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Abstract

Motivation: The theoretical possibility of determining the state and parameters of a dynamic model by
measuring its outputs is given by its structural identifiability and observability. These properties should be
analysed before attempting to calibrate a model, but their a priori analysis can be challenging, requiring
symbolic calculations that often have a high computational cost. In recent years a number of software
tools have been developed for this task, mostly in the systems biology community. These tools have vastly
different features and capabilities, and a critical assessment of their performance is still lacking.
Results: Here we present a comprehensive study of the computational resources available for analysing
structural identifiability. We consider 13 software tools developed in 7 programming languages and
evaluate their performance using a set of 25 case studies created from 21 models. Our results reveal their
strengths and weaknesses, provide guidelines for choosing the most appropriate tool for a given problem,
and highlight opportunities for future developments.
Availability: https://github.com/Xabo-RB/Benchmarking_files.
Contact: afvillaverde@uvigo.gal

1 Introduction
Systems biology models are often given by nonlinear ordinary differential
equations (ODEs) with unknown parameters, which must be estimated by
fitting the model to experimental data. This task, known as model cali-
bration (Villaverde et al., 2022), can only be performed successfully if
the model is identifiable. Unidentifiability may lead to inaccurate infer-
ences of mechanistically meaningful parameters, as well as to the inability
to make correct predictions of certain variables (Muñoz-Tamayo et al.,
2018; Janzén et al., 2016; Eisenberg and Jain, 2017). It is common to
distinguish between structural and practical identifiability (Wieland et al.,
2021). Structural identifiability is a theoretical property that is fully deter-
mined by the model equations, that is, it depends on the system dynamics,
the measurable outputs, and the admissible inputs. It is also called a priori
identifiability, since it can be tested before performing experiments and
collecting data. Some authors consider a priori identifiability as a particu-
lar type of structural identifiability (Wieland et al., 2021), while others use
both terms interchangeably (Anstett-Collin et al., 2020); in this paper we

adopt the latter terminology. A related property is observability, which is
the possibility of inferring the internal state of a system from observations
of its outputs. By considering model parameters as constant state variables,
a priori identifiability can be recast as a particular case of observability.
Structural unidentifiabilities are determined by the model equations, and
can be caused by Lie symmetries (Anguelova et al., 2012; Merkt et al.,
2015). Removing them entails modifying the model equations, for exam-
ple by reparameterizing the ODEs or by enlarging the output function.
A further distinction can be made between structural local identifiability
(SLI) and structural global identifiability (SGI). A parameter that has the
SLI property can be uniquely inferred in a neighbourhood of its nominal
value, but a finite number of indistinguishable solutions may exist in the
parameter space. In contrast, a parameter with the SGI property has a
unique solution in the whole parameter space.

The a priori analysis of identifiability and observability is mathemat-
ically involved, requiring symbolic computations that quickly become
computationally expensive even for models of moderate size. Hence, a
number of methodologies and software tools have been developed for its
study. Two papers provided an overview of the state of the art in 2011: Miao
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et al. (2011) reviewed the theoretical foundations of practical and struc-
tural identifiability analysis methods, and Chis et al. (2011) performed a
computational comparison of structural identifiability algorithms. At that
time, only two software toolboxes were publicly available for this task:
DAISY (Bellu et al., 2007) and GenSSI (Chiş et al., 2011); hence, Chis et
al implemented a number of other approaches themselves. In 2013, Raue
et al compared DAISY with two identifiability analysis tools that had been
recently presented (Raue et al., 2014): the Exact Arithmetic Rank (EAR)
(Karlsson et al., 2012) and the Profile Likelihood (PL), a technique for a
posteriori analysis (Raue et al., 2009).

Since the publication of (Raue et al., 2014) a significant number of
software tools for structural identifiability analysis have been presented,
including the web app COMBOS (Meshkat et al., 2014), the Matlab tool-
boxes STRIKE-GOLDD (Villaverde et al., 2016), GenSSI2 (Ligon et al.,
2018), ORC-DF (Maes et al., 2019), and rational ORC-DF or RORC-DF
(Shi and Chatzis, 2022), the Maple toolboxes SIAN (Hong et al., 2019)
and ObservabilityTest (Sedoglavic, 2002), the Julia packages StructuralI-
dentifiability (Dong et al., 2022) and SIAN (https://github.com/
alexeyovchinnikov/SIAN-Julia), and the Python tool StrikePy
(Rey Rostro and Villaverde, 2022). However, an assessment of their rel-
ative strengths and weaknesses is currently lacking. Given their different
theoretical foundations, capabilities, and computational performances,
there is a clear need for their critical analysis and comparison. Some re-
sults in this direction were presented in (Hong et al., 2019), where the
performance of four tools for SGI analysis (DAISY, COMBOS, GenSSI,
and SIAN) was compared using six case studies.

