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Abstract— This work studies the existence of optimal invariant
detectors for determining whether P multivariate processes have
the same power spectral density (PSD). This problem finds
application in multiple fields, including physical layer security
and cognitive radio. For Gaussian observations, we prove that
the optimal invariant detector, i.e., the uniformly most powerful
invariant test (UMPIT), does not exist. Additionally, we consider
the challenging case of close hypotheses, where we study the
existence of the locally most powerful invariant test (LMPIT). The
LMPIT is obtained in closed form only for univariate signals. In
the multivariate case, it is shown that the LMPIT does not exist.
However, the corresponding proof naturally suggests one LMPIT-
inspired detector, which outperforms previously proposed detec-
tors.

Index Terms— Generalized likelihood ratio test (GLRT), locally
most powerful invariant test (LMPIT), power spectral density
(PSD), Toeplitz matrix, uniformly most powerful invariant test
(UMPIT).

I. INTRODUCTION

This work studies the problem of determining whether
P Gaussian multivariate time series possess the same (pos-
sibly matrix-valued) power spectral density (PSD) at every
frequency. This interesting problem has many applications,
such as comparison of gas pipes [1], analysis of hormonal
times series [2], earthquake-explosion discrimination [3], light-
intensity emission stability determination [4], physical-layer
security [5], and spectrum sensing [6].
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The first work to consider this problem was developed
by Coates and Diggle [1]. This work proposed tests, for
univariate and real-valued time series, based on the ratio
of periodograms. First, they presented non-parametric tests
based on the comparison of the maximum and minimum of
the log-ratio of periodograms over all frequencies. Moreover,
assuming a parametric (quadratic) model for the log-ratio of
the PSDs, they developed a generalized likelihood ratio test
(GLRT). These detectors are further studied in [7]. Following
similar ideas to [1], [7], the work in [2] proposed a graphical
procedure, which resulted in another non-parametric test. The
authors of [4] also considered detectors based on the ratio of
periodograms for a problem with several time series and are
based on a semi-parametric log-linear model for the ratio of
PSDs.

A different kind of detector is presented in [8], where the
GLRT was derived without imposing any parametric model.
In particular, they computed the GLRT for testing whether
the PSD of two real multivariate time series are equal at
a given frequency. The extension to complex time series is
considered in [9], where the information from all frequencies
is fused into a single statistic. An alternative way of fusing
the information at all frequencies is derived in [10], but the
proposed detector is not a GLRT anymore. All aforementioned
detectors were developed in the frequency domain. However,
there are also other works that propose time-domain detectors;
see, for instance, [11] and references therein.

The problem considered in this work is to decide whether at
each frequency all P PSD matrices are identical or not. Thus,
the tests for equality of several PSDs may be addressed as an
extension of the classical problem of testing the homogeneity
of covariance matrices [12]. This allows us to use the statistics
for homogeneity at each frequency, which need to be fused into
one statistic afterwards by combining the different frequencies.
Depending on the chosen combination rule, different detectors
(with different performance) may be derived.

Every proposed test so far is either based on ad-hoc prin-
ciples, or on the GLRT, which is optimal in the asymptotic
regime [13]. However, their behavior for finite data records is
unknown. That is, for finite data records, they may very well be
suboptimal. Actually, to the best of the authors’ knowledge,
neither the uniformly most powerful invariant test (UMPIT)
nor the locally most powerful invariant test (LMPIT) have been
studied for the considered problem, with the exception of our
previous conference paper [14], which considers the particular
case of P = 2 processes. The conventional approach to derive
these optimal invariant detectors is based on obtaining the
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ratio of the densities of the maximal invariant statistic under
each hypothesis [15]. The derivation of these distributions is
for most problems a very complicated task, if possible at all,
which in many cases precludes the derivation of optimal invari-
ant detectors. Instead of pursuing this conventional approach,
we may invoke Wijsman’s theorem [16], [17], as we did in our
previous works [18], [19]. This theorem allows us to derive
the UMPIT or the LMPIT, if they exist, without identifying
the maximal invariant statistic and, more importantly, without
computing its distributions. Exploiting Wijsman’s theorem,
and assuming Gaussian-distributed data, this work proves that
the UMPIT does not exist for testing equality of the PSD
matrices of P (≥ 2) processes. Moreover, focusing on the case
of close hypotheses (similar PSDs), we prove that the LMPIT
only exists in the case of univariate processes, for which we
find a closed-form expression; whereas it does not exist for
the general case of multivariate time series. However, the non-
existence proof of the LMPIT in the multivariate case suggests
one LMPIT-inspired detector, which turns out to outperform
previously proposed schemes.

The paper is organized as follows. Section II presents the
mathematical formulation of the problem. The proof of the
non-existence of the UMPIT and the LMPIT for the general
case is presented in Section III, whereas Section IV derives the
LMPIT for univariate processes. Due to the non-existence of
the LMPIT in the general case, we present a LMPIT-inspired
detector in Section V. The performance of the proposed
detector is illustrated by means of numerical simulations in
Section VI, and Section VII summarizes the main conclusions
of this work.

A. Notation

In this paper, matrices are denoted by bold-faced upper case
letters; column vectors are denoted by bold-faced lower case
letters, and light-face lower case letters correspond to scalar
quantities. The superscripts (·)T and (·)H denote transpose and
Hermitian, respectively. A complex (real) matrix of dimension
M × N is denoted by A ∈ CM×N

(
A ∈ RM×N

)
and x ∈

CM
(
x ∈ RM

)
denotes that x is a complex (real) vector of

dimension M . The absolute value of the complex number x is
denoted as |x|, and the determinant, trace and Frobenius norm
of a matrix A will be denoted, respectively, as det(A), tr(A)
and ‖A‖F . The Kronecker product between two matrices is
denoted by ⊗, IL is the identity matrix of size L × L, 0
denotes the zero matrix of the appropriate dimensions, and
FN is the Fourier matrix of size N . We use A−1/2 to denote
the Hermitian square root matrix of the Hermitian matrix A−1

(the inverse of A), the operator diagL(A) constructs a block
diagonal matrix from the L × L blocks in the diagonal of
A, whereas diag(A) yields a vector with the elements of the
main diagonal of A, and x = vec(X) constructs a vector by
stacking the columns of X. x ∼ CN (µ,R) indicates that x is
a proper complex circular Gaussian random vector of mean µ
and covariance matrix R and E[·] represents the expectation
operator. Finally, ∝ stands for equality up to additive and
positive multiplicative constant (not depending on data) terms.

