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Abstract

Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. 

Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is 

perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in 

bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling 

mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. 

Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that 

include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend 

their influence beyond the local bone environment by functioning as an endocrine cell that 

controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal 

muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate 

with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
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1. HISTORY OF THE FIELD

Osteocytes have an ancient history, a recent past history, and a very modern history. The 

earliest evidence for the existence of osteocytes within bone comes from jawless fish that 

lived during the Ordovician period (1). The remains of osteocytes have been discovered 

within dinosaur bone, implicating osteocytes as an ancient cell (2) that may yield biological 

information (3). However, almost nothing was known about the function of these cells until 

the last decade. Prior to that, most hypotheses regarding the function of osteocytes were 

based on microscopic images of bone. One of the earliest (more than 100 years ago) 

published descriptions of osteocytes was by von Recklinghausen (4), who described the 

delicate extensions of osteocytes in bone and proposed that osteocytes might be capable of 

removing their surrounding mineralized matrix. The field then became dormant until the 

early modern osteocyte pioneers of the 1960–1970s revived the concept of osteocytic 

osteolysis (5) and also proposed an additional function for these cells—as mechanosensors 
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in bone tissue (6). The field became dormant once again until the age of molecular biology 

and new biotechnology were ushered in. As a consequence of incorporating modern 

molecular biology techniques to the study of osteocytes, our knowledge of the biology and 

function of these cells has exploded. In this review, we trace the history of osteocyte-focused 

research and summarize what is now known about these unusual and unique cells.

The main reason for our delayed understanding of and lack of progress in osteocyte biology 

was simple—it was extremely difficult to access cells embedded within a hard mineralized 

matrix. While great strides were being made in studying circulating cells and cells from soft 

tissue (immunology, hematology, cancer, etc.), little progress was being made in the study of 

osteocytes. Researchers in the bone field focused on cells they could retrieve from the bone 

surface, the osteoblasts and osteoclasts. Although Nijweide and colleagues (7) were the first 

to isolate avian chick osteocytes, Mikuni-Takagaki (8, 9) was one of the first to remove 

primary osteocytes from mammalian bone using a series of collagenase digestions and 

calcium chelation. This advance in the field opened a means to study primary cells, but the 

yields were low and, though enriched, the populations were heterogeneous. The generation 

of osteocyte cell lines provided opportunity to perform molecular manipulations and to test 

for function. The identification of osteocyte markers and their subsequent use to drive Cre 

transgene expression in engineered mouse models provided a means to delete or overexpress 

key genes in osteocytes (see below). These tools have helped to expand the field of osteocyte 

biology and function in numerous ways.

2. OSTEOCYTE BIOLOGY

2.1. The Origin of Osteocytes

The early pioneers questioned the origin of osteocytes. Did they descend from osteoblasts, 

osteoclasts, or another cell type? We now know that osteocytes are descended from mature, 

matrix-producing osteoblasts (see Figure 1). Manolagas (10) showed that osteoblasts have 

one of three fates: They can become osteocytes or bone lining cells, or they can undergo 

programmed cell death, apoptosis. The mechanisms responsible for cell fate of the mature 

osteoblasts are not known. Embedding cells become surrounded by collagen, made by their 

own matrix-producing machinery or that of neighboring cells. As these cells begin to embed, 

they generate cellular extensions—the future dendritic processes of mature osteocytes—that 

continuously extend and contract until a proper contact has been made with a previously 

embedded cell (11). The dendrites then appear to anchor to the existing cell and the cell 

begins the mineralization process, surrounding itself within a hydroxyapatite cave of 

lacunae. Once the process is completed, the embedded cells are functionally part of the 

osteocyte lacunocanalicular network (Figure 2).

A number of markers have been identified that are differentially expressed during this 

process. Whereas numerous markers for osteoblasts are known (e.g., Cbfa1/Runx2, Osx, 

Alp, Col1a1, Bglap), only within the past decade or so have markers been identified for 

osteocytes. Osteocytes share some markers with their progenitors, the osteoblasts, but also 

express unique markers based on their morphology and potential function (Figure 1). 

Markers for osteocytes include phosphate regulating neutral endopeptidase on the 

chromosome X (PHEX), dentin matrix protein 1 (DMP1), and E11/gp38 for early 
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osteocytes; and receptor activator of nuclear factor-κB ligand (RANKL), SOST/sclerostin, 

fibroblast growth factor 23 (FGF23), and matrix extracellular phosphoglycoprotein (MEPE) 

for mature osteocytes. Several of these markers, such as PHEX, DMP1, MEPE, and FGF23, 

play a role in mineralization and phosphate homeostasis. As a regulator of skeletal 

remodeling, osteocytes secrete sclerostin, a negative regulator of osteoblastic bone 

formation, and RANKL, an activator of osteoclast formation and function. The function of 

these biomarkers is reviewed in more detail below.

2.2. Osteocyte Viability and Death

Very few cells in the body can live as long as the osteocyte. Unlike osteoblasts and 

osteoclasts that can live days to weeks, osteocytes can live for years or even decades (10). As 

osteocytes are multifunctional, critically essential cells, a major goal in healthcare research 

has been to keep osteocytes alive and healthy, especially with aging. With aging, osteocyte 

death is accelerated, mainly through apoptosis. Osteocyte death leaves behind empty lacunae 

that can fill in with mineral, a process called micropetrosis. Micropetrosis may function as a 

compensatory mechanism in aged bone by removing the empty lacunae that can function as 

a stress concentrator if left open. Osteocytes can also undergo programmed cell death, 

especially in the presence of microdamage, which stimulates the release of chemical signals 

for osteoclasts to remodel the damaged bone (13). A major regulatory signal sent to 

osteoclasts by osteocytes is RankL. Deletion of RankL in osteocytes results in increased 

bone mass (14, 15) because resorption is impaired. Osteocytes can also undergo the process 

of autophagy (16). Autophagy is a cellular state that promotes survival especially under 

stressful conditions, and autophagic cells remove unnecessary organelles until they can 

return to a more functional, healthy state. Should the stress causing autophagy not cease, 

then the cells can undergo apoptosis, leaving dead or osteonecrotic bone that does not heal 

or respond to mechanical loading.