In this article we address this need by performing a thorough com-
parison of the software tools currently available for analysing structural
identifiability and observability. We consider symbolic computation meth-
ods that perform said analyses a priori. We do not consider numerical
approaches, such as the aforementioned PL (Raue et al., 2009) or
sensitivity-based methods (Stigter and Molenaar, 2015; Stigter and Jou-
bert, 2021), which perform a posteriori analyses and can complement
the techniques reviewed here (Wieland et al., 2021). Thus, we consider
thirteen different tools, available in seven different environments: Matlab,
Maple, Mathematica, Julia, Python, Reduce, and web-based applications.
We benchmark their performance using a total of 25 variants of 21 ba-
sic models, of different sizes and complexities, taken from the systems
biology literature. We discuss the strengths and weaknesses of each tool,
and provide guidelines for choosing the most appropriate tool for a given
problem.

2 Methods

2.1 Structural identifiability and observability concepts

We consider dynamic models described by ordinary differential equations
in state space form:

Σ =


ẋ = f(t, x(t), u(t), θ, w(t)),

y(t) = h(x(t), u(t), θ, w(t)),

x(0) = x0(θ)

(1)

where x(t) ∈ Rn is a vector of state variables, y(t) ∈ Rm is a vector
of outputs or measurements, u(t) ∈ Rq is the vector of known inputs,
w(t) ∈ Rqw is the vector of unknown inputs, and θ ∈ Rp is the unknown
parameter vector. Initial conditions may be functions of unknown parame-
ters, or generic unknown values. We write individual parameters and state
variables with subindices (i.e. θi, xi), and we denote as y(t, u(t), θ∗) the
output of a model Σ for a specific parameter vector θ∗ and input u(t).

2.2 Definitions

Many definitions of a priori identifiability can be found in the literature.
They describe similar properties with subtle differences among them. For a
detailed account of said definitions and their nuances we refer the interested
reader to (Anstett-Collin et al., 2020). In what follows we provide only
brief descriptions of these concepts, which we attempt to keep as simple as
possible. Roughly speaking, a dynamic model is observable if its current
state vector x(t) can be determined from knowledge of the future values
of the output y(t) and input functions u(t) in finite time. Likewise, it is
identifiable if its parameter vector θ can be determined from the output
y(t) and input functions u(t) in finite time. It is common to distinguish
between local and global identifiability.

Definition 2.1. Structural Local Identifiability: a parameter θi of a
dynamic model Σ is structurally locally identifiable (SLI) if, for almost
all possible parameter vectors, admissible inputs, and initial conditions,
there is a neighbourhood N (θ∗) in which the equality y(t, u(t), θ̃) =

y(t, u(t), θ∗) holds if and only if θ̃i = θ∗i .

Definition 2.2. Structural Global Identifiability: a parameter θi of a
dynamic model Σ is structurally globally identifiable (SGI) if, for almost
all possible parameter vectors, admissible inputs, and initial conditions,
the equality y(t, u(t), θ̃) = y(t, u(t), θ∗) holds if and only if θ̃i = θ∗i .

Note that SGI parameters are also SLI. If the above conditions do
not hold, the parameter is structurally unidentifiable (SU). A model is
said to be SGI (respectively, SLI) if all its parameters are SGI (resp., at
least SLI). If it has at least one SU parameter, the model is called SU.
Likewise, we could provide local and global definitions of observability.
Nevertheless, the observability of nonlinear systems was originally defined
in a differential geometric framework as a local property, and it is therefore
common to consider observability only from a local point of view:

Definition 2.3. Observability: a state variable xi(τ) is observable if,
for almost all possible parameter vectors and almost all initial condi-
tions, there is a neighbourhoodN (θ∗) in which the equality y(t, x̃(τ)) =
y(t, x∗(τ)) holds if and only if x̃i(τ) = x∗

i (τ).

2.3 The differential geometry approach

Structural local identifiability can be analysed with a differential geometric
approach that checks the Observability Rank Condition (ORC). The ORC
determines local weak observability (Hermann and Krener, 1977):

Definition 2.4. Local weak observability: Let U be an open subset in
Rn, and let indistinguishability be an equivalence relation on Rn. We
denote as I(x0, U) all points xi ∈ U that are indistinguishable from x0.
The system Σ is locally weakly observable at x0 if I(x0, V ) = x0 for
every open neighbourhood V of x0 contained in U .

A model is locally weakly observable if it is possible to distinguish
each state vector from its neighbours. Local weak observability can also
be applied to parameters by considering them as constant state variables.
In this view, a SLI parameter is a weakly locally observable state, and this
approach can be used to test whether a parameter is SLI.

