: domain of 𝐝𝐝 such that Pr{𝑔𝑔(𝐗𝐗;𝐝𝐝) > 0} = 𝑅𝑅 

The domain of 𝐝𝐝 specified above is the reliability-based feasible design region. Denote the 

feasible design region by 𝐻𝐻(𝐝𝐝) = 0. Once feasible region is available, design variables can be 

selected from it. We are particularly interested in plotting the region so that it is convenient to use 

the graph. Plotting 𝐻𝐻(𝐝𝐝) = 0 or Pr{𝑔𝑔(𝐗𝐗;𝐝𝐝) > 0} = 𝑅𝑅, however, is computationally demanding.  

Take a two-dimensional problem as an example. Let 𝐝𝐝 = (𝑑𝑑1,𝑑𝑑2) , and therefore 

𝐻𝐻(𝑑𝑑1,𝑑𝑑2) = 0, or Pr{𝑔𝑔(𝐗𝐗;𝑑𝑑1,𝑑𝑑2) > 0} = 𝑅𝑅. Suppose we use 100 points to plot the curve, and we 

then discretize the range of 𝑑𝑑1  with 100 points. For each point of 𝑑𝑑1 , we solve for 𝑑𝑑2  from 

Pr{𝑔𝑔(𝐗𝐗;𝑑𝑑1,𝑑𝑑2) > 0} = 𝑅𝑅 . This is an inverse probabilistic analysis, meaning that given the 

probability 𝑅𝑅, find 𝑑𝑑2, which may be a distribution parameter of one random variable in 𝐗𝐗. One 

inverse probabilistic analysis will need a number of direct probabilistic analyses, which find the 

probability Pr{𝑔𝑔(𝐗𝐗;𝑑𝑑1,𝑑𝑑2) > 0} for a given value of 𝑑𝑑2. If the probability does not equal to 𝑅𝑅, 𝑑𝑑2 

will be changed. This process continues until Pr{𝑔𝑔(𝐗𝐗;𝑑𝑑1,𝑑𝑑2) > 0} = 𝑅𝑅. Suppose we use MCS 

and the required reliability is 𝑅𝑅 = 0.99999 (the probability of failure 𝑝𝑝𝑓𝑓 = 10−5). Also assuming 

that we use a sample size of 107  for one direct probabilistic analysis, an inverse probabilistic 

analysis needs 10 direct probabilistic analyses, and solving for 𝑑𝑑2 needs 10 function calls. Then 

the total number of calling the limit-state function 𝑔𝑔(𝐗𝐗;𝑑𝑑1,𝑑𝑑2) will be 100 × 10 × 10 × 107 =

1011 times. Such a high computational cost will be unaffordable for many applications. 

To overcome the above mentioned obstacles, in this study, we develop a new efficient 

method based on the inverse FORM. The feasible design region can be quickly generated by the 
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proposed method with much less function calls. If a higher accuracy is needed for critical 

applications, the accuracy will then be checked with MCS. If the accuracy is not satisfactory, the 

MCS result will be used to refine the design region.  The direct use of the inverse FORM will 

involve a double-loop procedure, as illustrated in Table 1 in Section 3.2. The outer loop is to search 

for the MPP 𝐮𝐮∗  for a given set of 𝐝𝐝 , and the inner loop is solved for 𝐝𝐝  from 𝐻𝐻(𝐝𝐝) =

𝑔𝑔(T(𝐮𝐮∗;𝐝𝐝);𝐝𝐝) = 0. To further improve the efficiency, we propose to combine the two loops so 

that solving 𝐻𝐻(𝐝𝐝) = 𝑔𝑔(T(𝐮𝐮∗;𝐝𝐝);𝐝𝐝) = 0 is embedded in the MPP search algorithm. 