Aging is accompanied by a decline in osteocyte connectivity and viability in the bone of 

osteoporotic patients (17) and aged mice (17). This is most likely due to osteocyte cell death, 

apoptosis, and autophagy (18). As osteocytes are master regulators of both osteoblasts and 

osteoclasts, disruption of osteoblast and osteoclast coupling activity is observed in aged 

bone, with bone resorption far exceeding bone formation (19). A recent study by Tiede-

Lewis et al. (20) showed that the dendrite number was greatly reduced in aged mice, where 

reduced connectivity preceded osteocyte death. Deletion of superoxide dismutase 2 in 

osteocytes resulted in an osteoporosis-like bone phenotype due to increased generation of 

reactive oxygen species (ROS) (21). Osteocytes in aged mice also have increased expression 

of markers of senescence that may contribute to increased osteoclast activity and bone 

resorption (22).

3. TOOLS FOR STUDYING OSTEOCYTES

3.1. In Vitro Cell Lines

As stated above, it has only been within the past 10–15 years that significant tools have been 

developed to study osteocytes, including cell lines, transgenic mouse models, and 

instrumentation. The first osteocyte-like cell line was the MLO-Y4, a dendritic, highly 
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mechanosensitive cell (23). Subsequent lines were developed that possessed the feature of 

mature osteoblasts that then differentiated into cells with the characteristics of osteocytes. To 

date, six cell line models have been generated: HOB-01-C1, MLO-Y4, MLO-A5, IDG-SW3, 

OCY454, and OMGFP66. The HOB-01-C1 human bone cell line was generated to serve as a 

preosteocyte or early osteocyte, but there are few published studies of this cell line (24). In 

contrast, the MLO-Y4 murine osteocyte-like cell line has been used extensively to 

investigate osteocyte function (23). A transgenic mouse in which the immortalizing T 

antigen was expressed under control of the osteocalcin promoter was used to derive this cell 

line. Numerous laboratories (over 270 publications as of the writing of this review) have 

used the MLO-Y4 cell line to investigate osteocyte cell function, especially gap junctions, 

hemichannels, mechanosensitivity, factor secretion, dendrite formation, regulation of 

osteoblasts and osteoclasts, and other functions.

The MLO-A5 is postosteoblast/preosteocyte-like cell line, established from the same 

animals used to derive the MLO-Y4 cells (25). Within one week of culture, these cells will 

rapidly mineralize in sheets, not nodules. Mineralization is accelerated by the addition of an 

external source of phosphate. This cell line reproduces primary mineralization as shown by 

similar spectra compared to primary bone using Fourier transform infrared spectroscopy 

(25). These cells mineralize their collagen matrix by generating nanospherulites that 

mineralize while budding from developing cellular processes to become associated with and 

initiate collagen-mediated mineralization (26). These cells have been useful for studies that 

require a mineralizing cell (50 studies to date).

The IDG-SW3 cell line differentiates in culture from the late osteoblast to the late osteocyte, 

closely replicating the phenotype of primary cells (27). Both the IDG-SW3 and Ocy 454 

(28) were created by crossing the 8-kb Dmp1-GFP (green fluorescent protein) transgenic 

mouse line (29) with the Immortomouse. The Immortomouse has an interferon-gamma 

(IFN-γ)-inducible promoter driving expression of a thermolabile large T antigen (H-2Kb-

tsA58) that enables conditional immortalization of cells derived from this mouse. Therefore, 

both the IDG-SW3 and the Ocy 454 express the SV40 T antigen when cultured at 33°C in 

the presence of IFN-γ and proliferate rapidly. In the absence of IFN-γ at 37°C, they no 

longer express T antigen and therefore behave like primary cells. Like normal primary cells, 

Fgf23 mRNA expression in response to treatment with 1,25-dihydroxyvitamin D3 is 

increased. Also like primary cells, Sost/sclerostin expression with parathyroid hormone 

(PTH) treatment is downregulated. Therefore, in these responses and others, the IDG-SW3 

cell line reproduces the osteoblasts to late osteocyte differentiation process, as observed in 

vivo (27). (More than 20 publications have reported using IDG-SW3 cells.) OCY 454 cells 

are reported to express Sost at an earlier time in culture than the IDG-SW3 cells (9 

publications).

A new exciting cell line is OMGFP66, which spontaneously forms bone-like structures 

containing cells that appear very similar to osteocytes in vivo (30). This cell line was 

generated from a mouse model where membrane GFP was driven by the Dmp1 promoter 

(Figure 3). We predict that the OMGFP66 cell line will be extremely useful for the study of 

osteocytes.
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3.2. In Vivo Imaging

Since the invention of microscopy, scientists have been able to view cells and tissues under 

static conditions. These pioneers used their intellect, knowledge, and imagination to 

hypothesize functions for cells and their components. Generally, their hypotheses have been 

validated. However, the capacity to track cells and their components in real time and in the 

live animal has led to tremendous new insight into function. For example, osteocytes were 

thought to be static cells, but dynamic imaging has shown them to have the capacity to 

extend and retract their dendritic processes (11). Knowledge gained from these approaches is 

reviewed below.