Before defining the ORC we need a few more mathematical preliminar-
ies. Let Lv(ϕ)(x) :=< dϕ, v > denote the differentiation of an infinitely
differentiable function ϕ on Rn by a vector field v on Rn, where dϕ is the
gradient of ϕ and <> the scalar product. We denote by Φ(t, x) the flow
of a vector field v on Rn. The Taylor series of ϕ(Φ(t, x)) with respect to
t are called Lie series, and they are given by:

ϕ(Φ(t, x)) =
∞∑

k=0

tk

k!
Lk
v(ϕ)(x)
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Let ϱ denote the space spanned by Lq
fhi at x0 for q ≥ 0 and i = 1, ..,m,

for all vector fields f(x, u). The space spanned by the gradients of the
elements of ϱ is defined by dϱ = spanRx

{dϕ : ϕ ∈ ϱ}, where Rx

indicates the field of meromorphic functions onRn. We call dϱ the observ-
ability matrix, O(x). Thus, the observability – and therefore the structural
local identifiability – of a model can be tested with the following theorem:

Theorem 2.1. Observability Rank Condition (ORC) (Hermann and
Krener, 1977): if the system Σ (1) satisfies rank(O(x0)) = n, then
it is locally weakly observable around x0.

2.4 The differential algebra approach

Structural global identifiability can be tested with a differential algebra
approach. It relies on finding algebraic equations that relate the model pa-
rameters with the inputs and outputs (Ljung and Glad, 1994). The definition
of algebraic identifiability has been shown to be essentially equivalent to
our definition of global structural identifiability Hong et al. (2020). Impor-
tantly, this approach introduces a restriction on the class of systems that
can be analysed: instead of being applicable to general nonlinear ODE
systems of the form (1), it requires that the ODE functions are rational.
The same restriction is shared by other methods, as will be detailed in
Section 2.5.

Differential algebra methods replace the equations 1 of the system Σ

by a set of polynomial differential equations that depend only on (y, u),
i.e., they rewrite Σ in implicit form (Saccomani et al., 2001). These
input-output equations preserve the dynamics of the model output while
eliminating the state variables from the equations, and can be obtained in
different ways. The resulting functions constitute the exhaustive summary
of the model (Walter and Lecourtier, 1982). A vector c(θ) is an exhaustive
summary of a model if it only contains the information about θ that can
be inferred from u(t) and y(t). Checking the injectivity of the map c(θ)

amounts to assessing the identifiability of the model.

2.5 Overview of tools for analysing structural identifiability
and observability a priori

In the remainder of this section we provide brief conceptual descriptions of
those symbolic methods that have publicly available software implemen-
tations. They are listed in table 1.Then, we evaluate their computational
performance in Section 3.

The tools considered in this work can be classified in two broad classes,
depending on their approach (differential geometry or differential algebra),
although some of them have elements of both – for example, the generating
series approach implemented in GenSSI. Furthermore, not all tools provide
the same features. For example, some methods – in fact, most of them –
are only applicable to rational models. Likewise, some algorithms allow
the definition of specific initial conditions, while others do not. Another
difference concerns the possibility of considering models with unknown
inputs. Finally, some software tools go beyond structural identifiability
and observability analysis, informing about the existence of symmetries,
identifiable parameter combinations, or model reparameterizations.

2.5.1 DAISY
DAISY (Differential Algebra for Identifiability of SYstems) was the first
symbolic computation tool presented for SGI analysis (Bellu et al., 2007).
It is a differential algebra software written in REDUCE version 3.8, a free
symbolic language. Its algorithm writes the input-output relation of the sys-
tem in implicit form, i.e. as a set of m polynomial differential equations in
the variables (y, u), eliminating the dependence on x. After ranking the
model variables, the characteristic set of the differential ideal is computed
with Ritt’s pseudodivision algorithm (Ritt, 1950). This yields differential
equations whose coefficients depend on the parameter vector θ. Each of

the equations is normalised, making it monic. The family of new func-
tions is the exhaustive summary c(θ), which encapsulates the parameter
dependence of the output and whose injectivity has to be checked. DAISY
solves the system of algebraic nonlinear equations c(θ) with the algorithm
by Buchberger and Winkler (1998), which calculates the Gröbner basis of
the system and provides the number of solutions for each parameter.

2.5.2 COMBOS
COMBOS is a web-based application (Meshkat et al., 2014) for SGI
analysis that uses the computer algebra system Maxima. It uses a dif-
ferential elimination method as an alternative to Ritt’s pseudodivision
algorithm. COMBOS extends the capabilities of DAISY by providing as
additional information the simplest globally identifiable combinations of
the unidentifiable parameters. For locally identifiable parameters, COM-
BOS determines the maximum number of local solutions. DAISY and
COMBOS differ in the way in which they handle initial conditions. A
model that is in principle identifiable for generic initial conditions might
be unidentifiable for certain initial conditions from which it is not acces-
sible (Saccomani et al., 2003). If we provide specific initial conditions,
the results of both software tools are consistent if the system is accessible
from those initial conditions, but they may differ in case of inaccessibility.
This is because COMBOS, unlike DAISY, does not consider all possible
inaccessible cases.