 

3.2. FORM-based method for generating a feasible design region 

As discussed above, design variables are solved from 𝐻𝐻(𝐝𝐝) = 𝑔𝑔(T(𝐮𝐮∗;𝐝𝐝);𝐝𝐝) = 0 where 

𝐮𝐮∗ = 𝛽𝛽𝛼𝛼(𝐮𝐮∗) is indicated in Eq. (12). Eq. (11) gives  

𝛼𝛼(𝐮𝐮∗) =
∇𝑔𝑔(T(𝐔𝐔;𝐝𝐝);𝐝𝐝)
‖∇𝑔𝑔(T(𝐔𝐔;𝐝𝐝);𝐝𝐝)‖ . (16) 

Function 𝐻𝐻(𝐝𝐝) becomes 

𝐻𝐻(𝐝𝐝) = 𝑔𝑔 �T �𝛽𝛽
∇𝑔𝑔(T(𝐔𝐔;𝐝𝐝);𝐝𝐝)
‖∇𝑔𝑔(T(𝐔𝐔;𝐝𝐝);𝐝𝐝)‖ ;𝐝𝐝� ;𝐝𝐝� = 0. (17) 

Solving Eq. (17) requires an iterative procedure. The first step is to find the reliability index 

by [34] 

 𝛽𝛽 = Φ−1(𝑅𝑅), (11) 

where the required reliability 𝑅𝑅 is greater than 0.5. 

Suppose at iteration i, the design variables are obtained from the previous or the (i-1)-th 

iteration, and the MPP is 𝐮𝐮 in the U-space. We convert them into the original random variables in 

the X-space by 𝐱𝐱 = 𝑇𝑇−1(𝐮𝐮), where the transformation 𝑇𝑇−1(⋅) is given in Eq. (6). We calculate the 
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derivative of the limit-state function at  , and obtain 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑗𝑗

, where 𝑗𝑗 = 1,2, … ,𝑛𝑛. The derivative of the 

limit-state function at 𝐮𝐮 is then  

𝜕𝜕𝑔𝑔
𝜕𝜕𝑢𝑢𝑗𝑗

=
𝜕𝜕𝑔𝑔
𝜕𝜕𝑋𝑋𝑗𝑗

𝑑𝑑𝑥𝑥𝑗𝑗
𝜕𝜕𝑢𝑢𝑗𝑗

. (19) 

where 𝑑𝑑𝑥𝑥𝑗𝑗
𝜕𝜕𝑢𝑢𝑗𝑗

 can be derived from Eq. (6). 

𝑑𝑑𝑥𝑥𝑗𝑗
𝜕𝜕𝑢𝑢𝑗𝑗

=
𝜙𝜙�𝑢𝑢𝑗𝑗�
𝑓𝑓𝑋𝑋𝑗𝑗�𝑥𝑥𝑗𝑗�

. (20) 

where 𝜙𝜙(⋅)  and 𝑓𝑓𝑋𝑋𝑗𝑗(⋅)  are the PDF of 𝑈𝑈𝑗𝑗  and 𝑋𝑋𝑗𝑗 , respectively. Then the gradient is 

∇𝑔𝑔�T�𝐮𝐮𝑖𝑖;𝐝𝐝�;𝐝𝐝� = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈1

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈𝑛𝑛

��
𝐮𝐮
, and the associated unit vector is 𝛼𝛼(𝐮𝐮) = ∇𝜕𝜕�T�𝐮𝐮𝑖𝑖;𝐝𝐝�;𝐝𝐝�

�∇𝜕𝜕�T�𝐮𝐮𝑖𝑖;𝐝𝐝�;𝐝𝐝��
. 

Then the MPP is updated to  

 𝐮𝐮 = 𝛽𝛽𝛼𝛼(𝐮𝐮). (12) 

Once the 𝐮𝐮 is updated, we solve 𝐻𝐻(𝐝𝐝) = 𝑔𝑔(T(𝐮𝐮∗;𝐝𝐝);𝐝𝐝) = 0 and obtain a new set of design 

variables 𝐝𝐝. Thus, one iteration is complete. Then convergence is checked. If the distance between 

the new MPP on the left-hand side of Eq. (19) is sufficiently close to the previous MPP on the 

right-hand side of the equation, the MPP is found; otherwise, we calculate the gradient of the limit-

state function at the updated MPP and then find a new MPP. We repeat this process until 

convergence criterion is met. Once the iterative process is complete, we obtain a design point 𝐝𝐝 

for the feasible design region. By repeating this iterative process multiple times, we obtain a 

number of design points, which will then result in a boundary of the feasible design region. 