3.2.1. Lineage tracing.—Transgenic mouse models using osteoblast and osteocyte 

promoters have been useful for studying osteocytes. The first Cre line to be generated to 

study osteocytes and odontoblasts was the 10-kb Dmp1-Cre model (31). This Cre model was 

the first to target osteocytes, and it opened the field with regard to studying osteocytes in 

vivo. Subsequently, Kalajzic and coworkers (29) used a slightly shorter version of the 10-kb 

Dmp1 promoter—the 8-kb Dmp1 promoter—to drive GFP expression selectively in 

osteocytes. This mouse model has proved useful to examine osteocyte ontogeny (lineage 

tracing) and to determine osteocyte function, especially when used in conjunction with other 

fluorophore-linked transgenes (e.g., osteoblast promoters such as osteocalcin and collagen 

type 1 driving topaz or GFP) to examine transgene expression during osteoblast 

differentiation (32).

3.2.2. Cre mice for studying osteocytes.—The 10-kb Dmp1 promoter was also used 

to generate an inducible model, 10-kb Dmp1-Cre-ERT2 (33), which showed highly specific 

expression in osteocytes. The next model generated was the 8-kb Dmp1-Cre, but no 

significant differences in Cre activation in embedding cells and early osteocytes were shown 

between the 10-kb and 8-kb Dmp1-Cre (34). However, it has been found that approximately 

half of the 10-kb Dmp1-Cre animals also have Cre activation in muscle, an event thought to 

occur during embryogenesis. The 8-kb Dmp1-Cre mice also exhibit expression of the 

transgene in muscle, similar to the 10-kb version.

More recently, mice have been made using the Sost promoter to drive Cre expression (34), 

and reports indicate that only osteocytes are targeted, not osteoblasts or lining cells. 

However, hematopoietic cells in the marrow and some osteoclasts were also shown to be 

positive in this model. Recently, an inducible Sost ERT2 has been generated with very 

specific expression in osteocytes with little off target Cre expression, but a muscle phenotype 

was also observed in these mice (35). Thus, to date, there is no perfect Cre model that only 

targets osteocytes. When performing experiments with Cre models, the pros and cons of 

each model must be taken into account and, ideally, more than one Cre model should be 

utilized (34).

3.2.3. Confocal multiplex imaging.—Instrumentation to image structures and cells 

within a mineralized matrix can now help to visualize the osteocyte lacunocanalicular 

network and the mineral matrix surrounding the cells. Originally, early osteocyte pioneers 

used light microscopy to examine stained bone sections. Later, scanning electron 
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microscopy, especially of acid-etched resin-embedded bone, was used to image the osteocyte 

lacunar morphology (Figure 4). Currently, serial focused ion beam and serial block-face 

scanning electron microscopy have been developed for osteocyte imaging, which increases 

the field of view. Confocal microscopy, several forms of tomography such as X-ray 

computed tomography, microcomputed tomography, transmission electron computed 

tomography, and synchrotron radiation band have subsequently been developed to better 

understand osteocyte morphology (see 36 for a comprehensive review). Recently, label-free 

third-harmonic generation microscopy has been shown to provide a great deal of 

information, similar to confocal fluorescence (37). These studies have mainly visualized the 

mineralized matrix surrounding the osteocytes, providing structural information.

Two- and three-dimensional confocal multiplex imaging was developed using bones from 

mice injected with fixable dyes or from novel reporter mice (38). For example, a recently 

generated 10-kb Dmp1 promoter-driving membrane GFP mouse model provides increased 

clarity and resolution of canaliculi and vesicles within the matrix. Another key finding from 

these studies was the observation of multiple collagen rings around osteocytes, suggesting 

successive waves of perilacunar remodeling. But clearly the most exciting imaging has been 

of live cells either in culture or in the live animal (intravital imaging). Ishihara and 

colleagues (39) have performed time-lapse imaging of osteocytes in live animals and shown 

that Ca2+ oscillations are modulated by gap junctions. Dallas & Veno (11) have documented 

the motion of dendrites in an embedding cell and shown real-time mineralization dynamics 

of the cell line MLO-A5 (40) and primary cells (11). Tanaka and colleagues (41) performed 

Ca2+ imaging in live bone and found that mature osteocytes are more mechanosensitive (in 

terms of calcium oscillations) than early osteocytes. Intravital imaging will open new 

gateways to the discovery and understanding of osteocyte function.

4. FUNCTIONAL ASPECTS OF OSTEOCYTES

4.1. Primary Direct Functions

Osteocytes are embedded within a hard mineralized environment for life (exceptions being 

when released by fracture or during remodeling). Within this hard tissue the cell is bathed by 

a bone fluid that travels over the dendrites and cell bodies creating shear stresses. It is 

thought that these stresses are sensed by the cell to induce signals to osteoblasts and 

osteoclasts to initiate remodeling. Interestingly, under certain conditions, such as calcium-

demanding conditions, the osteocyte can actually remove its perilacunar matrix (mimicking 

the osteoclast) and also can replace that matrix (mimicking the osteoblast); this is known as 

osteocyte perilacunar remodeling. These are the interactions of the osteocyte with its 

environment.

4.1.1. Remodeling matrix.—Osteocytes have the capacity to remove and replace their 

perilacunar and pericanalicular matrix. This process occurs under healthy calcium-

demanding conditions, such as lactation and hibernation. It is logical to assume that the 

osteocyte can remember being an osteoblast and therefore be able to reexpress the genes 

necessary for making matrix, but surprisingly, these cells are also capable of expressing 

genes that were once thought to be osteoclast specific (42). It is estimated that there are up to 
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42 × 109 osteocytes in the adult human skeleton, with a total lacunocanalicular surface area 

of 215 m2 (43). Therefore, the ability of osteocytes to release even a minute or trace amount 

of calcium from their perilacunocanalicular matrix would have a significant effect on the 

overall serum calcium level. Rapid release of calcium by osteocytes may replace the need 

for osteoclastic bone resorption, thereby protecting skeletal integrity.