II. PROBLEM FORMULATION

We are given N samples of P time series that are L
variate, xi[n] ∈ CL, i = 1, . . . , P, and n = 0, . . . , N − 1.
These samples are realizations of zero-mean proper Gaussian
processes that are independent and wide-sense stationary. The
problem studied in this work is to determine whether all
these P processes have the same power spectral density (PSD)
matrix at every frequency or, alternatively, the same matrix-
valued covariance function. To mathematically formulate the
detection problem, it is necessary to introduce the vector yi =
[xTi [0] · · · xTi [N −1]]T ∈ CNL, which stacks the N samples
of the ith time series, and y = [yT1 · · · yTP ]T ∈ CPNL. Thus,
the problem can be cast as the following binary hypothesis
test:

H1 : y ∼ CN (0,RH1
) ,

H0 : y ∼ CN (0,RH0
) ,

(1)

where CN (0,RHi
) denotes a zero-mean circular complex

Gaussian distribution with covariance matrix RHi
. Taking the

independence into account, the covariance matrices are

RH1
=


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RP

 , (2)

and

RH0
=


R0 0 · · · 0
0 R0 · · · 0
...

...
. . .

...
0 0 · · · R0

 = IP ⊗R0, (3)

under H1 and H0, respectively, with

Ri = E[yiy
H
i ] =

 Mi[0] · · · Mi[−N + 1]
...

. . .
...

Mi[N − 1] · · · Mi[0]

 , (4)

being a block-Toeplitz covariance matrix built from the
(unknown) covariance sequence of xi[n], Mi[m] =
E[xi[n]xHi [n−m]]. Moreover, under H1, we do not assume
any further particular structure and, for notational simplicity,
we have defined the common covariance sequence under H0

as M0[m].
Dealing with block-Toeplitz covariance matrices is challeng-

ing, since they typically prevent the derivation of closed-form
detectors, as our previous works in [19]–[21] show. These
works also presented a solution to overcome this problem,
which is based on an asymptotic (as N →∞) approximation
of the likelihood. Concretely, this approach performs a block-
circulant approximation of Ri, and results in convergence in
the mean-square sense of the asymptotic likelihood to the
likelihood [21].

Assume now that M , with M ≥ L,1 independent
and identically distributed (i.i.d.) realizations of y, say

1This reasonable assumption is necessary for the derivation of the GLRT.
However, for the study of the existence of optimal invariant detectors, only
PM ≥ L is required.
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y(0), . . . ,y(M−1), are available. Then, to obtain the asymp-
totic likelihood, we must define the transformation z =
[zT1 · · · zTP ]T , where

zi =
(
FHN ⊗ IL

)
yi = [zTi [0] · · · zTi [N − 1]]T , (5)

with zi[k] being the discrete Fourier transform (DFT) of xi[n]
at frequency θk = 2πk/N, k = 0, . . . , N − 1. Exploiting this
transformation, the asymptotic approximation of the likelihood
is [19], [20]

p(z(0), . . . , z(M−1); SHi
) =

1

πPNLM det(SHi)
M

exp
{
−M tr

(
S−1
Hi

Ŝ
)}

, (6)

where the PNL × PNL sample covariance matrix of the
transformed observations is

Ŝ =
1

M

M−1∑
m=0

z(m)z(m)H , (7)

and the covariance matrices under both hypotheses are

SH1 =


S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · SP

 , (8)

and
SH0

= IP ⊗ S0. (9)

Moreover, Si is an NL × NL block-diagonal matrix whose
L × L blocks Si,1, . . . ,Si,N are given by the power spectral
density matrix, i.e.,

Si,k+1 = Si(e
jθk) =

N−1∑
n=0

Mi[n]e−jθkn, (10)

with i = 1, . . . , P, and k = 0, . . . , N − 1. Finally, using
the asymptotic likelihood, the detection problem in (1) is
asymptotically equivalent to

H1 : z(m) ∼ CN (0,SH1
) , m = 0, . . . ,M − 1,

H0 : z(m) ∼ CN (0,SH0) , m = 0, . . . ,M − 1.
(11)

That is, we are testing two different covariance matrices with
known structure but unknown values.

Although our formulation assumes Gaussian data, as well as
the availability of M realizations each of length N , this is not
very restrictive in practice. First, the Gaussianity assumption
can be dropped since the transformed observations, zi[k], are
samples of the DFT and it is well known, see [22], that
under some mild conditions the DFT of large data records
yields zi[k] that are independent and Gaussian distributed
with covariance matrix Si(e

jθk). Moreover, if only M =
1 realization is available, it is possible to split this single
realization into M windows, but keeping in mind that the
realizations may no longer be i.i.d., as the samples in different
windows may be dependent. This resembles the Welch method
for PSD estimation. Moreover, further exploiting on this idea,
it would be possible to increase the number of realizations
allowing some overlap among different windows. However,
the study of the side effects (due to a higher correlation

among windows) will not be analyzed in this work. Finally,
the case of different numbers Mi of realizations for each
process would require a different treatment, which would be
equivalent to the introduction of further structure (subsets of
identical covariance matrices) under the alternative hypothesis.
Although this is a very interesting case, which is currently un-
der consideration, the modification of the problem invariances
introduces an additional complexity that is beyond the scope
of this paper.

