
Deployment of Compressed MobileNet V3 on iMX

RT 1060

Kavyashree Prasad S P

IOT Collaboratory IUPUI

Department of Electrical and Computer Engineering

Purdue School of Engineering and Technology

Indianapolis, USA

kshalini@purdue.edu

Mohamed El -Sharkawy

IOT Collaboratory IUPUI Department of Electrical and

Computer Engineering

Purdue School of Engineering and Technology

Indianapolis, USA

melshark@iupui.edu

Abstract—Deep Neural Networks (DNN) are prominent in

most applications today. From self-driving cars, sentiment

analysis, surveillance systems, and robotics, they have been used

extensively. Among DNNs, Convolutional Neural Networks

(CNN) have achieved massive success in computer vision

applications as the human visual system inspires their

architecture. However, striving to achieve higher accuracies,

CNN complexity, parameters, and layers were increased, which

led to a drastic surge in their size, making their deployment

challenging. Over the years, many researchers have proposed

various techniques to alleviate this issue—one of them being

Design Space Exploration (DSE) to minimize size and

computation with little compromise to accuracy. MobileNet V3

is one such architecture designed to achieve good accuracy while

being mindful of resources. It produces an accuracy of 88.93%

on CIFAR-10 with a size of 15.3MB. This paper further reduces

its size to 2.3MB while boosting its accuracy to 89.13% using

DSE techniques. It is then deployed into NXP's i.MX RT1060

Advanced Driver Assistance System (ADAS) platform.

Keywords—MobileNet V3, Convolution Neural Networks,

Depthwise Pointwise Depthwise blocks, Compressed MobileNet

V3, CIFAR-10, Design space exploration, TensorFlow, i.MX RT

1060.

I. INTRODUCTION

Convolutional neural networks have shown commendable
performance in various computer vision tasks due to their
compelling ability to use multiple feature description stages to
grasp representations from images. They first came into the
spotlight through the work of LeCun et al. 1989. Since the
victory of AlexNet in the ImageNet challenge in 2012, they
have gained high popularity [1]. The appealing factor of
CNNs is their intelligence to extract spatial and temporal
content from crude data. The design of CNN incorporates
many convolutional layers, subsampling units, and nonlinear
activation functions. Convolution operation guides extraction
of valuable features from locally connected information
points. Its output is then passed to nonlinear activations that
produce diverse activations for various responses and
encourage semantic contrasts in pictures. Subsampling is used
in CNNs to make it invariant to the location of features.
Subsequently, in this way, CNN learns pictures without the
need for human involvement in feature extraction. The human
visual cortex profoundly propels the building plan of CNNs.
In the course of learning, CNN alters weights employing a
backpropagation calculation. This ability to move towards the
target is comparable to the brain's capacity to memorize based
on responses. CNN's multi-layered structure helps gather low,
mid, and high-level features, with high-level features being an
aggregate of mid and low-level features. This dynamic

learning ability of CNN emulates the neocortex in the human
cerebrum and is responsible for its pervasiveness.

Over the years, there have been many advances in their
architectures, activation functions, regularization, and
parameter tuning. In a race to achieve higher accuracy, CNN
model complexity and parameters have escalated [2] [3] [4]
[5]. This has led to increased demand for resources needed for
their storage and computation. Many small-sized architectures
were proposed to ease this problem, such as MobileNet [6],
SqueezeNet [7], ShuffleNet [8], and so on.

There are various advantages to using small architectures.
Firstly, they are more suitable for embedded resource-
constrained applications. Due to their size, computations can
be performed in place for tasks such as image recognition,
semantic segmentation, etc., rather than sending it to the
cloud. It reduces latency and assures the privacy of data. In
autonomous driving, companies make updates to the model
and load it into customer vehicles from their servers [9].
Small-size CNNs make this update more convenient. Hence,
to benefit from these advantages, many techniques were
developed. Some of them include knowledge distillation [10]
[11], pruning, and network quantization [12][13] , low rank
and sparse decomposition [14], and developing new
innovative architectures[8] [15][16].In knowledge distillation,
a small model learns from a large model using a teacher-
student approach. In pruning, weights that are insignificant to
network performance are zeroed out based on a criterion [17]
[18], and in network quantization, filter kernels and weights
in fully connected layers are quantized. This quantization can
be achieved by various methods such as k-means, Huffman
coding, etc. Sparse decomposition and low-rank
approximations achieve compression by reducing the
parameter dimension of the network. This paper accomplishes
a similar purpose by reducing MobileNet V3 small by making
architectural modifications and changing the baseline model's
activation functions.