Lactating mice with large litters creating a high calcium demand have larger lacunae in their 

long bones and vertebrae (loaded bone) but not in their calvaria (unloaded bone) compared 

to virgin mice (42). Osteocytes from lactating mice express genes normally associated with 

osteoclasts, such as cathepsin K, tartrate-resistant acid phosphatase (Trap), carbonic 

anhydrase 2, and the v-Atpase subunit Atp6v0d2. PTHrP, which is highly elevated during 

lactation, was shown to induce a decrease in osteocyte extracellular pH in vitro, and in vivo 

lactating mice showed a decreased pH within their osteocyte network (44). This same study 

also reported that osteocytes are more resistant to acidification of their extracellular 

environment than osteoblastic cells, suggesting that they can remain viable in low-pH 

environments.

In addition to lactation, hibernation can lead to enlarged osteocyte lacunae (45). Similarly, 

mechanical unloading due to microgravity during spaceflight induces perilacunar 

remodeling in monkeys (46) and mice (47). Egg-laying hens fed a low-calcium diet showed 

tetracycline labeling around the osteocyte lacunae when a normal calcium diet was 

reintroduced (48). It has been suggested that sclerostin, a negative regulator of Wnt signaling 

that is increased by mechanical unloading, could partially be responsible for lacunar 

enlargement. Adding sclerostin to MLO-Y4 cells or to primary human osteocytes induces 

the expression of perilacunar remodeling genes such as cathepsin K, carbonic anhydrase 2, 

and matrix metalloproteinase 13 (49). In addition, osteocyte lacunar area was increased in 

human and bovine trabecular bone explants cultured with sclerostin. The molecular 

mechanisms responsible for the removal and the replacement of their perilacunar matrix 

remain to be determined.

Osteocytic osteolysis refers to the pathologic removal of the perilacunar matrix as occurs 

with diseases such as hyperparathyroidism, hypophosphatemic rickets, and osteoporosis 

(50). Glucocorticoid administration, a common cause of secondary osteoporosis, increases 

lacunar area in mice (51). X-linked hypophosphatemia is a disorder characterized by 

elevated Fgf23 levels, decreased 1,25(OH)2D3 levels, and osteomalacia. Significantly 

enlarged lacunae were found in the mouse model of X-linked hypophosphatemia, Hyp, 

compared to controls. Osteocytes from these mice had increased expression of cathepsin K, 

Trap, matrix metalloproteinase 13, and the v-Atpase subunit Atp6v0d2 (52). These effects 

could be partially rescued by treating the mice with either daily 1,25(OH)2D3 or an Fgf23-

neutralizing antibody. Many questions still remain regarding osteocytic osteolysis and 

perilacunocanalicular remodeling: (a) Is the matrix also removed in addition to the mineral? 

(b) Are growth factors removed and put into local or systemic circulation during the 

process? (c) If so, what are their effects locally and systemically? (d) Does an enlargement 

of the lacunocanalicular system change the load-sensing apparatus of the resident osteocyte?
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4.1.2. Mechanosensing.—The notion that bone tissue is responsive to mechanical 

influences has been known for well over 100 years (53). Decades ago, it was postulated that 

the osteocyte was the most likely candidate for the primary sensor cell type in bone 

(reviewed in 6). There were several observational reasons for this premise that predated any 

experiments on the issue: (a) Osteocytes are regularly distributed throughout cortical and 

trabecular bone, even in areas of mineralized matrix devoid of vasculature (54), which could 

serve as a broad load-monitoring net that infiltrates every cubic millimeter of bone tissue; (b) 

osteocytes are intricately connected to one another (and to surface cells such as bone lining 

cells, osteoblasts, and vascular cells) via a large number (~50/cell) of long cellular processes 

that join one another and transmit information intercellularly via gap junctions. As such, 

their propensity for communication—a key attribute for cellular networks that integrate 

information over a large area—is ideal; and (c) as osteocytes are not effector cells (capable 

of changing bone size and shape, as osteoblasts and osteoclasts are), they have been thought 

of historically, perhaps somewhat by default, as sensor cells. However, as discussed earlier, 

osteocytes can remodel the small rim of bone lining their lacunae, which collectively might 

have profound effects on plasma calcium levels.

Moving beyond philosophical arguments addressing why osteocytes might be the primary 

mechanosensory cell type in bone, accumulating experimental evidence shows that these 

cells are robust responders to and translators of mechanical energy applied to bone. 

Osteocytes are more responsive to mechanical stimulation than osteoblasts. They release 

more nitric oxide (NO) (55) and prostaglandin (PGE2) (56, 57), trigger a greater calcium 

influx (58), and exhibit more rapid β-catenin-mediated transcription (57) than osteoblasts 

(see Figure 5). Interestingly, within the osteocyte, the cell processes are more 

mechanosensitive than the cell body (59). This has been demonstrated using a Transwell 

filter culture system that permitted mechanical stimulation of either the osteocyte cell body 

or the cell processes by fluid flow (59), or by glass microneedle manipulation of the 

membrane surrounding the cell body or cell process (60). The connections between 

osteocytes are also important for mechanotransduction. The presence of gap junctions 

between cell processes of osteocytes has been demonstrated by electron microscopy (61), 

but their role in osteocyte mechanotransduction has only recently come to light. Deletion of 

the most highly expressed gap junction subunit in bone—Cx43—using Dmp1-Cre-mediated 

recombination of Cx43-floxed alleles resulted in a gain in mechanosensitivity for periosteal 

bone formation. This result is consistent with other skeletal Cre drivers used to delete Cx43 

earlier in the lineage of Dermo1 (62) and Bglap (63) and suggests the presence of an 

inhibitory signal transmitted through gap junctions that is disabled in the mutants. It is 

important to consider that Cx43, beyond gap junction formation, can also assemble into 

hemichannels on osteocytes, which has been implicated in osteocyte PGE2 release into the 

extracellular space upon mechanical stimulation (64).