The convergence is judged by 

 𝜀𝜀 = ‖𝐮𝐮new − 𝐮𝐮old‖, (13) 
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where 𝐮𝐮new and 𝐮𝐮old are the MPPs at the current iteration and previous iteration, respectively. The 

convergence criterion is: given a tolerance 𝛿𝛿, we will terminate the search if 𝜀𝜀 < 𝛿𝛿. 𝛿𝛿 can be set to 

0.01 or 0.001. 

The procedure of the FORM-based feasible design for solving one design point is 

summarized in Table 1.  

Table 1. FORM-Based Feasible Design 

Procedure: FORM-based feasible design 
Input 

Required reliability 𝑅𝑅 
CDFs 𝐹𝐹𝑋𝑋𝑖𝑖(⋅), 𝑖𝑖 = 1,2, … ,𝑛𝑛 
Initial design point 𝐝𝐝0 
Initial MPP 𝐮𝐮0  
Convergence tolerance 𝛿𝛿 

Output: 𝐝𝐝 
𝐮𝐮 = 𝐮𝐮0 
𝐝𝐝 = 𝐝𝐝0 
𝛽𝛽 = Φ−1(𝑅𝑅) 
𝑐𝑐𝑐𝑐𝑛𝑛𝜋𝜋𝑐𝑐𝑟𝑟𝑔𝑔𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐 
while 𝑐𝑐𝑐𝑐𝑛𝑛𝜋𝜋𝑐𝑐𝑟𝑟𝑔𝑔𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐 

𝐮𝐮old = 𝐮𝐮 
𝐱𝐱 = 𝑇𝑇−1(𝐮𝐮;𝐝𝐝) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑗𝑗

𝑑𝑑𝑥𝑥𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖

∇𝑔𝑔 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖
�
𝑖𝑖=1,𝑛𝑛

𝛼𝛼 = ∇𝜕𝜕
‖∇𝜕𝜕‖

 
𝐮𝐮 = 𝛽𝛽𝛼𝛼 
𝐝𝐝 = solution to 𝑔𝑔(T(𝐮𝐮;𝐝𝐝);𝐝𝐝) = 0 
𝜀𝜀 = ‖𝐮𝐮 − 𝐮𝐮old‖ 

   if 𝜀𝜀 < 𝛿𝛿 then 
        𝑐𝑐𝑐𝑐𝑛𝑛𝜋𝜋𝑐𝑐𝑟𝑟𝑔𝑔𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑟𝑟𝑢𝑢𝑐𝑐 

  end if 
end while 

If we use the above algorithm to produce a sufficient number of design points, we can then 

generate a feasible design region. The algorithm requires evaluating the gradient of the limit-state 
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function and solving the equation given by 𝑔𝑔(T(𝐮𝐮;𝐝𝐝);𝐝𝐝) = 0. It does not involve any random 

sampling and is therefore computationally efficient. Since the method employs the most commonly 

used FORM, its accuracy should be acceptable for most applications. The accuracy, however, may 

deteriorate if the limit-state function is highly nonlinear around the MPP in the U-space.  

There are two possible ways to improve the accuracy. The first way is to use MCS based on 

the result from the proposed method, while the second way is to use the Second Order Reliability 

Method (SORM), which also uses the second derivatives of the limit-state function. In this study, 

we choose the former method for efficiency.  