A. The generalized likelihood ratio test

The typical approach to solve detection problems with un-
known parameters, as (11), is based on the GLRT. Actually, the
works in [8], [9], [11] derived the GLRT for this problem under
different assumptions, but they only studied the case of P = 2
time series. The GLRT in [11] was derived for univariate real
time series, which was extended to multivariate real signals in
[8] and multivariate complex signals in [9]. Here, we present
the (straightforward) extension of these GLRTs to P (≥ 2)
complex and multivariate processes. Concretely, the GLRT is
given by

log G ∝
N−1∑
k=0

P∑
i=1

log


det
(
Ŝi(e

jθk)
)

det

(
1

P

P∑
p=1

Ŝp(e
jθk)

)
 , (12)

where

Ŝi(e
jθk) =

1

M

M−1∑
m=0

z
(m)
i [k]z

(m)H
i [k], (13)

is the sample PSD matrix at frequency θk, i.e., an L×L block
of Ŝ. Alternatively, the GLRT may be rewritten as

log G ∝
N−1∑
k=0

P∑
i=1

log det
(
Ĉi(e

jθk)
)
, (14)

where the frequency coherence is

Ĉi(e
jθ) =(

1

P

P∑
p=1

Ŝp(e
jθ)

)−1/2

Ŝi(e
jθ)

(
1

P

P∑
p=1

Ŝp(e
jθ)

)−1/2

.

(15)

Finally, it is important to address how the threshold must
be chosen. On one hand, we could use Wilks’ theorem [13],
which states that the GLRT is asymptotically (as M → ∞)
distributed as

− 2M
N−1∑
k=0

P∑
i=1

log det
(
Ĉi(e

jθk)
)
∼ χ2

(P−1)NL2 , (16)

that is, it is distributed as a Chi-squared distribution with (P−
1)NL2 degrees of freedom. On the other, and for the finite
case, we could take into account that the detector is invariant
to MIMO filtering, which allows us to consider that under H0

the PSDs are Si(e
jθ) = IL, ∀θ and i = 1, . . . , P . Thus, under

this assumption we could obtain the thresholds using Monte
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Carlo simulations, which will depend on P,L and M , but will
be independent of the specific values of Si(e

jθ).
should still be valid for any Si(e

jθ).

III. ON THE EXISTENCE OF OPTIMAL DETECTORS

Since GLRTs are not necessarily optimal for finite data
records [23], the goal of this section is to study the existence
of optimal invariant detectors for the hypothesis test in (11).
In particular, we will show that neither the uniformly most
powerful invariant test (UMPIT) nor the locally most powerful
invariant test (LMPIT) exist in the general case.

To derive invariant detectors, such as the UMPIT or the
LMPIT, we must first identify the problem invariances [15].
Specifically, we must define the group of invariant transfor-
mations, which is composed only of linear transformations
since Gaussianity must be preserved. Among those linear
transformations, it is clear that applying the same invertible
multiple-input-multiple-output (MIMO) filtering to all time
series does not modify the structure of the hypotheses. That
is, if the PSDs are equal, the same MIMO filtering yields also
identical PSDs and if they are different, they will stay different.
In particular, this transformation is x̃i[n] = (H∗xi)[n], where
H[n] ∈ CL×L is a filtering matrix common to all processes
and ∗ denotes convolution, which when applied to zi becomes

z̃i = Gzi, (17)

where G is a block-diagonal matrix with invertible L × L
blocks. Additionally, we may label the processes in any
arbitrary order, which may be even done on a frequency-by-
frequency basis. The last invariance consists of a frequency
reordering. That is, we may permute the frequencies, i.e.,
permute zi[k], provided that the same permutation is applied
to all processes. Then, the group of invariant transformations
for the hypothesis test in (11) is

G = {g : z 7→ g(z) = G̃z}, (18)

where

G̃ = (IP ⊗G)

(
N∑
k=1

PT
k ⊗ eke

T
k ⊗ IL

)
(IP ⊗T⊗IL), (19)

with ek being the kth column of IN , Pk ∈ RP×P and
T ∈ RN×N . Moreover, the matrix IP ⊗ T ⊗ IL applies a
frequency reordering (permutation) to every process, G is a
block-diagonal matrix with L×L invertible blocks Gk, and Pk

is a matrix that permutes the kth frequency of all processes,
i.e., permutes the position of z1[k − 1], . . . , zP [k − 1] in z.
Then, Pk ∈ Pk, T ∈ T, and Gk ∈ G, where Pk and T are the
set of permutation matrices formed by Pk and T, respectively,
and G is the set of L× L invertible matrices. In Appendix I,
we prove that

(∑N
k=1 PT

k ⊗ eke
T
k ⊗ IL

)
z corresponds to the

relabeling of the processes at each frequency.
Equipped with the transformation group G, it is possible to

study the existence of the UMPIT. The typical approach [15]
involves finding the maximal invariant statistic and computing
its densities under both hypotheses. An alternative to this
process, which is usually very involved or even intractable,
is based on Wijsman’s theorem [16], [17], and allows us to

derive the UMPIT, if it exists, without finding the maximal
invariant statistic nor its distributions. This theorem directly
gives the ratio of the distributions of the maximal invariant
statistic as follows

L =∑
T,P1,...,PN

∫
GN

| det(G)|2MP exp
{
−M tr

(
S−1
H1

G̃ŜG̃H
)}

dG

∑
T,P1,...,PN

∫
GN

| det(G)|2MP exp
{
−M tr

(
S−1
H0

G̃ŜG̃H
)}

dG

,

(20)

where GN = G × · · · × G and dG is an invariant measure
on the set GN and the sum over Pk represents the sum over
all permutations matrices in the set Pk. If the ratio L , or a
monotone transformation thereof, did not depend on unknown
parameters, it would yield the UMPIT. When such dependence
is present, the UMPIT does not exist, and in that case it is
sensible to consider the case of close hypotheses to study the
existence of the LMPIT.

In the following, we will simplify the ratio L , show that the
UMPIT does not exist, and study the case of close hypotheses.
The next lemma presents the first simplification of L .