2.5.3 SIAN
SIAN (Structural Identifiability ANalyser) is an open-source software tool
for SGI analysis. It combines differential algebra methods with the Taylor
series approach (Hong et al., 2020, 2019). SIAN creates a map that binds
the parameter values and initial conditions to output functions. By replac-
ing the latter with truncations of their Taylor series, the map is reduced
to another map between finite-dimensional spaces. To this end, SIAN
determines the order of truncation that contains enough information for
the identifiability analysis. The result is correct with a given probability,
which is estimated within the algorithm. SIAN is available as Maple code,
as Julia code, and as a web app in the Maple Cloud server (Ilmer et al.,
2021). We have tested the three tools separately since each one has differ-
ent capabilities and features; notably, the web app can compute identifiable
combinations using an algorithm from (Ovchinnikov et al., 2021).

2.5.4 StructuralIdentifiability
StructuralIdentifiability.jl (Dong et al., 2022) is the most recent tool for
analysing SGI. It is a package implemented in the Julia language as a
part of SciML ecosystem, an open source software for scientific ma-
chine learning. It follows a differential algebra approach, computing the
input-output equations via projections to improve the performance. Sub-
sequently, it performs the injectivity test, which, similarly to DAISY and
COMBOS, is computed in a probabilistic way; unlike them, however,
StructuralIdentifiability guarantees the correctness of the result with a
given probability.

2.5.5 GenSSI
GenSSI (Generating Series for testing Structural Identifiability) is a Matlab
toolbox for SGI analysis. It was originally presented in (Chiş et al., 2011),
and a substantially new implementation (GenSSI 2.0) appeared in (Ligon
et al., 2018). It combines the generation series approach with identifiability
tableaus. The generating series approach resembles the power series expan-
sion (Pohjanpalo, 1978), which is based on the idea that the Taylor series
expansions of the output functions include all the relevant information for
analysing identifiability. By computing symbolically the successive Lie
derivatives of the output functions with respect to parameters and states,
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Table 1. Software tools evaluated in this work. All tools are in principle capable of testing for local identifiability. The “Features” columns indicate which methods
are capable of the following tasks: analysing global identifiability (“Global”), finding the Lie symmetries in the model equations (“Symmetries”), testing for specific
initial conditions (“ICs”), considering models with unknown inputs (“Unknown in”), finding identifiable model reparameterizations (“Reparamet”), analysing
non-rational models (“Nonrational”), finding identifiable parameter combinations (“Combin”), and calculating the number of solutions (“# solutions”).

Features

Tool Ref. Language G
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#
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ObservabilityTest (Sedoglavic, 2002) Maple ✓ ✓

EAR (Karlsson et al., 2012) Mathematica ✓ ✓ ✓

STRIKE-GOLDD (FISPO) (Villaverde et al., 2019) Matlab ✓ ✓ ✓ ✓

STRIKE-GOLDD (ProbObsTest) (Díaz et al., 2023) Matlab ✓ ✓ ✓

StrikePy (Rey Rostro and Villaverde, 2022) Python ✓

RORC-DF (Shi and Chatzis, 2022) Matlab ✓

GenSSI2 (Ligon et al., 2018) Matlab ✓ ✓ ✓

SIAN v1.5 (Maple) (Hong et al., 2019) Maple ✓ ✓

SIAN v1.1.1 (Julia) Julia ✓ ✓

SIAN (WebApp) (Ilmer et al., 2021) Maple (web app) ✓ ✓ ✓

DAISY (Bellu et al., 2007) Reduce ✓ ✓ ✓

COMBOS (Meshkat et al., 2014) Maxima (web app) ✓ ✓ ✓ ✓

Structural-Identifiability v0.3.0 (Dong et al., 2022) Julia ✓ ✓

an exhaustive summary is obtained, and from its injectivity the parame-
ter identifiability can be established. Identifiability tableaus (Balsa-Canto
et al., 2010) are used for determining the number of solutions visually,
helping to classify a parameter as SLI or SGI.

2.5.6 ObservabilityTest
ObservabilityTest is a Maple tool for analysing SLI of rational models. It
implements the probabilistic algorithm presented by Sedoglavic (2002),
which evaluates the ORC efficiently, i.e. in bounded polynomial time. It
achieves this goal by avoiding the symbolic computation of Lie derivatives
when building the observability matrix, calculating instead the first terms
of a power series expansion, specialising the variables on random integers
and applying modular operations. When the model is unobservable, the
power series approach searches for the Lie symmetries that cause the un-
observability. Since it is the fastest algorithm for assessing SLI in rational
models, it has been re-implemented in StructuralIdentifiability.jl (Julia),
EAR (Mathematica), and STRIKE-GOLDD (Matlab).

2.5.7 EAR
The Exact Arithmetic Rank (EAR), also known as IdentifiabilityAnalysis,
is a Mathematica tool for SLI analysis (Karlsson et al., 2012). It extends the
probabilistic semi-numerical algorithm introduced by Sedoglavic (2002),
which was later implemented in the Maple tool ObservabilityTest. As
an enhancement over ObservabilityTest, EAR can consider either generic
initial conditions (using the “observability analysis” function) or initial
conditions specialised to some numerical value (using the “identifiability
analysis” function). Furthermore, EAR can find certain Lie point symme-
tries in the model, and to compute the minimal output sets for achieving
identifiability (Anguelova et al., 2012).