 

3.3. Accuracy improvement by MCS 

The strategy is to use MCS to accurately calculate the reliability at the design point 𝐝𝐝, which 

is obtained from the above FORM based feasibility design. Denote the reliability from MCS by 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀, and let the difference from the required reliability be 𝜀𝜀𝑅𝑅 = 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. If |𝜀𝜀𝑅𝑅| is greater 

than a tolerance 𝛿𝛿𝑅𝑅, we will adjust the required reliability by 

 𝑅𝑅𝑛𝑛 = 𝑅𝑅𝑛𝑛−1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀

, (14) 

where 𝑅𝑅𝑛𝑛 denotes the input reliability of FORM at the nth iteration. Then the algorithm in Table 1 

is then called. To reduce the computational cost, we use the design point 𝐝𝐝 and MPP 𝐮𝐮 from the 

last feasibility design as the initial design point and MPP, respectively. This process is repeated 

until the convergence criterion is met, and convergence can be reached with a few iterations. As a 

result, no inverse MCS is needed, and the number of direct MCS is minimized. The tolerance 𝛿𝛿𝑅𝑅 

is determined by the accuracy requirement for a specific application. In this work, we employ a 

relative tolerance, such that 

 𝛿𝛿𝑅𝑅 = 𝑐𝑐𝑝𝑝𝑟𝑟, (15) 
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where 𝑐𝑐 is a relative coefficient. For example, we set 𝑐𝑐 = 0.5. If 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0.99999, then 𝑝𝑝𝑟𝑟 = 10−5, 

and 𝛿𝛿𝑅𝑅 = 5 × 10−6 . Therefore, upon convergence, the actual reliability will be 0.99999 ±

0.000005. The algorithm of the d FORM and MCS is provided in Table 2. 

 

 

Table 2. Integrated FORM and MCS 

Procedure: FORM/MCS-based feasible design 
Input 

Required reliability 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
CDFs 𝐹𝐹𝑋𝑋𝑖𝑖(⋅), 𝑖𝑖 = 1,2, … ,𝑛𝑛 
Initial design point 𝐝𝐝0 
Initial MPP 𝐮𝐮0  
Convergence tolerance 𝛿𝛿 for FORM 
Convergence tolerance 𝛿𝛿𝑅𝑅 for reliability 

Output: 𝐝𝐝 
𝑐𝑐𝑐𝑐𝑛𝑛𝜋𝜋𝑐𝑐𝑟𝑟𝑔𝑔𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐 
while 𝑐𝑐𝑐𝑐𝑛𝑛𝜋𝜋𝑐𝑐𝑟𝑟𝑔𝑔𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐 

𝐮𝐮 = 𝐮𝐮0 
𝐝𝐝 = 𝐝𝐝0 
𝛽𝛽 = Φ−1(𝑅𝑅) 
Call FORM-based feasibility design (see Table 1) 
Obtain 𝐝𝐝, 𝐮𝐮 

 Call MCS 
Obtain 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 

 𝜀𝜀𝑅𝑅 = 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
   if |𝜀𝜀𝑅𝑅| < 𝛿𝛿𝑅𝑅 then 

         𝑐𝑐𝑐𝑐𝑛𝑛𝜋𝜋𝑐𝑐𝑟𝑟𝑔𝑔𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑟𝑟𝑢𝑢𝑐𝑐  
  end if 

𝑅𝑅 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀

 

𝐮𝐮0 = 𝐮𝐮 
𝐝𝐝0 = 𝐝𝐝 

end while 
 

4. Case Studies  
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In this section, the proposed method is demonstrated by its application for the reliability-

based L-PBF process design.  

4.1. Case 1: Normal distribution and standard deviations are fractions of their means 

4.1.1. Limit-state function and model input 

In this case, standard deviations change with respect to the means, and are fractions of their 

means. The limit-state function for the normalized enthalpy criterion is given in Eq. (15). There 

are seven random input variables, and three of which are design variables, including the laser 

power 𝐴𝐴,  laser scan speed 𝜋𝜋 and laser beam radius 𝑟𝑟. During the process design, the means of the 

three random variables are to be changed. In this study, we assume the mean of the laser beam 

radius 𝑟𝑟 is fixed due to its low flexibility. Then the design problem becomes two-dimensional, and 

the design variables are the means 𝜇𝜇𝑃𝑃 and 𝜇𝜇𝑣𝑣, of 𝐴𝐴 and 𝜋𝜋, respectively, or their nominal values; 

namely, 𝐝𝐝 = (𝜇𝜇𝑃𝑃,𝜇𝜇𝑣𝑣) . Note that the reliability analysis is seven-dimensional because seven 

random variables are involved. 