Lemma 1: The ratio L in (20) can be written as

L ∝
∑
T

∑
P1,...,PN

∫
GN

exp (−Mα(G))
N∏
l=1

β(Gl)dGl, (21)

where

α(G) =
N∑
k=1

P∑
i=1

tr
(
Wi,kGkĈπk[i],Π[k]G

H
k

)
, (22)

the matrix Ĉπk[i],Π[k] is a permutation of the sample coherence
matrix

Ĉi,k =

[
1

P

P∑
p=1

Ŝp,k

]−1/2

Ŝi,k

[
1

P

P∑
p=1

Ŝp,k

]−1/2

, (23)

with

Ŝi,k+1 =
1

M

M−1∑
m=0

z
(m)
i [k]z

(m)H
i [k], (24)

being the sample estimate of the PSD matrix of {xi[n]}N−1
n=0

at frequency 2πk/N . Moreover, the scalar β(Gl) is given by

β(Gl) = | det(Gl)|2MP exp
{
−PM tr

(
GH
l Gl

)}
, (25)

and the matrix Wi,k is

Wi,k =

(
1

P

P∑
p=1

S−1
p,k

)−1/2

S−1
i,k

(
1

P

P∑
p=1

S−1
p,k

)−1/2

− IL.

(26)
Proof: The proof is presented in Appendix II.

As can be seen in (21), the ratio L depends on the matrices
Wi,k, which are unknown, proving that the UMPIT does not
exist. Hence, as previously mentioned, we focus hereafter on
the case of close hypotheses, i.e., the PSD matrices are very
similar. In this case, S1 ≈ · · · ≈ SP , which yields Wi,k ≈ 0.
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Under this assumption, the exponent term in (21) becomes
small and allows us to perform a Taylor series expansion
around α(G) = 0 as follows

exp(−Mα(G)) ≈ 1

2

(
2− 2Mα(G) +M2α2(G)

)
, (27)

which yields
L ∝ Ll + Lq, (28)

where the linear and quadratic terms are respectively given by

Ll = −2M
∑
T

∑
P1,...,PN

∫
GN

α(G)
N∏
l=1

β(Gl)dGl, (29)

and

Lq ∝M2
∑
T

∑
P1,...,PN

∫
GN

α2(G)
N∏
l=1

β(Gl)dGl. (30)

Next, we analyze the linear term Ll.
Lemma 2: The linear term is zero, i.e.,

Ll = 0. (31)
Proof: The proof can be found in Appendix III.

Since the linear term is zero, only the quadratic term has to
be taken into account. The final expression is provided in the
following theorem.

Theorem 1: The ratio of the distributions of the maximal
invariant statistic is given by

L ∝
N∑
k=1

P∑
i=1

‖Ĉi,k‖2F + β
N∑
k=1

P∑
i=1

tr2
(
Ĉi,k

)
, (32)

where β is a data-independent function of the matrices Wi,k,
which are unknown.

Proof: See Appendix IV.
As Theorem 1 shows, the ratio L depends on unknown

parameters, which are summarized in β. Hence, the LMPIT
for testing the equality of PSD matrices at all frequencies does
not exist in the general case. An exception is examined in the
following section. Moreover, an LMPIT-inspired detector is
also presented in Section V, and its performance is analyzed
using computer simulations.

One final comment is in order. Since the ratio L is given by
a linear combination (with unknown weights) of the Frobenius
norm and the trace of Ĉi,k, the optimal detector would be a
function of the eigenvalues of Ĉi,k. This makes sense as the
distributions of these eigenvalues are not modified by any of
the invariances.

IV. THE LMPIT FOR UNIVARIATE TIME SERIES

The case of univariate time series, L = 1, is interesting
since the LMPIT does exist, as shown in the next corollary.

Corollary 1: For L = 1 the ratio in (32) reduces to

L ∝
N∑
k=1

P∑
i=1

|Ĉi,k|2, (33)

which is therefore the LMPIT.

Proof: In the univariate case, the coherence matrices Ĉi,k

become scalar, that is, Ĉi,k = Ĉi,k, and consequently

‖Ĉi,k‖2F = tr2
(
Ĉi,k

)
= |Ĉi,k|2, (34)

which yields

L ∝ (1 + β)
N∑
k=1

P∑
i=1

|Ĉi,k|2 ∝
N∑
k=1

P∑
i=1

|Ĉi,k|2. (35)

Interestingly, using (10) and the definition of Ĉi,k in (23),
the LMPIT in Corollary 1 may be rewritten in a more
insightful form as

L ∝
N−1∑
k=0

P∑
i=1

Ŝ2
i (ejθk)

[
P∑
i=1

Ŝi(e
jθk)

]2 , (36)

or asymptotically (as N →∞)

L ∝
∫ π

−π

P∑
i=1

Ŝ2
i (ejθ)

[
P∑
i=1

Ŝi(e
jθ)

]2

dθ

2π
. (37)

Thus, for L = 1, the LMPIT is given by the integral of the
sum of the squares of the PSD estimates normalized by the
square of their sum.

V. AN LMPIT-INSPIRED DETECTOR

Since the LMPIT does not exist in the multivariate case
(L > 1), we present here an LMPIT-inspired detector. In
particular, we could use each of the terms in (32) as test
statistics, which are

LF =
N∑
k=1

P∑
i=1

‖Ĉi,k‖2F =
N−1∑
k=0

P∑
i=1

‖Ĉi(e
jθk)‖2F , (38)

and

LT =
N∑
k=1

P∑
i=1

tr2
(
Ĉi,k

)
=
N−1∑
k=0

P∑
i=1

tr2
(
Ĉi(e

jθk)
)
, (39)

where the frequency coherence, Ĉi(e
jθ), was defined in (15).

Note that in the univariate case (L = 1), both (38) and (39)
reduce to the true LMPIT (33). However, for multivariate
processes we only propose LF as a detector and discard
LF . To understand why, let us analyze both. Considering
the case where all PSDs are identical (H0), the coherence
matrices are Ĉi(e

jθ) ≈ IL, ∀θ. Actually, for a large number
of realizations, M →∞, they converge to Ĉi(e

jθ) = IL, ∀θ.
Hence, to distinguish between both hypotheses, the detectors
must measure how different Ĉi(e

jθ) is from IL. This is exactly
what the statistics LF and LT do. The only difference resides
in the way they quantify this difference: while LF uses the
Frobenius norm, LT uses the trace. Since the Frobenius norm
exploits information provided by the cross-spectral densities of
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each multivariate time series, information which is neglected
by the trace operator, one would expect LF to outperform
LT .

