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Abstract—Deep Neural Networks (DNN) are prominent in 

most applications today. From self-driving cars, sentiment 

analysis, surveillance systems, and robotics, they have been used 

extensively. Among DNNs, Convolutional Neural Networks 

(CNN) have achieved massive success in computer vision 

applications as the human visual system inspires their 

architecture. However, striving to achieve higher accuracies, 

CNN complexity, parameters, and layers were increased, which 

led to a drastic surge in their size, making their deployment 

challenging. Over the years, many researchers have proposed 

various techniques to alleviate this issue—one of them being 

Design Space Exploration (DSE) to minimize size and 

computation with little compromise to accuracy. MobileNet V3 

is one such architecture designed to achieve good accuracy while 

being mindful of resources. It produces an accuracy of 88.93% 

on CIFAR-10 with a size of 15.3MB. This paper further reduces 

its size to 2.3MB while boosting its accuracy to 89.13% using 

DSE techniques. It is then deployed into NXP's i.MX RT1060 

Advanced Driver Assistance System (ADAS) platform. 

Keywords—MobileNet V3, Convolution Neural Networks, 

Depthwise Pointwise Depthwise blocks, Compressed MobileNet 

V3, CIFAR-10, Design space exploration, TensorFlow, i.MX RT 

1060. 

I. INTRODUCTION 

Convolutional neural networks have shown commendable 
performance in various computer vision tasks due to their 
compelling ability to use multiple feature description stages to 
grasp representations from images. They first came into the 
spotlight through the work of LeCun et al. 1989. Since the 
victory of AlexNet in the ImageNet challenge in 2012, they 
have gained high popularity [1]. The appealing factor of 
CNNs is their intelligence to extract spatial and temporal 
content from crude data. The design of CNN incorporates 
many convolutional layers, subsampling units, and nonlinear 
activation functions. Convolution operation guides extraction 
of valuable features from locally connected information 
points. Its output is then passed to nonlinear activations that 
produce diverse activations for various responses and 
encourage semantic contrasts in pictures. Subsampling is used 
in CNNs to make it invariant to the location of features. 
Subsequently, in this way, CNN learns pictures without the 
need for human involvement in feature extraction. The human 
visual cortex profoundly propels the building plan of CNNs. 
In the course of learning, CNN alters weights employing a 
backpropagation calculation. This ability to move towards the 
target is comparable to the brain's capacity to memorize based 
on responses. CNN's multi-layered structure helps gather low, 
mid, and high-level features, with high-level features being an 
aggregate of mid and low-level features. This dynamic 

learning ability of CNN emulates the neocortex in the human 
cerebrum and is responsible for its pervasiveness. 

Over the years, there have been many advances in their 
architectures, activation functions, regularization, and 
parameter tuning. In a race to achieve higher accuracy, CNN 
model complexity and parameters have escalated [2] [3] [4] 
[5]. This has led to increased demand for resources needed for 
their storage and computation. Many small-sized architectures 
were proposed to ease this problem, such as MobileNet [6], 
SqueezeNet [7], ShuffleNet [8], and so on. 

There are various advantages to using small architectures. 
Firstly, they are more suitable for embedded resource-
constrained applications. Due to their size, computations can 
be performed in place for tasks such as image recognition, 
semantic segmentation, etc., rather than sending it to the 
cloud. It reduces latency and assures the privacy of data. In 
autonomous driving, companies make updates to the model 
and load it into customer vehicles from their servers [9]. 
Small-size CNNs make this update more convenient. Hence, 
to benefit from these advantages, many techniques were 
developed. Some of them include knowledge distillation [10] 
[11], pruning, and network quantization [12][13] , low rank 
and sparse decomposition [14], and developing new 
innovative architectures[8] [15][16].In knowledge distillation, 
a small model learns from a large model using a teacher-
student approach. In pruning, weights that are insignificant to 
network performance are zeroed out based on a criterion [17] 
[18], and in network quantization, filter kernels and weights 
in fully connected layers are quantized. This quantization can 
be achieved by various methods such as k-means, Huffman 
coding, etc. Sparse decomposition and low-rank 
approximations achieve compression by reducing the 
parameter dimension of the network. This paper accomplishes 
a similar purpose by reducing MobileNet V3 small by making 
architectural modifications and changing the baseline model's 
activation functions.  