As a mechanosensitive cell, osteocytes must be equipped with a collection of proteins that 

sense changes in the mechanical environment. The identity of the primary mechanosensory 

apparatus in osteocytes has been of great interest in the field for a long time, but a consensus 

on the exact mechanism(s) is lacking. Integrin complexes and ion channels are considered 

likely candidates for osteocyte mechanosensors, based on a wealth of studies. For example, 
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the β1 integrin subunit appears to be crucial for osteocyte mechanotransduction (65-67), as 

does the Trpv4 channel (68, 69). Although the signal reception mechanism in the osteocyte 

is unclear, downstream signaling is better characterized (though still incomplete). 

Mechanical stimulation of the osteocyte induces the release of ATP (70), PGE2 (71-73), NO 

(74, 75), and growth factors such as insulin-like growth factor 1 (IGF-1) (76, 77). A later 

cascade that has received considerable attention in osteocyte mechanotransduction is the 

activation of Wnt signaling. Osteocytic deletion of Lrp5 (78) or β-catenin (79, 80), or 

overexpression of Sost in osteocytes (81), all severely impair mechanotransduction in bone. 

Conversely, disuse mechanotransduction (i.e., bone wasting) is impaired with osteocyte-

selective stabilization of β-catenin (82) or overexpression of a gain-of-function Lrp5 

mutation (83). In summary, both the initial receptor(s) and subsequent downstream signaling 

cascades involved in osteocyte mechanotransduction are incompletely known, but new 

biological models and technological advances are fostering progress in delineating the exact 

mechanisms.

The physical stimulus to which osteocytes respond is also a matter of ongoing research. 

Osteocytes are mechanically stimulated by bone loading, but a number of possible 

mechanisms for precise stimulation have been advanced. Fluid flow through the 

lacunocanalicular (spelled as elsewhere) system is one possible mechanism, whereby 

pressure gradients from bone bending (physical activity) induce fluid movement and 

subsequent shear stress on the cell membranes; osteocytes are very sensitive to fluid shear 

stress in vitro (84, 85). Another mechanism related to fluid movement in the canaliculi is the 

strain amplification phenomenon, which has two different submechanisms. One purports 

that the fluid movement between the osteocyte cell process membrane and the canalicular 

wall creates drag forces on the tethering structures, which deflect and consequently create a 

hoop strain on the cell process (86). The resulting hoop strain far exceeds the macroscopic 

global strains measured at the bone surface. The other purports that the stress risers in the 

bone tissue created by the lacunocanalicular voids generate large local strains immediately 

adjacent to osteocytes, which also far exceed the macroscopic global strains measured at the 

bone surface (87-89). Rather than relying on just one particular mechanical input, it is likely 

that osteocytes integrate several of these physical stimuli to achieve the appropriate signaling 

cues in order to maintain proper whole bone adaptation.

4.2. Primary Indirect Function of Osteocytes

Whereas the earliest functions proposed for osteocytes were mechanosensing and removal of 

their perilacunar matrix, a total and unanticipated function was the osteocyte-producing 

factors that could regulate not only bone cells but also distant organs, such as the kidney. 

This latter function is the definition of an endocrine cell. Even though these cells have much 

less cytoplasm and/or organelles than osteoblasts or other cell types, they still have the 

capacity to produce and secrete potent local and soluble factors.

4.2.1. Regulation of osteoclasts.—In addition to orchestrating mechanical adaptation 

of bone structure, osteocytes also specifically coordinate the activity of osteoclasts. They 

accomplish this task through a variety of mechanisms. To begin with, the most widely 

studied role for osteocyte control of osteoclast biology is the RANKL/OPG mechanism. 
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Osteocytes are a major source of RANKL for osteoclastogenesis. Two comprehensive 

independent studies (15, 60) demonstrated that selective deletion of the gene for RankL, 

Tnfsf11, in the osteocyte population (but not osteoblasts or precursors) of engineered mice 

accounts for the deficient osteoclastogenesis phenotype seen in global mutants (90). 

Osteocytes are also a significant source for OPG, which, as discussed earlier, functions as a 

soluble decoy receptor for RANK and inhibits osteoclast formation. Thus, osteocytes control 

osteoclastogenesis in a positive direction by increasing the expression/availability of 

RANKL and decreasing the expression/availability of OPG, or conversely, the proportions 

can be reversed to decrease resorptive activity.

As mentioned earlier, physical contact is required for transmission of the RANKL signal 

from osteocytes to osteoclasts. How then does this happen, given that osteocytes are buried 

in the bone matrix? Recent experiments show that osteocytic RankL is provided as a 

membrane-bound form to osteoclast precursors through osteocyte dendritic processes (91) 

that reach beyond the bone surface and into the marrow and periosteal compartments. Here, 

newly synthesized RankL molecules are transferred from the Golgi apparatus to lysosomes 

in a complex that involves OPG. Experiments using cells from Opg knockout mice revealed 

that Opg is required for proper transfer of RankL from the Golgi apparatus to the secretory 

lysosomes and, ultimately, osteoclastogenesis (92). Thus, these observations establish two 

important points about osteocytic control of osteoclasts: (a) Osteocyte-derived Opg is 

necessary for proper function of RankL trafficking in osteocytes and subsequent osteoclast 

effects, since the Opg-mediated effect on trafficking process occurs intracellularly; and (b) 

secreted OPG, while important for serving as a decoy receptor for RANKL, is not the only 

mechanism of action for OPG’s modulatory effect on the RANK/RANKL axis.