Finally, as in Section IV, it is possible to write the asymp-
totic versions of (38) as

LF =

∫ π

−π

P∑
i=1

‖Ĉi(e
jθ)‖2F

dθ

2π
. (40)

A. Threshold selection

In this section, we study the threshold selection problem for
the LMPIT-inspired detector LF . Similarly to the approaches
described for the GLRT, we could consider that the PSDs are
Si(e

jθ) = IL, ∀θ and i = 1, . . . , P , and use Monte Carlo
simulations to obtain the thresholds. Of course, due to the
invariance to MIMO filtering, these thresholds should be valid
for other PSDs. The second approach is also based on Wilks’
theorem, but it cannot be directly applied. Concretely, we will
follow along the lines in [18]. First, for close hypotheses, the
GLRT may be approximated by

N−1∑
k=0

P∑
i=1

log det
(
Ĉi(e

jθk)
)

=
N−1∑
k=0

P∑
i=1

L∑
s=1

log
(
1 + εi,s(e

jθk)
)

≈
N−1∑
k=0

P∑
i=1

L∑
s=1

(
εi,s(e

jθk)−
ε2i,s(e

jθk)

2

)
, (41)

where 1 + εi,s(e
jθk) is the sth eigenvalue of Ĉi(e

jθk) and
|εi,s(ejθk | � 1. After some straightforward manipulations, the
above approximation becomes

N−1∑
k=0

P∑
i=1

log det
(
Ĉi(e

jθk)
)
≈ NPL

2
+

N−1∑
k=0

P∑
i=1

L∑
s=1

(
2εi,s(e

jθk)−
(
1 + εi,s(e

jθk)
)2

2

)
, (42)

Now, using (60), we get

P∑
i=1

L∑
s=1

εi,s(e
jθk) = 0, (43)

which yields

− 2M
N−1∑
k=0

P∑
i=1

log det
(
Ĉi(e

jθk)
)

≈M
N−1∑
k=0

P∑
i=1

‖Ĉi(e
jθk)‖2F −MNPL. (44)

Hence, we obtain the following asymptotic distribution of LF

(MLF −MNPL) ∼ χ2
(P−1)NL2 . (45)

VI. NUMERICAL RESULTS

This section studies the performance of the proposed detec-
tors using Monte Carlo simulations, and compare it with that

−4 −2 0 2 4 6 8 10
10−4

10−3

10−2
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100

SNR (dB)

p
m

GLRT
LF

Fig. 1: Probability of missed detection for Experiment 1: P =
3, L = 3, Q = 1, T = 20, ρ = 0.75, ∆h = 0.1, M = 4 and
N = 128

of the GLRT. The performance evaluation is carried out in a
communication setup, where the signals are generated as

xi[n] =
T−1∑
τ=0

Hi[τ ]si[n− τ ] + vi[n], i = 1, . . . , P,

which corresponds to a MIMO channel with finite impulse
response. In this expression, the transmitted signals si[n] ∈
CQ are independent multivariate processes whose entries are
independent QPSK symbols with unit energy, the noise vectors
vi[n] ∈ CL are independent with variance σ2, and spatially
and temporally white. The channel H1[n] is a Rayleigh
MIMO channel with unit energy,2 spatially uncorrelated, and
with exponential power delay profile of parameter ρ. Finally,
Hi[n] =

√
1−∆hH1[n] +

√
∆hEi[n], i = 2, . . . , P , with

Ei[n] possessing the same statistical properties as H1[n] and
being independent. Under this model, ∆h = 0 corresponds to
signals having the same PSD, that is H0, and 0 < ∆h ≤ 1
measures how far the hypotheses are, along with the signal-
to-noise ratio, which is defined as

SNR (dB) = 10 log

(
1

σ2

)
. (46)

Experiment 1: In this first experiment, we have considered
P = 3 processes of dimension L = 3, Q = 1 signals are
transmitted through MIMO channels with T = 20 taps, the
parameter of the exponential power delay profile is ρ = 0.75,
and ∆h = 0.1 under H1. Moreover, to carry out the detection,
a realization of 512 samples is available, which is then divided
into M = 4 windows of length N = 128. The probability
of missed detection for a fixed probability of false alarm
pfa = 10−2 and for a varying SNR is depicted in Fig. 1.
As this figure shows, the proposed LMPIT-inspired detector,
LF , outperforms the GLRT, with an approximate gain of 2
dB.

2Each element of H1[n] follows a proper complex Gaussian distribution
with zero mean and unit variance.
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−4 −2 0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

SNR (dB)

p
m

GLRT
LF

Fig. 2: Probability of missed detection for Experiment 2: P =
3, L = 3, Q = 3, T = 20, ρ = 0.75, ∆h = 0.1, M = 4 and
N = 128

Experiment 2: The setup of this experiment is equivalent to
that of Experiment 1, with the exception that Q = 3 signals are
transmitted. The results for this scenario are presented in Fig.
2, where similar conclusions can be drawn. In this scenario,
which could be expected to be a bit more favorable for the
GLRT, since the true PSD matrices are full rank, the detector
LF still outperforms the GLRT.

Experiment 3: The third experiment considers P = 3
processes of dimension L = 5, and Q = 5 signals are
transmitted. The channel parameters remain the same as in
the two previous experiments. However, in this case, 1024
samples are acquired, which are divided into M = 8 windows
of length N = 128. In this case, the difference between the
GLRT and the Frobenius norm detector is reduced as Fig. 3
shows. This was expected since, in this case, there is a larger
M , which reduces the accuracy of the second-order Taylor
expansion in (27), i.e., the assumption of close hypotheses
begins to not hold true.

Experiment 4: The fourth experiment also analyzes the
effect of the distance between the hypotheses. In particular,
we have obtained the probability of missed detection (pfa =
10−2) for a varying ∆h and two different SNRs, 0 and 5 dBs.
In this experiment, there are P = 2 processes of dimension
L = 3, and Q = 3 signals are transmitted. The channel
parameters remain the same as in the previous experiments
with the exception of ∆h, and 512 samples are obtained, which
are divided into M = 4 realizations of length N = 128.
The results for this experiment are shown in Fig. 4, which
demonstrates that the close hypotheses assumption holds for
many setups, where the detector LF still outperforms the
GLRT.