Baseline architecture is demonstrated in section 2. Section
3 illustrates changes made to MobileNet V3 small to produce
CMV3. Training setup is detailed in section 4. Section 5 has
implementation details. Results and conclusion are mentioned
in sections 6 and 7, respectively.

II. PRIOR WORK

A. Baseline Architecture

MobileNet V3 is the latest variant of MobileNets. It was
designed using a platform-aware network architecture search,
and net adapt algorithm. MobileNet V3 small and MobileNet
V3 large are two forms of this model developed to serve

This is the author's manuscript of the article published in final edited form as:

Prasad, S. P. K., & El-Sharkawy, M. (2021). Deployment of Compressed MobileNet V3 on iMX RT 1060. 2021 IEEE International IOT, Electronics and
Mechatronics Conference (IEMTRONICS), 1–4. https://doi.org/10.1109/IEMTRONICS52119.2021.9422512

https://doi.org/10.1109/IEMTRONICS52119.2021.9422512

different resource constraints [15]. MobileNet V3 large has
lesser latency than MobileNet V2 while being 3.2% more
accurate on the ImageNet dataset [19].

Fig. 1. MobileNet V3 Block [15].

 MobileNet V3 encompasses the best practices from
MobileNet V2 and Squeeze and excitation networks[20] .It is
a combination of inverted residual bottlenecks and squeeze
and excitation blocks. These SE blocks are added to improve
networks' representational power by suppressing neurons that
do not contribute to performance and enhancing those that do.
The bottlenecks consist of an initial 1x1 pointwise expansion
layer, a depthwise convolution layer (DWC) with a kernel of
size 3x3 or 5x5, and a final 1x1 projection layer. The
architecture of MobileNet V3 is shown in Fig.1. The model
uses the H-swish activation function.

III. MODIFICATIONS

Modifications made to MobileNet V3 are described
below. Table I summarizes CMV3 architecture.

A. Convolution Layers

CNN with more Depthwise convolutions than pointwise
convolutions have shown better performance [21]. This fact
has been exploited to make architectural changes by
emphasizing spatial information rather than aggregating
channel information. Depthwise Pointwise Depthwise (DPD)
blocks, as shown in Fig.2, were used for the model.These
blocks comprise a 3×3 Depthwise convolution, with a stride s
that expands the number of channels and performs down-
sampling. They also consist of a 1×1 pointwise convolution
that collects information along channels, merges them, and
finally, a 3×3 Depthwise separable convolution layer. All
DPD blocks were followed by batch normalization and
RELU.As more Depthwise convolutions are used than
pointwise, good compression is achieved. The ratio of number
of parameters in Pointwise to Depthwise convolutions is
displayed below:

𝑊 × 𝐻 × 𝐶 × 𝑚𝐶

𝑊 × 𝐻 × 𝑘 × 𝑘 × 𝑚𝐶
=

𝐶

𝑘2
 (1)

(W × H) is the input dimension, C is the number of channels,
m is the channel multiplier, and (k × k) is the filter size. Since
the number of channels is much higher than the filter size, the
ratio to be greater than 1.

B. Mish Activation Function

Mish possesses the self-regularizing capacity and lessens
overfitting. It outruns other activation functions in
performance. It also keeps negative gradients, has better
generalization and eliminates saturation due to near-zero
gradients [22]. The formula below can describe it:

 𝑓(𝑥) = 𝑥 ∙ tanh(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) (2)

 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = ln(1 + 𝑒𝑥) (3)

The Mish activation function followed DPD blocks in the new
architecture. It improved the accuracy from 88.14% to
89.13%. Fig.3 depicts the graph of Mish.

Compressed MobileNet V3 Architecture

Input Operator e c SE NL s

322×3 Conv2d 3×3 - 16 - HS 1

322×16 Bneck 3×3 48 32  HS 1

322×32 DPD 3×3 88 40 - MH 1

322×40 DPD 3×3 240 40 - MH 1

322×40 Bneck 5×5 160 48  HS 2

162×48 DPD 5×5 288 96 - MH 1

162×96 DPD 5×5 592 128 - MH 1

162×128 Conv2d 1×1 - 256  HS 1

162×256 Pool 16×16 - - - - 1

12×256 Conv2d 1×1 - 576 - HS 1

12×576 Conv2d 1×1 - k - - 1

TABLE I

WHERE E: EXPANSION FACTOR, C: NUMBER OF OUTPUT

CHANNELS, SE: SQUEEZE AND EXCITE BLOCKS, NL:
ACTIVATION, HS: H-SWISH, MH: MISH AND S: STRIDE

Fig. 2. DPD Blocks

Fig. 3. Mish Activation Function [23].