2.5.8 STRIKE-GOLDD
STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-
Generalized Observability with Lie Derivatives and Decomposition) is
a Matlab toolbox that uses the differential geometry approach (Villaverde
et al., 2016). Besides analysing SLI, it can search for Lie symmetries and
for identifiable reparameterizations (Massonis et al., 2021). It implements
three algorithms: (1) FISPO, which is the most generally applicable one,

being able to analyse non-rational models and models with unknown in-
puts (Villaverde et al., 2019). (2) ProbObsTest (Díaz et al., 2023), which
implements a version of Sedoglavic’s algorithm for analysing rational
models, with two developments: it can analyse models with unknown
polynomial inputs, and it can automatically transform models with loga-
rithmic, trigonometric, and exponential functions into rational models. (3)
ORC-DF, which was originally developed by Maes et al. (2019). In this
study we have evaluated the first two algorithms; we refer to these tools as
STRIKE-GOLDD (FISPO) and STRIKE-GOLDD (ProbObsTest), respec-
tively. We found that the ORC-DF implementation in STRIKE-GOLDD is
less efficient than the implementation by Maes et al. (2019), and this one
in turn is less efficient than RORC-DF, so we only considered the latter.

2.5.9 StrikePy
StrikePy is a Python toolbox (available via pip) that analyses SLI (Rey Ros-
tro and Villaverde, 2022). It implements the STRIKE-GOLDD (FISPO)
algorithm, but it does not include other features present in that toolbox and
is computationally less efficient than the Matlab implementation. On the
other hand, at the moment of writing this article it appears to be the only
Python tool for analysing structural identifiability.

2.5.10 RORC-DF
RORC-DF and ORC-DF are Matlab tools that follow a similar approach,
but have different applicability. ORC-DF (Observability Rank Criterion
for systems with Direct Feedthrough) (Maes et al., 2019) can analyse ana-
lytical models that are affine in the known and unknown inputs. The term
direct feedthrough means that the outputs may be functions of the inputs.
ORC-DF considers the unmeasured inputs and their time derivatives as
additional states. RORC-DF (rational ORC-DF) (Shi and Chatzis, 2022)
was the first extension of Sedoglavic’s algorithm to systems with unknown
inputs. Unlike ORC-DF, RORC-DF does not require the system to be affine
in the inputs, but it introduces the assumption of rational non-linearities. In
RORC-DF the observability matrix is composed by the coefficients of the
power series expansion of the output functions, obtained with Newton’s
iteration. Similarly to ObservabilityTest, EAR, and ProbObsTest, compu-
tations are carried out using random numerical realizations of the symbolic

https://github.com/sedoglavic/ObservabilityTest 
http://www.fcc.chalmers.se/software/other-software/identifiabilityanalysis/
 https://github.com/afvillaverde/strike-goldd 
https://github.com/afvillaverde/strike-goldd
https://pypi.org/project/StrikePy/
https://eng.ox.ac.uk/non-lineardynamics/resources
https://github.com/genssi-developer/GenSSI
https://github.com/pogudingleb/SIAN
https://github.com/alexeyovchinnikov/SIAN-Julia
https://maple.cloud/app/6509768948056064/Structural+Identifiability+Toolbox
https://daisy.dei.unipd.it/
http://biocyb1.cs.ucla.edu/combos/
https://github.com/SciML/StructuralIdentifiability.jl
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Table 2. List of benchmark models and their main features. The columns display a short name for the model, its original publication, the number of its states,
parameters (“param.”), known inputs (“Kn-in”), unknown inputs (“Unk-in”), measured outputs, and whether it is rational or not.

Short name Ref. States Param. Kn-in Unk-in Outputs Rational
C2M a (Villaverde et al., 2019) 2 4 1 1 ✓

C2M b (Villaverde et al., 2019) 2 4 1 ✓

C2M c (Villaverde et al., 2019) 2 4 1 1 ✓

Competition (Coleman and Gomatam, 1972) 2 6 1
HIV 1 a (Perelson and Nelson, 1999) 3 5 1 2 ✓

HIV 1 b (Perelson and Nelson, 1999) 3 5 1 2 ✓

HIV 2 (Perelson and Nelson, 1999) 4 10 2 ✓

HIV 3 (Wodarz and Nowak, 1999) 5 10 2 ✓

NFkB 1 (Lipniacki et al., 2004) 15 29 6 ✓

NFkB 2 (Lipniacki et al., 2004) 15 6 1 6 ✓

Phosphorylation (Conradi and Shiu, 2018) 6 6 2 ✓

PK 1 (Merkt et al., 2015) 4 9 2 ✓

PK 2 (Verdiere et al., 2005) 4 9 1 ✓

Ruminal lipolysis (Moate et al., 2008) 5 4 3 ✓

Tumor (Thomas et al., 1989) 5 5 1 ✓

MAPK (Nguyen et al., 2015) 3 14 3
A. thaliana (Locke et al., 2005) 7 29 1 2
Toggle switch a (Lugagne et al., 2017) 2 10 2 2
Toggle switch b (Lugagne et al., 2017) 2 10 2 2
JAK-STAT 1 (Raia et al., 2011) 10 23 1 8 ✓