Experiment 5: In the fifth experiment, we evaluate the
effect of N and M . Specifically, we have considered a scenario
with the same parameters of Experiment 1, with the exception
of the SNR, which is fixed to 3 dB, the length of the long
realization and how it is divided. Concretely, we have swept
N between 32 and 256 in steps of 16 samples, and considered

−5 −4 −3 −2 −1 0
10−4

10−3

10−2

10−1

100

SNR (dB)

p
m

GLRT
LF

Fig. 3: Probability of missed detection for Experiment 3: P =
3, L = 5, Q = 5, T = 20, ρ = 0.75, ∆h = 0.1, M = 8 and
N = 128
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p
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SNR = 0 dB
SNR = 5 dB

GLRT
LF

Fig. 4: Probability of missed detection for Experiment 4: P =
2, L = 3, Q = 3, T = 20, ρ = 0.75, M = 4 and N = 128

M = 4 and M = 8. Thus, a long realization of the appropriate
length is generated and divided according to the values of N
and M , that is, for each point of the curves the total number
of samples may be different. Figure 5 shows the probability
of missed detection for pfa = 10−2, which shows that in
this setup it is more convenient to reduce the variance of the
estimator (increase M ) at the expense of a lower resolution
(small N ). This can be seen if we compare the probability
of missed detection for N = 32 and M = 8 with that of
N = 64 and M = 4. Both have same number of samples
MN = 256, but pm is smaller for M = 8, i.e., for LF we
have pm = 0.1346 against pm = 0.3454. Finally, note that this
analysis affects both, the GLRT and the proposed detector.

Experiment 6: This experiment evaluates the performance
of the detectors in a larger-scale scenario. Specifically, we
have considered P = 2 processes of dimension L = 30,
Q = 3, the MIMO channels have T = 20 taps, ρ = 0.75 and
SNR = −8 dB, ∆h = 0.1 under H1, and a long realization
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Fig. 5: Probability of missed detection for Experiment 5: P =
3, L = 3, Q = 1, T = 20, ρ = 0.75, ∆h = 0.1, and SNR =
3 dB
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Fig. 6: ROC curves for Experiment 6: P = 2, L = 30, Q = 3,
T = 20, ρ = 0.75, ∆h = 0.1, SNR = −8 dB, M = 30 and
N = 128

of 3840 samples is generated, which is then divided into
M = 30 windows of length N = 128. The receiver operating
characteristic (ROC) curve for both detectors is depicted in
Figure 6, which shows the better performance of the proposed
detector even in this large-scale scenario.

Experiment 7: In this experiment, we evaluate the accuracy
of Wilks’ approximations for both, GLRT and the LMPIT-
inspired detector. Fig. 7 shows the accuracy of these approxi-
mations for a scenario with P = 3 processes of dimension
L = 4, and Q = 4 signals are transmitted. The channel
parameters are those of Experiment 1 with an SNR = 5 dB.
We have considered a long realization (of the appropriate
length) that is divided into M = 10, 20, . . . , 100 windows
of length N = 64. As can be seen in the figure, the χ2

distribution approximates much better the distribution of LF

than that of the GLRT. That is, it seems to converge faster for
the Frobenius norm based detector than for the GLRT.
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LF
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(P−1)NL2

Fig. 7: Empirical cumulate distribution functions (ECDF) for
Experiment 7: P = 3, L = 4, Q = 4, T = 20, ρ = 0.75,
M = 10, 20, . . . , 100, N = 64, and SNR = 5 dB

VII. CONCLUSIONS

This work has studied the existence of optimal invariant
detectors for testing whether P multivariate time series have
the same power spectral density (PSD) matrix at every fre-
quency. Specifically, our derivation shows that the uniformly
most powerful invariant test (UMPIT) for this problem does
not exist. Considering close hypotheses (i.e., similar PSD
matrices), we obtained the locally most powerful invariant test
(LMPIT) for the case of univariate time series, and showed
that the LMPIT does not exist in the multivariate case. Never-
theless, our derivation suggested one LMPIT-inspired detector
for multivariate time series, which outperforms previously
proposed detectors as shown by extensive numerical examples.

APPENDIX I
DERIVATION OF THE RELABELING MATRICES

Let us start by rewriting z as z = vec (Z), where

Z =

 z1[0] · · · zP [0]
...

. . .
...

z1[N − 1] · · · zP [N − 1]


=

N∑
k=1

ek ⊗
[
z1[k − 1] · · · zP [k − 1]

]
. (47)

Relabeling the processes at the kth frequency corresponds to
permuting the colums of

[
z1[k − 1] · · · zP [k − 1]

]
, that

is,
[
z1[k − 1] · · · zP [k − 1]

]
Pk, where Pk is an arbitary

P ×P permutation matrix. It is important to note that the per-
mutation matrix Pk depends on the frequency since we may
apply different relabelings at each frequency. The observations
after the N (possibly) different relabelings are given by

Z̃ =
N∑
k=1

ek ⊗
([

z1[k − 1] · · · zP [k − 1]
]
Pk

)
=

N∑
k=1

(
ek ⊗

[
z1[k − 1] · · · zP [k − 1]

])
Pk. (48)
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Taking now into account that[
z1[k − 1] · · · zP [k − 1]

]
=
(
eTk ⊗ IL

)
Z, (49)

it is easy to show that

ek ⊗
[(

eTk ⊗ IL
)
Z
]

=
(
ek ⊗ eTk ⊗ IL

)
Z

=
(
eke

T
k ⊗ IL

)
Z, (50)

which yields

Z̃ =
N∑
k=1

(
eke

T
k ⊗ IL

)
ZPk. (51)

Finally, vectorizing Z̃ yields

z̃ = vec(Z̃) =

(
N∑
k=1

PT
k ⊗ eke

T
k ⊗ IL

)
z. (52)

APPENDIX II
PROOF OF LEMMA 1

Since G̃ and SHi
are block-diagonal matrices with block

size L, we may substitute Ŝ in (20) by diagL(Ŝ) without
modifying the integrals. Before proceeding, we must define
the block-diagonal matrix

Ŝπ =
N∑

k,l=1

(
PT
k ⊗ eke

T
k ⊗ IL

)
(IP ⊗T⊗ IL) diagL(Ŝ)×

(IP ⊗TT ⊗ IL)
(
Pl ⊗ ele

T
l ⊗ IL

)
, (53)

and, taking into account the effect of the permutations, it
becomes

Ŝπ =


Ŝπ1[1],Π[1] 0 · · · 0

0 Ŝπ2[1],Π[2] · · · 0
...