C. Expansion filters

Mobilenet V3 uses expansion filters to extend to a high
dimensional feature space to intensify non-linear
transformation on channels [15]. This technique is used on
CMV3 as well. Expansion filters in a few layers are increased.
It boosted accuracy from 84.56% to 88.14%.

IV. TRAINING SETUP

The modified model was trained with Intel Xenon Gold
6126 processor with 32GB RAM and NVIDIA Tesla P100
GPU. An l2 weight decay of 1e-5 was used. A dropout of 0.8
and a cosine decay type scheduler were added. A width

multiplier of 0.5 was selected to reduce overfitting and
maintain a good trade-off between accuracy and size.

V. DEPLOYMENT

NXP eIQ is a software platform comprising resources and
tools to help machine learning deployment on NXP hardware.
It has Neural Network (NN) compilers, libraries, inference
engines, Hardware Abstraction Layers (HAL) to support
TensorFlow lite (TFLite), ARM NN, glow, Cortex
Microcontroller Software Interface Standard (CMSIS)-NN,
and OpenCV [24].

The model used TFLite for deployment into iMX RT1060.
It is available in both yocto and MCUXpresso environments.
It is faster and consumes less memory than TensorFlow,
making it suitable for use in low-resource devices. We used
MCUXpresso IDE and built the SDK for iMX RT 1060 using
eIQ middlewares. This middleware comes with a lot of demo
examples. CIFAR-10 label image example was used. This
example uses a DL model to classify images captured by the
camera attached on board. CMV3 was then included in the
header files, and many images were tested to decipher model
accuracy and inference after deployment. Fig 4. shows the
results observed on the console. Fig 5. shows the block
diagram for eIQ inference procedure for TensorFlow Lite.

Fig. 4. Classification on i.MX RT 1060 as displayed using semi hosting
[24]

Fig. 5. eIQ inference procedure for TFLite models [24]

VI. RESULTS

MobileNet V3 small was modified to give rise to CMV3
with no compromise to accuracy. The revised model has a size
of 2.3 MB with an accuracy of 89.13%. Its parameter count
has been reduced from 1,846,930 in baseline to 171,946 after
compression. It was then deployed onto iMX RT 1060 for
inference. It gave an average inference time of 720ms. A plot
of proposed model accuracy vs the number of epochs using
the Tensorboard visualization tool is shown in Fig. 6.

Various Scaling factors for CMV3.

Width Multiplier Model Accuracy Model size

1 5 91.39% 10.5 MB

1.0 90.64% 5.2 MB

0.75 90.10% 3.6 MB

0 5 89.13% 2.3 MB

0 35 87.36 1.9 MB

TABLE II

Fig. 6. Compressed MobileNet V3

VII. CONCLUSION

In this paper, using DPD blocks, mish activation function,
and increase in expansion filters, an architecture that is
84.96% smaller in size and 0.2% more accurate than baseline
is accomplished. It can be successfully used in various
embedded vision platforms. Table II shows different width
scaling factors that can be used with the model. Based on the
application, a suitable configuration can be used to achieve
optimal trade-off.

ACKNOWLEDGMENT

The authors would like to thank Lilly Endowment Inc for
their support to Indiana University Pervasive Technology
Institute.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet classification with deep convolutional

neural networks,” Communications of the ACM, vol.

60, no. 6, pp. 84–90, May 2017, doi:

10.1145/3065386.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” arXiv:1512.03385

[cs], Dec. 2015, Accessed: Mar. 09, 2021. [Online].

Available: http://arxiv.org/abs/1512.03385.

[3] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi,

“Inception-v4, Inception-ResNet and the Impact of

Residual Connections on Learning,”

arXiv:1602.07261 [cs], Aug. 2016, Accessed: Mar.

09, 2021. [Online]. Available:

http://arxiv.org/abs/1602.07261.

[4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.

Wojna, “Rethinking the Inception Architecture for

Computer Vision,” arXiv:1512.00567 [cs], Dec.

2015, Accessed: Mar. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1512.00567.