JAK-STAT 2 (Bachmann et al., 2011) 25 24 14 ✓

βIG (Topp et al., 2000) 3 5 1 1 ✓

SIRS with forcing (Weber et al., 2001) 5 13 1 2 ✓

Cholera (Lee et al., 2017) 4 7 2 ✓

Gene p53 (Distefano, 2015) 4 25 1 4 ✓

variables, and applying modular operations to reduce the computational
burden. RORC-DF is more efficient than ORC-DF.

3 Results and discussion
To benchmark the tools we assembled a large and diverse collection of
problems from the systems biology literature. Our collection consists of
25 problems created from 21 basic models, which are listed in Table 2
along with their references and dimensions (numbers of states, parameters,
outputs, and inputs). The collection includes rational and non-rational
models, as well as models with and without inputs. For some of the latter
we consider both the known and the unknown input case. The smallest
models that we consider have a few parameters and states, while the largest
have tens of them. While larger models with hundreds or even thousands of
parameters are increasingly common in systems biology, currently existing
tools are not capable of analysing them. In our assessment we consider
several criteria, which are discussed in the following subsections. Table 3
summarises the results of our analyses. All analyses were performed in a
computer with 16GB RAM and 12-Core 3.80 GHz CPU.

3.1 Software accessibility and usability

Most toolboxes are freely available on a website, except EAR and DAISY,
which are available upon request by email. All the toolboxes provide ei-
ther a README file or a user manual, or both. As for debugging, some
programming environments such as Matlab, Julia, and Maple provide de-
tailed reports of the problems encountered when executing a code. Other
environments, namely Reduce, Mathematica, and the COMBOS WebApp,
do not specify the cause of the problem.

3.2 Possibility of performing a given analysis

3.2.1 Types of models
The most common limitation regards the analysis of non-rational models,
which can only be performed by STRIKE-GOLDD (FISPO), StrikePy,
and GenSSI. ProbObsTest, DAISY, and COMBOS can deal with rational
functions as long as they can be transformed into polynomial functions.
In the case of functions with non-integer exponents (such as JAK-STAT 1
and βIG), their analysis with SIAN, StructuralIdentifiability, Observabili-
tyTest, and EAR requires approximating their values to the closest integer.
While in general this change should not alter the identifiability results, it
can reduce computation times. Hence, if a model is modified in this way,
it should also be modified when analysing it with other methods, in order
to ensure a fair comparison. Another common limitation concerns mod-
els with unknown inputs. Only four methods can lead with this class of
models, all of which use local approaches: RORC-DF, STRIKE-GOLDD
(FISPO and ProbObsTest), and StrikePy. However, only RORC-DF can
deal with non-polynomial unknown inputs.

3.2.2 Types of analyses
Some methods can only determine structural local identifiability, while
others can also analyse global identifiability. Furthermore, some tools
(StrikePy and RORC-DF) provide only identifiability and observability re-
sults, while others also search for symmetries, identifiable parameter com-
binations, or reparameterizations. Table 1 lists the main features of each
tool. Some global tools such as SIAN, ObservabilityTest, DAISY, COM-
BOS, and GenSSI provide information about the number of local solutions.
Some local tools such as EAR, STRIKE-GOLDD and ObservabilityTest
assist in finding symmetries and model reparameterizations.
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Table 3. Summary of results obtained with local (STRIKE-GOLDD, StrikePy, ObservabilityTest, RORC-DF, EAR) and global (DAISY, GenSII, SIAN, COMBOS,
StructuralIdentifiability) identifiability tools. The table entries display the runtimes for each case study in seconds. An asterisk (*) next to a value denotes that the
result is thought to be wrong, while a diamond (⋄) denotes that the correctness of the result is unclear. ‘OoM’ denotes an Out of Memory error, ‘OoT’ an Out of
Time error (the computations were aborted if they surpassed a 48 hour limit), and ‘Error’ an unspecified error.