Taking a broader view of spatial control of osteoclastogenesis by osteocytes, earlier 

observational studies had suggested that osteocytes somehow chemically attract remodeling 

units into bone that was in need of replacement. For example, new remodeling basic 

multicellular units (teams of osteoclast and osteoblasts that function in a coordinated 

arrangement as they move through tissue space) are 4 to 6 times more likely to be associated 

with fatigue-induced microcracks than by chance alone in canine bone samples (93, 94). The 

experimental model that most easily facilitates a functionally compromised moiety of bone 

is the introduction of microdamage by fatigue loading in rodents. Mouse and rat cortical 

bone do not typically undergo osteonal remodeling, but induction of microdamage via 

fatigue loading results in osteon-like structures, which appear selectively in fatigue-riddled 

locales (95). If severe enough, cortical bone microdamage causes osteocyte apoptosis, which 

initiates the remodeling response (96). Schaffler’s group (97) has shown that apoptotic 

osteocytes in fatigue damaged regions signal neighboring, healthy osteocytes residing ~200 

μm away to release RankL, which ultimately serves to attract remodeling units. The 

communication from dying osteocytes to trigger nearby bystander cells to release RankL 

involves ATP signaling via Panx1 and P2X7 activation.

Other osteocyte-derived factors that contribute to osteoclast differentiation and function 

include M-CSF (98), interleukin 6 (IL-6) (99), tumor necrosis factor alpha (TNF-α) (100) 

(perhaps through osteocyte-derived apoptotic bodies) (101), and HMGB1 (102). While the 
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field of osteocyte control of osteoclastogenesis has made great strides in recent years, several 

RANKL/OPG-independent mechanisms are currently under investigation (e.g., 103, 104).

4.2.2. Regulation of osteoblasts.—Osteocytes have both indirect and direct effects on 

osteoblasts. Many of the indirect effects on osteoblasts can be attributed to the coupling 

phenomenon in bone remodeling, where osteoblastic activity (indirect effect) follows 

osteoclastic activity (direct effect from osteocytes) during bone turnover (105). However, 

osteocytes also have direct effects on osteoblasts that occur through the production of both 

stimulatory and inhibitory factors. Regarding stimulatory factors, osteocytes are a rich 

source of signaling lipids (e.g., PGE2) (106), growth factors (e.g., IGF-1) (77), glycoproteins 

(e.g., Wnts) (107), free radicals (e.g., NO) (55), and nucleotides (e.g., ATP) (108) that have 

potent effects on osteoblastogenesis and matrix formation. One of the most potent signals 

generated by osteocytes that control osteoblast biology is the secreted inhibitor of Wnt 

signaling. Osteocytes are a major source of the Lrp5/6 antagonists sclerostin and Dkk1. 

Although sclerostin expression can be found in several tissues other than bone (109, 110), 

the osteocyte is a major source. Dkk1 is also highly enriched in the osteocyte population. A 

body-wide screen of Dkk1 expression in young adult mice found that Dkk1 expression was 

restricted largely to bone (i.e., osteocyte-enriched fraction), where very strong expression 

was detected (111). Moreover, both fluorescence-activated cell sorting (112) and laser 

capture microdissection (113) approaches revealed that Dkk1 is highly upregulated in the 

osteocyte compared with the osteoblast. Sclerostin and Dkk1 are strong antagonists of Wnt-

mediated activity in osteoblasts. Numerous anabolic stimuli [e.g., loading (114), PTH (115), 

and PGE2 (116)] reduce Sost/sclerostin expression in osteocytes, which ultimately facilitates 

osteoblast-mediated anabolism through Wnt. Another emerging osteocyte-derived key 

player in osteoblast activity is neuropeptide Y, which is highly expressed in osteocytes and 

exerts inhibitory actions on osteoblasts (117). Much of the work on the osteocyte-to-

osteoblast communication pathway has focused on the regulation of osteocyte-derived 

osteoblast inhibitors. Osteocyte-derived molecular activators of osteoblast function are also 

an important part of the cross talk and are receiving increasing attention.

4.2.3. Communication with and regulation of distant organs.—The human 

skeleton hanging in the classroom frequently leads the observer to the conclusion that the 

skeleton is more like an inanimate object that only provides structure to the body necessary 

for movement. However, bone is a dynamic organ, constantly remodeling itself. Therefore, it 

was a novel and unexpected observation to find that osteocytes embedded in bone can 

secrete factors that can target distant organs (Figure 5). The first description of this 

phenomenon was based on the observation that Fgf23—a growth factor that is highly 

expressed in osteocytes—regulates phosphate homeostasis in the kidney. This was the first 

description of osteocytes in bone as endocrine cells; as a consequence, our view of 

osteocytes changed and now includes the view that bone is an endocrine organ (118). 

Following the observation that Fgf23 is a bone endocrine factor produced by osteocytes, 

osteocalcin was described as a bone hormone having effects on distant organs, targeting 

male fertility, and affecting both cognition and energy metabolism and recently shown to 

target muscle (see 119 for a review). Osteocalcin is produced by both osteoblasts and 

osteocytes.
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As discussed above, osteocytes regulate plasma calcium by releasing mineral from their 

surrounding matrix, especially in response to PTH and PTHrP, but osteocytes regulate 

phosphate by targeting the kidney. The induction of the phosphaturic hormone, FGF23 in 

osteocytes by 1,25(OH)2D3 in both animal models and in humans is believed to be an 

essential part of the kidney/bone phosphate-regulatory axis (120) and is highly elevated in 

hypophosphatemia. Fgf23 decreases the expression of the sodium/phosphate cotransporters 

NaPi-IIa and NaPi-IIc in the renal proximal tubule, leading to increased phosphate excretion. 

In addition, it inhibits the conversion of 25(OH)2D into the active metabolite 1,25(OH)2D3 

by decreasing the expression of 1-α-hydroxylase (121). Thus, Fgf23 promotes phosphate 

excretion and inhibits phosphate uptake, leading to phosphate wasting. Fgf23 signals 

through the FGF receptor (FGFR) family and requires the presence of a coreceptor, Klotho 

(120).