We identify the feasible design region for the means 𝐝𝐝 = (𝜇𝜇𝑃𝑃,𝜇𝜇𝑣𝑣). Since we need to plot a 

two-dimensional curve for the feasible design region, we discretize one variable and solve for the 

other at the discretized points of the first one. We divide the nominal values of 𝜋𝜋, or 𝜇𝜇𝑣𝑣, into 0.1, 

0.2, ..., 2.0 m/s and then solve for the corresponding nominal values of 𝐴𝐴, or 𝜇𝜇𝑃𝑃. Since there are 

in total 20 points, we call the algorithm in Table 2 20 times, searching for a set of 𝜇𝜇𝑃𝑃 for a given 

set of 𝜇𝜇𝑣𝑣; namely, 0.1, 0.2, ..., 2.0 m/s. For the stop criteria, we use 𝑐𝑐 = 0.5 in Eq. (24) and 𝛿𝛿 =

0.01 in Eq. (22). 

We need to know the distributions of all the seven input random variables. For this case study, 

we use the distributions from previous research and experiments reported in literature. Table 3 

summarizes the distributions with the associated references. All the seven random variables follow 

normal distributions, and their standard deviations are fractions of their means. For specific 
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applications, the distributions will be different, and the effect of distribution types is analyzed in 

Sections 4.3 and 4.4. 

Table 3. Distributions of input random variables  
 

Unit Mean 𝜇𝜇 Standard deviation 𝜎𝜎 Distribution References 
𝐴𝐴 W 𝜇𝜇𝑃𝑃 0.025𝜇𝜇𝑃𝑃 Normal [19, 22, 39] 
𝜋𝜋 m/s 𝜇𝜇𝑣𝑣 0.015𝜇𝜇𝑣𝑣 Normal [19, 22, 39] 
𝐴𝐴 - 0.4 0.2𝜇𝜇𝐴𝐴 Normal [3, 40, 41] 
𝜌𝜌 kg/m3 7980 0.01𝜇𝜇𝜌𝜌 Normal [17, 29, 39] 
𝜋𝜋 m2/s 5.38×106 0.1𝜇𝜇𝐷𝐷 Normal [17, 22] 
𝑟𝑟 m 2.70×10-5 0.04𝜇𝜇𝑟𝑟 Normal [19] 
ℎ𝑠𝑠 J/kg 1.20×106 0.1𝜇𝜇ℎ𝑠𝑠 Normal [17, 42] 

 

4.1.2. Reliability-based feasibility design 

We first generate a feasible design region for an allowable probability of failure of 𝑝𝑝𝑓𝑓 =

10−6, or a target reliability of 𝑅𝑅 = 0.999999. The feasible design region obtained from FORM, 

with the dotted line, is shown in Figure 2, where the region above the curve is the feasible design 

region for the L-PBF process. If a design point (𝜇𝜇𝑃𝑃,𝜇𝜇𝑣𝑣) is chosen above the curve, the probability 

of in the keyhole mode will be less than 10−6. If the design point is on the curve, the probability 

of in the keyhole mode will be 10−6.  