STRIKE-
GOLDD
(FISPO)

STRIKE-
GOLDD
(ProbObsTest)

StrikePy Observability
Test

RORC-DF EAR DAISY GenSSI SIAN
(Maple)

SIAN
(Julia)

SIAN
(web)

COMBOS Structural
Identifiability

C2Ma 0.63 1.58 2.77 0.03 3.40 0.05 0.34 2.81 0.358 10.27 0.376 0.31 33.91
C2Mb 1.17 1.72 7.97 0.05 4.58 0.11 0.24* 7.08 0.28 10.27 0.623 0.98 33.71
C2Mc 12.55 4.30 37.90 N/A 16.21 N/A N/A N/A N/A N/A N/A N/A N/A
Compet. 1696.29 7.42* OoT N/A N/A N/A N/A OoM N/A N/A N/A N/A N/A
HIV1a 0.74 3.96 0.52 0.09 7.74 0.19 0.13* 0.73 0.80 12.09 0.821 0.83 32.02
HIV1b 2.23⋄ 8.65⋄ 24.31⋄ N/A 11.27⋄ N/A N/A N/A N/A N/A N/A N/A N/A
HIV 2 29.79 10.34 1685.76 0.22 40.59 0.6095 0.448* 966.66* 6.687 10.63 5.18 36.23 31.60
HIV 3 8528.00 12.76 OoT 0.20 36.42 1.25 6.66 751.74* 31.34 14.32 24.67 Error 32.78
NFkB1 33345.00 304.40 OoT 8.42 11666.91 24.37 OoT 6722.98* 3867.02 OoM Error Error OoM
NFkB2 1007.00 329.83 OoT 3.14 1138.97 6.26 OoT 660.36 3690.70 244.27 Error Error OoM
Phospho. 1.87 13.41 32.40 0.16 28.05 0.91 19.43 974.61 5.23 13.64 4.06 Error 35.02
PK 1 2.69 6.41 198.96 0.14 34.00 0.58 0.31 14.58* 1.48 12.26 1.49 5.72* 34.39
PK 2 OoM 16.41 OoT 0.14 14.87 0.58 OoT 5082.68* OoM OoM Error Error 84.86
Ruminal 0.74 17.07 22.83 0.13 12.95 0.38 0.12 1.46 0.95 14.12 1.25 220.00 34.86
Tumor 24.86 8.66 636.55 0.17 140.13 1.00 8.91 1433.22 940.55 404.96 3.06 6735.38 34.87
MAPK 94.219 N/A OoT N/A N/A N/A N/A 27.80 N/A N/A N/A Error N/A
A.thal 167769.33⋄ N/A N/A N/A N/A N/A N/A 6356.60⋄ N/A N/A N/A N/A N/A
TS a 62.85 N/A OoT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TS b 29.497 N/A OoT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
JS 1 31.26 203.26* OoT 2.00 1723.97 4.92* OoT 23284.00* 246.48 40.90 Error Error 62.55
JS 2 146450.00⋄ 2318.46⋄ OoT 35.74⋄ 86333.30⋄ Error OoT N/A 115200.00⋄L OoM Error Error 37.21⋄L
βIG 2059.89 16.10 OoT 0.08 9.60 0.7663 0.09* 16999.00* 6.54 11.33 3.38 Error 31.65
SIRS 87.98 9.20 2836.98 0.13 31.05 0.54 OoT 648.26* 10.94 12.13 6.57 Error 41.56
Cholera 162.26 8.02 210.39 0.11 14.02 0.46 OoT 361.08 380.67 56.52 261.72 Error 34.72
p53 308.05 112.53 29193.25 0.34 45.35 3.32 0.792 OoM 221.73 9331.52 411.25 1339.38 33.15

3.2.3 Computational feasibility
The feasibility of the analysis in practice must also be considered: even if
a tool can analyse a given model in principle, it may not be able to do so
due to computational limitations. This is reflected in the number of errors
shown in Table 3. There are three types of error in this table, denoted by
‘OoM’, ‘OoT’, or ‘Error’. The ‘OoM’ acronym refers to the cases that
yielded an ‘Out of memory’ message in Matlab or a ‘Connection to the
kernel was lost’ message in Maple. We set an execution time limit of 48
hours; if an analysis surpassed this limit, it was aborted and the result was
reported as an ‘Out of time’ (OoT) error in the table. In other cases the
analyses ended prematurely (i.e. the tool was unable to analyse the model
due to implementation limitations) without reporting any error message.
These cases are indicated as an entry ‘Error’ in the table. Overall, the
most computationally limited tools were StrikePy and COMBOS, whose
limitations may be due to their implementations in Python and as a web
app, respectively. DAISY yielded less errors than StrikePy and COMBOS,
but it struggled with medium-sized models.

3.3 Results

3.3.1 Correctness
Even when a tool has produced results for a given model, they may not
always be correct. For some models we found discrepancies among the
results of several tools. In such cases there was typically a clear consensus
among methods, with only one or two methods that disagree with the com-
mon solution; in this case we assumed that the consensus solution is the
true one, and we marked the wrong solutions with an asterisk (*) in Table
3. However, in three cases (HIV 1 b, JAK-STAT 2 and A. thaliana) there
was not a clear majority; in these cases we did not make any assumptions
about correctness, and we wrote a diamond (⋄) next to all results in the
tables. Under these assumptions, we found that five methods did not pro-
duce any wrong result: SIAN, StructuralIdentifiability, ObservabilityTest,
RORC-DF, and STRIKE-GOLDD (FISPO). Two algorithms, EAR and
STRIKE-GOLDD (ProbObsTest), yielded wrong results for JAK-STAT 1.