Baseline architecture is demonstrated in section 2. Section 
3 illustrates changes made to MobileNet V3 small to produce 
CMV3. Training setup is detailed in section 4. Section 5 has 
implementation details. Results and conclusion are mentioned 
in sections 6 and 7, respectively. 

II. PRIOR WORK

A. Baseline Architecture

MobileNet V3 is the latest variant of MobileNets. It was
designed using a platform-aware network architecture search, 
and net adapt algorithm. MobileNet V3 small and MobileNet 
V3 large are two forms of this model developed to serve 
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different resource constraints [15]. MobileNet V3 large has 
lesser latency than MobileNet V2 while being 3.2% more 
accurate on the ImageNet dataset [19].  

Fig. 1. MobileNet V3 Block [15]. 

 MobileNet V3 encompasses the best practices from 
MobileNet V2 and Squeeze and excitation networks[20] .It is 
a combination of inverted residual bottlenecks and squeeze 
and excitation blocks. These SE blocks are added to improve 
networks' representational power by suppressing neurons that 
do not contribute to performance and enhancing those that do. 
The bottlenecks consist of an initial 1x1 pointwise expansion 
layer, a depthwise convolution layer (DWC) with a kernel of 
size 3x3 or 5x5, and a final 1x1 projection layer. The 
architecture of MobileNet V3 is shown in Fig.1. The model 
uses the H-swish activation function. 

III. MODIFICATIONS

Modifications made to MobileNet V3 are described 
below. Table I summarizes CMV3 architecture.  

A. Convolution Layers

CNN with more Depthwise convolutions than pointwise
convolutions have shown better performance [21]. This fact 
has been exploited to make architectural changes by 
emphasizing spatial information rather than aggregating 
channel information. Depthwise Pointwise Depthwise (DPD) 
blocks, as shown in Fig.2, were used for the model.These 
blocks comprise a 3×3 Depthwise convolution, with a stride s 
that expands the number of channels and performs down-
sampling. They also consist of a 1×1 pointwise convolution 
that collects information along channels, merges them, and 
finally, a 3×3 Depthwise separable convolution layer. All 
DPD blocks were followed by batch normalization and 
RELU.As more Depthwise convolutions are used than 
pointwise, good compression is achieved. The ratio of number 
of parameters in Pointwise to Depthwise convolutions is 
displayed below: 

𝑊 × 𝐻 × 𝐶 × 𝑚𝐶

𝑊 × 𝐻 × 𝑘 × 𝑘 × 𝑚𝐶
=

𝐶

𝑘2
 (1) 

(W × H) is the input dimension, C is the number of channels, 
m is the channel multiplier, and (k × k) is the filter size. Since 
the number of channels is much higher than the filter size, the 
ratio to be greater than 1.  

B. Mish Activation Function

Mish possesses the self-regularizing capacity and lessens
overfitting. It outruns other activation functions in 
performance. It also keeps negative gradients, has better 
generalization and eliminates saturation due to near-zero 
gradients [22]. The formula below can describe it: 

   𝑓(𝑥)  = 𝑥 ∙ tanh(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥))  (2)  

 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = ln(1 + 𝑒𝑥)        (3) 

The Mish activation function followed DPD blocks in the new 
architecture. It improved the accuracy from 88.14% to 
89.13%. Fig.3 depicts the graph of Mish. 