[5] K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale Image

Recognition,” arXiv:1409.1556 [cs], Apr. 2015,

Accessed: Mar. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1409.1556.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,

W. Wang, T. Weyand, M. Andreetto, and H. Adam,

“MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications,”

arXiv:1704.04861 [cs], Apr. 2017, Accessed: Mar.

12, 2021. [Online]. Available:

http://arxiv.org/abs/1704.04861.

[7] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,

W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-

level accuracy with 50x fewer parameters and

<0.5MB model size,” arXiv:1602.07360 [cs], Nov.

2016, Accessed: Mar. 12, 2021. [Online]. Available:

http://arxiv.org/abs/1602.07360.

[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet:

An Extremely Efficient Convolutional Neural

Network for Mobile Devices,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, Jun. 2018, pp.

6848–6856, doi: 10.1109/CVPR.2018.00716.

[9] F. Iandola and K. Keutzer,

“Keynote’ESWEEK’2017:’Small’Neural’Nets’Are’B

eautiful:’

Enabling’Embedded’Systems’with’Small’DeepBNeur

alB Network’Architectures’,” arXiv:1710.02759 [cs],

p. 10, Sep. 2017.

[10] G. Chen, W. Choi, X. Yu, T. Han, and M.

Chandraker, “Learning Efficient Object Detection

Models with Knowledge Distillation,” p. 10.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling the

Knowledge in a Neural Network,” arXiv:1503.02531

[cs, stat], Mar. 2015, Accessed: Mar. 09, 2021.

[Online]. Available: http://arxiv.org/abs/1503.02531.

[12] Y. Gong, L. Liu, M. Yang, and L. Bourdev,

“Compressing Deep Convolutional Networks using

Vector Quantization,” arXiv:1412.6115 [cs], Dec.

2014, Accessed: Mar. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1412.6115.

[13] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng,

“Quantized Convolutional Neural Networks for

Mobile Devices,” arXiv:1512.06473 [cs], May 2016,

Accessed: Mar. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1512.06473.

[14] X. Yu, T. Liu, X. Wang, and D. Tao, “On

Compressing Deep Models by Low Rank and Sparse

Decomposition,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

Honolulu, HI, Jul. 2017, pp. 67–76, doi:

10.1109/CVPR.2017.15.

[15] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen,

M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan,

Q. V. Le, and H. Adam, “Searching for

MobileNetV3,” arXiv:1905.02244 [cs], Nov. 2019,

Accessed: Mar. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1905.02244.

[16] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,

A. Howard, and Q. V. Le, “MnasNet: Platform-Aware

Neural Architecture Search for Mobile,”

arXiv:1807.11626 [cs], May 2019, Accessed: Mar.

12, 2021. [Online]. Available:

http://arxiv.org/abs/1807.11626.

[17] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J.

Kautz, “Pruning Convolutional Neural Networks for

Resource Efficient Inference,” arXiv:1611.06440 [cs,

stat], Jun. 2017, Accessed: Dec. 23, 2020. [Online].

Available: http://arxiv.org/abs/1611.06440.

[18] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf, “Pruning Filters for Efficient ConvNets,”

arXiv:1608.08710 [cs], Mar. 2017, Accessed: Dec.

23, 2020. [Online]. Available:

http://arxiv.org/abs/1608.08710.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S.

Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge,”

arXiv:1409.0575 [cs], Jan. 2015, Accessed: Mar. 09,

2021. [Online]. Available:

http://arxiv.org/abs/1409.0575.

[20] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu,

“Squeeze-and-Excitation Networks,”

arXiv:1709.01507 [cs], May 2019, Accessed: Mar.

10, 2021. [Online]. Available:

http://arxiv.org/abs/1709.01507.

[21] G. Li, M. Zhang, Q. Zhang, Z. Chen, W. Liu, J. Li, X.

Shen, J. Li, Z. Zhu, and C. Yuen, “PSDNet and

DPDNet: Efficient Channel Expansion,” p. 15.

[22] D. Misra, “Mish: A Self Regularized Non-Monotonic

Activation Function,” arXiv:1908.08681 [cs, stat],

Aug. 2020, Accessed: Mar. 10, 2021. [Online].

Available: http://arxiv.org/abs/1908.08681.

[23] D. Misra, “Mish: A Self Regularized Non-Monotonic

Neural Activation Function,” p. 13.

[24] NXP, “EIQ-FS.pdf.” Aug. 05, 2020, Accessed: Mar.

12, 2021. [Online]. Available:

https://www.nxp.com/docs/en/fact-sheet/EIQ-FS.pdf.