Fgf23 expression in osteocytes is regulated by PHEX and DMP1, which are promoters of 

bone mineralization. PHEX inhibits Fgf23 transcription, and mice with inactivating Phex 
mutations (Hyp mice) have highly elevated bone Fgf23 mRNA levels (122). Mice lacking 

Dmp1 expression have osteomalacia and abnormally high serum Fgf23 levels (118). In 

addition to inhibitors of Fgf23, osteocytes also express Mepe, which acts as an inhibitor of 

matrix mineralization. While the precise function of Mepe is not yet known, it is thought to 

inhibit mineralization by promoting renal phosphate excretion (123). Full-length Mepe 

protein can be cleaved to release a 19 amino acid fragment known as the ASARM peptide 

(acidic serine aspartate-rich MEPE-associated motif). The ASARM peptide can bind to Phex 

and inhibit its activity (124), but it does not regulate Fgf23. Therefore, the role of Mepe in 

the regulation of Fgf23 remains controversial.

Recently, studies have been performed examining communication between bone and muscle 

and vice versa. Bone cells produce prostaglandins, Wnt1, Wnt3a, and Fgf9 that can have 

effects on the proliferation of muscle progenitors and differentiation into myotubes. PGE2 

(125) and the Wnts (126) are elevated in response to fluid flow shear stress in osteocytes and 

Fgf9 is expressed as the late osteoblast is embedding and becoming an osteocyte. Whereas 

PGE2 and the Wnts stimulate myogenesis, Fgf9 inhibits myogenesis but stimulates 

proliferation of muscle progenitors. RANKL produced by osteocytes also has negative 

effects on muscle (127). Therefore, osteocytes make both positive and negative regulators of 

muscle. The balance between these factors under conditions such as exercise or disuse-

induced osteoporosis may be key for coupling bone and muscle mass. In addition, osteocytes 

and osteoblasts are known to secrete osteocalcin, which can signal to the pancreas to 

increase insulin synthesis and increase insulin sensitivity in skeletal muscle and adipose 

tissue (128).

Conversely, it has now been shown that muscle can produce both negative regulators of bone 

such as myostatin and positive regulators of bone such as β-aminoisobutyric acid, BAIBA. 

Myostatin has negative effects not only on muscle but also on bone mass (129). The muscle 

metabolite, BAIBA, protects osteocytes against ROS-induced cell death and protects 

hindlimb unloaded mice against bone and muscle loss (130). A muscle protein, irisin, has 

been shown to have both positive and negative effects on bone. Colaianni and colleagues 

(131, 132) found that small injections of irisin increased bone mass, but Kim et al. (129) 
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found that mice with global deletion of the precursor for irisin, FNDC5, were protected from 

bone loss during ovariectomy. It will be important to understand how each factor is being 

regulated in order to develop therapeutics. In addition to irisin and L-BAIBA, several other 

myokines are known to act on bone in addition to myostatin, including IL-6, IGF-1, and 

basic fibroblast growth factor 2 (bFGF-2) (133), but the direct effect of most of these 

myokines on osteocytes is unknown.

5. TRANSLATIONAL IMPLICATIONS

5.1. Anti-Sclerostin Antibodies to Treat Osteoporosis

In the late 1990s, identification of the SOST gene as the cause for the bone sclerosing 

disorder sclerosteosis represented a major milestone in the history of harnessing the 

osteocyte to generate anabolic action in the skeleton (134). The sclerostin protein 

represented the ideal target to improve bone mass in patients because, (a) despite being an 

antagonist for the Wnt signaling pathway (a fairly ubiquitous pathway), sclerostin 

expression was relatively restricted to the osteocyte population, (b) sclerostin is a secreted 

protein thus it is amenable to antibody targeting, (c) sclerostin deprivation had clear and 

well-described high bone mass–causing effects on the skeleton with few nonskeletal side 

effects (e.g., cancer concerns), and (d) its inhibition stimulated anabolic action in the 

skeleton. By the mid-2000s, at least three large pharmaceutical companies had active 

sclerostin programs in a race to bring to market the first non-PTHR1-based anabolic therapy. 

Recently, the sclerostin antibody Evenity (romosozumab) was approved for clinical use in 

the United States as a first-in-class therapy for the treatment of postmenopausal women with 

osteoporosis at high risk of fracture. In preclinical studies, treatment with sclerostin 

monoclonal antibodies resulted in potent osteoanabolic responses in mice, rats, and monkeys 

(reviewed in 135). Phase III studies designed to evaluate the reduction in fracture risk in a 

large international population of women (~7,000 in the FRAME trial and ~4,100 in the 

ARCH trial) showed significant reductions in vertebral fractures at 1 and 2 years (reviewed 

in 136). Despite its clinical efficacy and selectivity to bone, romosozumab therapy comes 

with a black box warning to patients at increased risk for cardiovascular disease, due to a 

slight increase in MACE—defined as cardiovascular death, myocardial infarction, and stroke

—observed in the ARCH trial. As romosozumab has only been on the market for several 

months at the time of this writing, it is too early to tell how commercially successful 

sclerostin targeting will be. But the antibody-based study and elucidation of this pathway 

will have lasting effects on our understanding of osteocyte biology.

5.2. Anti-RANKL, Anti-FGF23, and Others

In addition to the anti-sclerostin antibody that targets and neutralizes the osteocyte factor 

sclerostin, there are other therapeutic antibodies available that target other osteocyte factors. 