Compressed MobileNet V3 Architecture 

Input Operator e c   SE NL s 

322×3 Conv2d 3×3 - 16   - HS 1 

322×16 Bneck 3×3 48 32  HS 1 

322×32 DPD 3×3 88 40   - MH 1 

322×40 DPD 3×3 240 40   - MH 1 

322×40 Bneck 5×5 160 48  HS 2 

162×48 DPD 5×5 288 96   - MH 1 

162×96 DPD 5×5 592 128   - MH 1 

162×128 Conv2d 1×1 - 256    HS 1 

162×256 Pool 16×16 - -   - - 1 

12×256 Conv2d 1×1 - 576   - HS 1 

12×576 Conv2d 1×1 - k   - - 1 

TABLE I 

WHERE E: EXPANSION FACTOR, C: NUMBER OF OUTPUT 

CHANNELS, SE: SQUEEZE AND EXCITE BLOCKS, NL: 
ACTIVATION, HS: H-SWISH, MH: MISH AND S: STRIDE 

Fig. 2. DPD Blocks 

Fig. 3. Mish Activation Function [23]. 

C. Expansion filters

Mobilenet V3 uses expansion filters to extend to a high
dimensional feature space to intensify non-linear 
transformation on channels [15]. This technique is used on 
CMV3 as well. Expansion filters in a few layers are increased. 
It boosted accuracy from 84.56% to 88.14%. 

IV. TRAINING SETUP

The modified model was trained with Intel Xenon Gold 
6126 processor with 32GB RAM and NVIDIA Tesla P100 
GPU. An l2 weight decay of 1e-5 was used. A dropout of 0.8 
and a cosine decay type scheduler were added. A width 



multiplier of 0.5 was selected to reduce overfitting and 
maintain a good trade-off between accuracy and size.  

V. DEPLOYMENT

NXP eIQ is a software platform comprising resources and 
tools to help machine learning deployment on NXP hardware. 
It has Neural Network (NN) compilers, libraries, inference 
engines, Hardware Abstraction Layers (HAL) to support 
TensorFlow lite (TFLite), ARM NN, glow, Cortex 
Microcontroller Software Interface Standard (CMSIS)-NN, 
and OpenCV [24]. 

The model used TFLite for deployment into iMX RT1060. 
It is available in both yocto and MCUXpresso environments. 
It is faster and consumes less memory than TensorFlow, 
making it suitable for use in low-resource devices. We used 
MCUXpresso IDE and built the SDK for iMX RT 1060 using 
eIQ middlewares. This middleware comes with a lot of demo 
examples. CIFAR-10 label image example was used. This 
example uses a DL model to classify images captured by the 
camera attached on board. CMV3 was then included in the 
header files, and many images were tested to decipher model 
accuracy and inference after deployment. Fig 4. shows the 
results observed on the console. Fig 5. shows the block 
diagram for eIQ inference procedure for TensorFlow Lite. 

Fig. 4. Classification on i.MX RT 1060 as displayed using semi hosting 
[24] 

Fig. 5. eIQ inference procedure for TFLite models [24] 

VI. RESULTS

MobileNet V3 small was modified to give rise to CMV3 
with no compromise to accuracy. The revised model has a size 
of 2.3 MB with an accuracy of 89.13%. Its parameter count 
has been reduced from 1,846,930 in baseline to 171,946 after 
compression. It was then deployed onto iMX RT 1060 for 
inference. It gave an average inference time of 720ms. A plot 
of proposed model accuracy vs the number of epochs using 
the Tensorboard visualization tool is shown in Fig. 6. 

Various Scaling factors for CMV3. 

Width Multiplier Model Accuracy Model size 

1 5 91.39% 10.5 MB 

1.0 90.64% 5.2 MB 

0.75 90.10% 3.6 MB 

0 5 89.13% 2.3 MB 

0 35 87.36 1.9 MB 

TABLE II 

Fig. 6. Compressed MobileNet V3 

VII. CONCLUSION

In this paper, using DPD blocks, mish activation function, 
and increase in expansion filters, an architecture that is 
84.96% smaller in size and 0.2% more accurate than baseline 
is accomplished. It can be successfully used in various 
embedded vision platforms. Table II shows different width 
scaling factors that can be used with the model. Based on the 
application, a suitable configuration can be used to achieve 
optimal trade-off. 
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