For comparison, we also plot the deterministic feasible design region generated using the 

means of all the seven random input variables. If the design point is on the curve of the 

deterministic feasible design, the probability of the occurrence of keyhole mode will be very high, 

around 0.5. The deterministic feasible design region occupies most of the entire design space while 

the reliability feasible design region is reduced significantly, suggesting that the effect of 

uncertainty is significant. 
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The proposed method with FORM is extremely efficient. The computational time for the 

entire curve is only 0.07 seconds with an Intel Core i7-8750H processor and 32 GB RAM. If higher 

accuracy is preferred, the FORM/MCS method can be formed. It runs MCS after the feasible 

design region is found by FORM. Figure 2 shows that the curve from the FORM/MCS method 

with a sample size of 109 is very close to the one from FORM, and this indicates that FORM is not 

only efficient, but also accurate. The computational cost of the FORM/MCS method is 43,209 

seconds, much higher than that of FORM. If direct MCS is used, the computational cost is 371,085 

seconds, and this indicates that the proposed FORM and FORM/MCS methods can cut the 

computational cost significantly.  

 

  
Figure 2. Reliability contours at 𝑝𝑝𝑓𝑓 = 10−6 from FORM, FORM/MCS, MCS and deterministic 

methods in Case 1 
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Different applications may require different reliability targets. We also perform the proposed 

method for other levels of required reliability, and the associated probabilities of failure are 10−2, 

10−3, 10−4, and 10−5, respectively. The reliability feasible design regions from FORM/MCS are 

plotted in Figure 3. 

 
Figure 3. Reliability feasible design regions for different probabilities of failure (pf) in Case 1 

 

Figure 3 also demonstrates that the boundaries of the reliability feasible design region are 

nonlinear and are increasing functions. It also shows that the increasing reliability reduces the 

feasible design region, or the boundaries shift to left of the figure. In other words, higher reliability 

results in a narrower design space.  

The computational costs for different reliability targets are summarized in Table 4. It is clear 

that the cost of FORM/MCS or the direct MCS increases when the required reliability increases, 

since the number of Monte Carlo samples needed for higher reliability is larger for sufficient 
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accuracy. The cost of FORM remains almost constant, not affected by the required reliability. 

Overall, FORM shows its excellent efficiency and good accuracy. If FORM/MCS method is 

unaffordable, the reliability feasible design region can be used; to meet the required reliability with 

high accuracy, a design point can be selected no close to the boundary of the reliability feasible 

design region. 

 

 Table 4. Comparison of computational costs among FORM, FORM/MCS, and MCS methods 

Method 𝑝𝑝𝑓𝑓 = 10−2 𝑝𝑝𝑓𝑓 = 10−3 𝑝𝑝𝑓𝑓 = 10−4 𝑝𝑝𝑓𝑓 = 10−5 𝑝𝑝𝑓𝑓 = 10−6 
FORM 0.07s 0.07s 0.07s 0.07s 0.07s 

FORM/MCS 5s 47s 440s 4,351s 43,209s 
MCS 41s 387s 3,786s 37,249s 371,085s 

 

4.2. Case 2: Normal distribution and constant standard deviations 

In Case 1, the standard deviations change with respect to the means. In some L-PBF 

processes, however, the standard deviations are constant for certain parameters, such as the 

uncertainty due to imprecise measurements of laser power and scan speed. To evaluate the 

proposed method, we study one case with fixed standard deviations, 𝜎𝜎𝑃𝑃 = 1 W and 𝜎𝜎𝑣𝑣 = 0.1 m/s. 

The other distributions remain unchanged. The permitted probability of failure is still 10−6. 

The reliability feasible design regions of Case 2 from FORM and FORM/MCS are plotted in 

Figure 4. Similar to Case 1, Figure 4 shows that the curve from FORM is still very close to the one 

from FORM/MCS, which indicates the high accuracy of FORM in this scenario. The 

computational cost of FORM is still 0.07s, indicating its high efficiency.  
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Figure 4. Reliability contours at 𝑝𝑝𝑓𝑓 = 10−6 from FORM, FORM/MCS, and deterministic 

methods in Case 2 

 

4.3. Case 3: Non-normal distribution 

Only normal distributions are involved in the above two cases. In practice, non-normal 

distributions may also exist. The proposed method can also be used for any continuous unimodal 

distributions and works well with non-normal distributions including lognormal, Gumbel, Weibull, 

extreme value and gamma distributions [34]. For L-PBF, uniform distribution is a common type 

of uncertainty, whereas other non-normal distribution types have not been reported in the literature. 