These include anti-FGF23, burosumab, and anti-RANKL, denosumab. Treatment with anti-

FGF23 antibody increases serum phosphate in X-linked hypophosphatemic rickets (see 137 

for a review). As described above, FGF23 is highly elevated in osteocytes and in the 

circulation in hypophosphatemic rickets caused by deletion or mutation of PHEX or DMP1; 

autosomal dominant hypophosphatemic rickets caused by gain-of-function mutations in 

FGF23 that prevent proteolytic cleavage (see 138 for a review); in chronic kidney disease 
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(139); and hypophosphatemic osteomalacia caused by homozygous mutation in FAM20, a 

regulatory molecule of FGF23 (140). Studies have linked high levels of circulating FGF23 to 

an increased risk of heart disease, vascular calcification, and increased fat mass (141). In 

addition to anti-FGF-23 antibody, other potential therapeutics include FGF receptor 

inhibitors. The mechanisms for regulating FGF23 production are complex (137).

In 2002, researchers reported that the osteocyte-like cell line MLO-Y4 expressed high levels 

of RankL and supported osteoclast formation (142). In spite of studies showing that primary 

osteocytes will support osteoclast formation and activation (143), this concept was not 

generally accepted until two groups showed that deletion of RankL in osteocytes in vivo 

using the Dmp1-Cre model resulted in increased bone mass (14, 15). Denosumab, a human 

anti-RANKL antibody, is now approved for the treatment of osteoporosis (144).

It appears that other therapeutics such as bisphosphonates and hormones also target 

osteocytes in addition to affecting osteoclast and osteoblast function. Bisphosphonates have 

been shown to reduce osteocyte apoptosis (145) and therefore may maintain osteocyte 

viability and function. Although they are thought to target osteoblasts, hormone replacement 

therapy, selective estrogen receptor modulators (Evista), and PTH peptides (Forteo) could 

also have significant effects on osteocytes. There may exist other osteocyte factors, unknown 

at this time, that could be targets for development of future therapeutics.

6. SUMMARY AND CHALLENGES

The early pioneers hypothesized two main functions for osteocytes: one as a mechanosensor 

and the other as having the capacity to remove their surrounding matrix. Novel functions, 

never before hypothesized, have been discovered, such as phosphate regulators, regulators of 

resorption, and regulators of formation, among others. Although they are not covered here, 

other functions have been attributed to osteocytes, such as controlling hemopoietic stem cell 

mobilization and lymphopoiesis (146). The role of osteocytes in cancer metastasis and 

burden is being examined (147), as is the interaction between the immune system and 

osteocytes (148). One question continuously arises: How can one cell type have so many 

functions? Most cells have one major function and a few minor functions. Are there 

subpopulations of osteocytes that specialize in specific regulatory processes or do all 

osteocytes have multiple functions? Has the full iceberg been uncovered or just the tip? We 

propose that we have only revealed the tip and anticipate more exciting discoveries in the 

future.
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FUTURE ISSUES

1. What is the role of the osteocyte in glucose and energy metabolism?

2. Is there a role for osteocytes in bone repair and fracture healing?

3. What are the effects of fatty acid overload (obesity) on osteocyte function?

4. What is the role of osteocytes in disease and aging and as targets for 

therapeutics?
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Figure 1. 
(a) The graph shows the relative temporal expression of keratocan (KTN), a marker for 

osteoblasts; E11/gp38 (E11), a marker of early embedding osteocytes; dentin matrix protein 

1 (DMP1), an early osteocyte marker responsible for mineralization; neuropeptide Y (NPY), 

a neurotransmitter expressed in maturing osteocytes; and MEPE and SOST, both markers 

for late, mature osteocytes. (b) The Goldner-stained bone section below shows marrow, the 

surface osteoblasts (①), the embedding osteoid osteocyte (②), early mineralizing 

osteocytes (③), and mature osteocytes (④). The time scale for the expression graph in panel 

a corresponds temporally to the differentiation process represented histologically in panel b.
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Figure 2. 
(a) Three-dimensional reconstruction image of the avian osteocyte network by IMARIS 

software. Note the ordered array of the osteocytes in chick bone. (b) Field emission scanning 

electron microscope images of chick osteocyte. Adapted with permission from Reference 

12. Copyright 1998, John Wiley & Sons.
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Figure 3. 
Backscatter scanning electron microscopy of a resin-filled, acid-etched cross section of 

murine long bone. Note the extensive connections between lacunae. (Inset) Note the 

dendrite-filled canalicular connections with the bone surface.
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Figure 4. 
OmGFP66 cells form bone-like structures with a lacunar and osteocyte morphology 

resembling in vivo bone. Maximal Z-projected confocal images of (a) an OmGFP66 bone-

like structure from a day-28 culture and (b) a 7-day-old Dmp1-mGFP transgenic mouse 

calvarium. Green denotes Dmp1-mGFP and red the alizarin reed staining for mineral. Note 

the similarities in morphology and spacing of the Dmp1-mGFP-positive osteocytes and 

similar appearance of the mineralized lacunae by alizarin red fluorescence. Adapted with 

permission from Reference 30. Copyright 2019, John Wiley & Sons.
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Figure 5. 
(Top) Osteocytes function as mechanosensory cells that mediate loading effects in bone 

through enhanced release or inhibition of regulatory molecules. (Bottom) Bone homeostasis 

cells regulate the normal process of bone remodeling via activation of osteoclasts (left) and 

osteoblasts (right) by distinct pathways. (Inset) Endocrine cells regulate such diverse and 

distant processes as phosphate handling in the kidney and muscle maintenance in the limbs 

and trunk. Abbreviations: ATP, adenosine triphosphate; DKK1, Dickkopf gene codes for the 

protein that is an inhibitor of WNT signaling; FGF23, fibroblast growth factor 23; IGF-1, 

insulin-like growth factor 1; M-CSF, macrophage colony stimulating factor; NO, nitric 

oxide; OPG, osteoprotegerin; PGE2, prostaglandin E2; RANKL, receptor activator of NF-κB 

ligand; SOST, gene coding for the protein sclerostin, a specific inhibitor of WNT signaling.
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