...
. . .

...
0 0 · · · ŜπN [P ],Π[N ]

 , (54)

where πk[·], k = 1, . . . , N, are possibly different permutations
of size P and Π[·] is a permutation of size N . That is, πk[·]
is the permutation associated to Pk, Pk → πk[·], and Π[·] is
the permutation associated to T, T→ Π[·]. Applying now the

change of variables GΠ[k] → GΠ[k]

[
1/P

∑P
i=1 Ŝi,Π[k]

]−1/2

to the integrals in the numerator and denominator of (20), the
ratio L becomes

L =

∑
T

∑
P1,...,PN

∫
GN

| det(G)|2MP exp (−Mγ1) dG

∑
T

∑
P1,...,PN

∫
GN

| det(G)|2MP exp (−Mγ2) dG

, (55)

where

γ1 = tr
(
S−1
H1

(IP ⊗G)Ĉπ(IP ⊗GH)
)
, (56)

and
γ2 = tr

((
IP ⊗GHS−1

0 G
)
Ĉπ

)
, (57)

with

Ĉπ =


Ĉπ1[1],Π[1] 0 · · · 0

0 Ĉπ2[1],Π[2] · · · 0
...

...
. . .

...
0 0 · · · ĈπN [P ],Π[N ]

 , (58)

where we have used (9). We continue by applying the change
of variables Gk → S

1/2
0,kGk to the integral in the denominator,

which simplifies γ2 to

γ2 = tr
((

IP ⊗GHG
)
Ĉπ

)
=

N∑
k=1

tr

(
GH
k Gk

P∑
i=1

Ĉπk[i],Π[k]

)
= P

N∑
k=1

tr
(
GH
k Gk

)
,

(59)

where we have taken into account that

P∑
i=1

Ĉi,k = P IL. (60)

Since this exponent does not depend on the observations, the
denominator may be discarded from the ratio. Let us now
consider the change of variables G→

(
1/P

∑
i S
−1
i

)−1/2
G,

which yields

γ1 = tr
[
(W + I) (IP ⊗G)Ĉπ(IP ⊗GH)

]
, (61)

where

W =


W1,1 0 · · · 0

0 W1,2 · · · 0
...

...
. . .

...
0 0 · · · WP,N

 , (62)

with Wi,k defined in (26). The proof concludes by taking
(60) again into account and the block-diagonal structure of all
matrices.

APPENDIX III
PROOF OF LEMMA 2

The linear term Ll can be rewritten as

Ll = −2MψN−1
∑
T

N∑
k=1

∑
P1,...,PN

P∑
i=1∫

G
β(Gk) tr

(
Wi,kGkĈπk[i],Π[k]G

H
k

)
dGk, (63)

where

ψ =

∫
G
β(Gl)dGl, (64)
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does not depend on l. Now, performing the sum over
P1, . . . ,PN , Ll becomes

Ll = −2[(P − 1)!]NMψN−1
∑
T

N∑
k=1

P∑
pk=1

P∑
i=1∫

G
β(Gk) tr

(
Wi,kGkĈpk,Π[k]G

H
k

)
dGk

= −2[(P − 1)!]NMψN−1
∑
T

N∑
k=1

P∑
pk=1∫

G
β(Gk) tr

[(
P∑
i=1

Wi,k

)
GkĈpk,Π[k]G

H
k

]
dGk, (65)

where for notational convenience
N∑
k=1

P∑
pk=1

=
N∑
k=1

P∑
p1=1

· · ·
P∑

pN=1

, (66)

and we have taken into account that∑
P
f(π[i]) = (P − 1)!

P∑
p=1

f(p), (67)

for permutations of size P and any arbitrary function f(·).
The proof follows from

P∑
i=1

Wi,k = 0, ∀k. (68)

APPENDIX IV
PROOF OF THEOREM 1

Exploiting the results of Lemma 2, the ratio of distributions
of the maximal invariant statistic simplifies to

L ∝
∑
T

∑
P1,...,PN

∫
GN

α2(G)
N∏
l=1

β(Gl)dGl, (69)

and expanding α2(G) yields

L ∝ L1 + L2 + L3 + L4 (70)

where the expressions of the terms in the right-hand side of
(70) are shown at the top of the next page. After summing
over P1, . . . ,PN and T, L1 becomes

L1 ∝
N∑

k,l=1

P∑
pk=1

P∑
i=1

∫
G
β(Gk) tr2

(
Wi,kGkĈpk,lG

H
k

)
dGk.

(75)
Let us now consider L2, which after summing over
P1, . . . ,PN , becomes

L2 ∝
∑
T

N∑
k,l=1
k 6=l

P∑
pk=1

P∑
ql=1

P∑
i=1[∫

G
β(Gk) tr

(
Wi,kGkĈpk,Π[k]G

H
k

)
dGk

]
×
[∫

G
β(Gl) tr

(
Wi,lGlĈql,Π[l]G

H
l

)
dGl

]
. (76)

Carrying out the summations in pk and ql, and taking (60)
into account, the term L2 simplifies to

L2 ∝
∑
T

N∑
k,l=1
k 6=l

P∑
i=1

[∫
G
β(Gk) tr

(
Wi,kGkG

H
k

)
dGk

]

×
[∫

G
β(Gl) tr

(
Wi,lGlG

H
l

)
dGl

]
, (77)

which does not depend on the observations and therefore
can be discarded. We shall now focus on L3, which can be
rewritten as

L3 ∝
∑
T

N∑
k=1

P∑
pk=1

P∑
qk=1
pk 6=qk

P∑
i,j=1
i6=j∫

G
β(Gk) tr

(
Wi,kGkĈpk,Π[k]G

H
k

)
× tr

(
Wj,kGkĈqk,Π[k]G

H
k

)
dGk, (78)

since ∑
P
f(π[i])g(π[j]) = (P − 2)!