Therefore, we study a case where the laser scan speed follows a uniform distribution, as reported 

in Ref. [19]. The lower and upper bounds of the uniform distribution are 0.97𝜇𝜇𝑣𝑣  and 1.03𝜇𝜇𝑣𝑣 , 

respectively, where 𝜇𝜇𝑣𝑣 is given in Table 3. The permitted probability of failure is still 10−6. The 

other distributions remain the same as Case 1. 
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Figure 5 displays the reliability feasible design regions of Case 3 from FORM and 

FORM/MCS at 𝑝𝑝𝑓𝑓 = 10−6. As mentioned in Section 2.4, the transformation from non-normal 

distribution to normal distribution in FORM is non-linear, and therefore an error is expected to 

occur in Case 3. However, as shown in Figure 5, the curve from FORM still matches very well 

with the one from FORM/MCS. This verifies the outstanding accuracy and flexibility of FORM.  

Figure 5. Reliability contours at 𝑝𝑝𝑓𝑓 = 10−6 from FORM, FORM/MCS, and deterministic 

methods in Case 3 

Case 2 and Case 3 demonstrate the flexibility of the proposed method. The reliability 

feasibility regions in the three cases are different, showing the impact of distribution types and 

distribution parameters. The three cases also indicate the high accuracy and efficiency of the 

proposed FORM-based method.   

Note that the model we use is explicit. But we actually treat the model as a black box. The 

model is coded as a separate function. During the iterative process of building the feasible region, 
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the FORM/MCS algorithm generates an input, calls the model, and receives the model output. The 

model is a black box to the calling algorithm. If the model we use was a black-box numerical 

simulation model, the process would be the same. The proposed algorithm is therefore applicable 

to both explicit and implicit models. 

5. Conclusions and Future Work

Uncertainty exists in all aspects of additive manufacturing, including its process design. If

the uncertainty is significant, it is imperative to account for uncertainty to ensure that the reliability 

and quality requirements are satisfied. This work develops a reliability-based feasibility design to 

identify a feasible design region for selecting design variables for L-PBF additive manufacturing 

process design. The major conclusions from this study are summarized below.  

1) The input of the proposed method includes the following:

• The limit-state function for a given requirement. It can be an explicit model or a

black-box model.

• Distributions of input random variables.

• Design variables, which are the means of process design variables (part of the

input random variables).

• The target reliability.

2) The output of the proposed method is a feasible design region.

3) If a design point is selected from the feasible design region, the probability of satisfying

the requirement is no less than the target reliability.

4) The proposed method is based on the first order reliability method (FORM) and Monte

Carlo simulation (MCS). For higher efficiency, only FORM can be performed when the
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computational cost of calling the limit-state function is high. Both the FORM and 

FORM/MCS are much efficient than the direct MCS. 

5) The three case studies in L-PBF process demonstrate that the impact of uncertainty on 

the process design is significant, since the feasible design region is reduced significantly, 

especially when high reliability is required. The results show that the required reliability 

of 99.9999% can narrow the design space more than half.   

6) The proposed method is not limited to additive manufacturing. It can be used to generate 

reliability feasible design regions for other applications if the input indicated in 1) is 

available.  

For the future work, the efficiency can be further enhanced for computationally expensive 

limit-state functions, especially for those from multiphysics and multiscale simulations. The future 

work may also include improving the efficiency of the MPP search, and using surrogate models 

for the original limit-state functions. Another future work can be including a lower bound, e.g., 

lack of fusion, in the analysis. This task requires to develop a relevant limit-state function.  

As indicated in the case study, the effects of uncertainty on the feasible design regions are 

significant. How to reduce the effects also needs a further investigation. We can perform sensitivity 

analysis to identify the important input random variables that contribute most to the gap and then 

reduce their uncertainty accordingly. We can also perform probabilistic design to optimally change 

design variables so that the effects of uncertain is minimized. 
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