P∑
p,q=1
p6=q

f(p)g(q), (79)

for permutations of size P , i 6= j, and two arbitrary functions
f(·) and g(·). The expression for L3 simplifies to

L3 ∝
∑
T

N∑
k=1

P∑
pk=1

P∑
i,j=1
i6=j

∫
G
β(Gk) tr

(
Wi,kGkĈpk,Π[k]G

H
k

)

× tr
(
Wj,kGk

(
P I− Ĉpk,Π[k]

)
GH
k

)
dGk, (80)

after summing in qk and taking into account that

P∑
qk=1
pk 6=qk

Ĉqk,Π[k] = P IL − Ĉpk,Π[k]. (81)

Finally, expanding the second trace and summing over pk and
j yields

L3 ∝
N∑

k,l=1

P∑
pk=1

P∑
i=1

∫
G
β(Gk) tr2

(
Wi,kGkĈpk,lG

H
k

)
dGk,

(82)

which is identical (up to a multiplicative and additive con-
stants) to L1. Summing over P1, . . . ,PN , the term L4 be-
comes

L4 ∝
∑
T

N∑
k,l=1
k 6=l

P∑
pk=1

P∑
ql=1

P∑
i,j=1
i6=j[∫

G
β(Gk) tr

(
Wi,kGkĈpk,Π[k]G

H
k

)
dGk

]
×
[∫

G
β(Gl) tr

(
Wj,lGlĈql,Π[l]G

H
l

)
dGl

]
, (83)
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L1 = ψN−1
∑
T

N∑
k=1

∑
P1,...,PN

P∑
i=1

∫
G
β(Gk) tr2

(
Wi,kGkĈπk[i],Π[k]G

H
k

)
dGk, (71)

L2 = ψN−2
∑
T

N∑
k,l=1
k 6=l

∑
P1,...,PN

P∑
i=1

[∫
G
β(Gk) tr

(
Wi,kGkĈπk[i],Π[k]G

H
k

)
dGk

]

×
[∫

G
β(Gl) tr

(
Wi,lGlĈπl[i],Π[l]G

H
l

)
dGl

]
, (72)

L3 = ψN−1
∑
T

N∑
k=1

∑
P1,...,PN

P∑
i,j=1
i6=j

∫
G
β(Gk) tr

(
Wi,kGkĈπk[i],Π[k]G

H
k

)
tr
(
Wj,kGkĈπk[j],Π[k]G

H
k

)
dGk, (73)

L4 = ψN−2
∑
T

N∑
k,l=1
k 6=l

∑
P1,...,PN

P∑
i,j=1
i6=j

[∫
G
β(Gk) tr

(
Wi,kGkĈπk[i],Π[k]G

H
k

)
dGk

]

×
[∫

G
β(Gl) tr

(
Wj,lGlĈπl[j],Π[l]G

H
l

)
dGl

]
. (74)

which reduces to

L4 ∝
∑
T

N∑
k,l=1
k 6=l

P∑
i,j=1
i6=j

[∫
G
β(Gk) tr

(
Wi,kGkG

H
k

)
dGk

]

×
[∫

G
β(Gl) tr

(
Wj,lGlG

H
l

)
dGl

]
, (84)

after summing over pk and ql, and taking (60) into account.
It is clear that L4 does not depend on the observations and
therefore can be discarded. Then, combining all Li, we obtain

L ∝
N∑

k,l=1

P∑
pk=1

P∑
i=1

∫
G
β(Gk) tr2

(
Wi,kGkĈpk,lG

H
k

)
dGk.

(85)
Applying the change of variables Gk → Vi,kGkU

H
pk,l

, with
Ĉpk,l = Upk,lΣpk,lU

H
pk,l

and Wi,k = Vi,kΛi,kV
H
i,k being

the eigenvalue decompositions of Ĉpk,l and Wi,k, yields

L ∝
N∑

k,l=1

P∑
pk=1

P∑
i=1

∫
G
β(Gk) tr2

(
GH
k Λi,kGkΣpk,l

)
dGk.

(86)
Now, expressing the trace as

tr
(
GH
k Λi,kGkΣpk,l

)
= σTpk,lG̃kλi,k, (87)

where σpk,l = diag(Σpk,l), λi,k = diag(Λi,k), and
[G̃k]m,n = |[Gk]m,n|2, the ratio becomes

L ∝
N∑

k,l=1

P∑
pk=1

P∑
i=1

σTpk,lEi,kσpk,l, (88)

where

Ei,k =

∫
G
β(Gk)G̃kλi,kλ

T
i,kG̃

T
k dGk. (89)

The quadratic form σTpk,lEi,kσpk,l is invariant to permuta-
tions3 of the elements of σpk,l, then Ei,k must be of the form

Ei,k = ēi,kI + ẽi,k11T , (90)

yielding

L ∝
N∑

k,l=1

P∑
pk=1

P∑
i=1

σTpk,l
(
ēi,kI + ẽi,k11T

)
σpk,l

=

N∑
k,l=1

P∑
pk=1

P∑
i=1

(
ēi,k‖Ĉpk,l‖2 + ẽi,k tr2(Ĉpk,l)

)

=

N∑
k,l=1

P∑
pk=1

(
ēk‖Ĉpk,l‖2 + ẽk tr2(Ĉpk,l)

)
, (91)

where

ēk =
P∑
i=1

ēi,k, ẽk =
P∑
i=1

ẽi,k. (92)

The proof concludes by rewriting L as

L ∝ ē
N∑
l=1

P∑
pk=1

‖Ĉpk,l‖2 + ẽ
N∑
l=1

P∑
pk=1

tr2(Ĉpk,l), (93)

where

ē =
N∑
k=1

ēk ẽ =
N∑
k=1

ẽk, (94)

dividing (93) by ē and defining β = ẽ/ē.
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