We have realised that this result depends on the choice of prime number
used by these methods to specialise the variables on random numbers;
if we select the same prime number we obtain the same result. Addi-
tionally, STRIKE-GOLDD (ProbObsTest) yielded a wrong result for the
Competition model, which could only be analysed with this method and
with STRIKE-GOLDD (FISPO). This case study illustrates the following
issue: due to the presence of logarithmic terms, methods such as ProbOb-
sTest must transform the model into polynomial form in order to analyse it;
however, the transformed model does not necessarily preserve the proper-
ties of the original model. Two other tools, DAISY, and GenSSI, produced
wrong results for a number of case studies. We contacted the authors of
these tools to rule out the possibility of having obtained spurious results.

3.3.2 Computational performance
Even when two tools agree on the result, their computational costs may
be very different. Table 3 shows CPU times, which we have used as the
main measure of this criterion. They depend on the programming en-
vironment and the algorithm. Clearly, the fastest algorithm in our tests
was the one by Sedoglavic (2002), which is implemented with some
variations in four toolboxes – ObservabilityTest, EAR, RORC-DF, and
STRIKE-GOLDD (ProbObsTest) – programmed in three different lan-
guages – Maple, Mathematica, Matlab. The fastest implementation was
the Maple one, followed by the Mathematica one. Those three tools are
restricted to structural local identifiability analysis (global tools are usu-
ally slower). Among the remaining local tools, the next two in terms of
computational efficiency were STRIKE-GOLDD (FISPO) and RORC-DF.
The slowest tool of all was StrikePy. Among global tools, GenSSI yielded
the largest CPU times; DAISY was on average faster than GenSSI, al-
though it managed to complete the analysis of fewer models (probably
due to the 48 hour limit that we imposed to the calculations). We found a
similar, but even more pronounced effect for COMBOS. In comparison,
SIAN and StructuralIdentifiability performed very well. The computation
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times of StructuralIdentifiability were remarkably similar for most mod-
els, regardless of their size. We tested three implementations of SIAN,
in Maple, Julia, and as a web app. The Maple implementation was faster
than the Julia one for smaller models, and slower for larger models. Julia
uses Just-in-time compilation, where each function is compiled the first
time it is called. Therefore, the computation times in table 3 count this
compilation time together with loading the package, which may be about
20-30 seconds. Lastly, the SIAN web app has a runtime limitation due to
the Maple server, which prevents it from analysing larger models (shown
as “Error” in Table 1). A workaround to this issue could be to use the
Maple Player to run the app offline.

4 Conclusions

4.1 General guidelines

The process of selecting a tool must begin with the type of model that is
going to be analysed. If it is a rational model without unknown inputs (a
common situation in systems biology), all methods can be applied. How-
ever, for other model types the choice of applicable methods is reduced,
as can be seen in Table 1.

Second, the user must decide whether to assess global (SGI) or local
(SLI) structural identifiability, if both approaches are applicable to the
model. SGI implies SLI but the opposite is not true; while it is often the
case that a SLI model is indeed SGI, some counter-examples have been
reported. The extent to which the distinction between local and global
identifiability is relevant in biological applications is worthy of further
investigation. If it is not necessary to assess SGI, it may be convenient to
resort to SLI methods, since they are usually computationally cheaper than
SGI methods. When the SGI analysis of a model is too computationally
demanding, a possible course of action could be to perform a SLI analysis
first, and use the results to search for reparameterizations of the model.
Then, the SGI analysis of the reparameterized model may be attempted.

Another factor is the software environment. We have benchmarked
tools written in six different programming languages, as well as some
web-based applications that do not require the installation of specific soft-
ware. While the array of available methods is reasonably large, for a given
language the number of possible choices is usually restricted to two or at
most three, and sometimes only one. Thus, the (in)convenience of reimple-
menting the model in a different language needs to be taken into account
when choosing a software tool. This is especially important if the struc-
tural identifiability analysis is performed as part of a larger computational
pipeline for model building and exploitation, which is a typical scenario.
In this case, it is desirable to be able to perform all analyses within the
same software environment. It should also be taken into account some of
the environments are proprietary software (Matlab, Mathematica, Maple),
and therefore not available to every user.

Finally, some tools provide additional features that can assist in re-
formulating an unidentifiable model. Such features include the search for
symmetries in the model equations, identifiable parameter combinations,
and identifiable model reparameterizations.

After considering the aforementioned factors, there may be several
tools that meet the requirements for the problem at hand. In this case, the
user may choose the one with the lowest computational cost. As our results
have shown, computation times can vary greatly from one tool to another.

4.2 Recommendations

From the above discussion it is apparent that the choice of the most ap-
propriate tool is strongly problem-dependent. While every tool has its
particular merits, not all of them are equally useful. Hence we would

like to provide some final recommendations, which can be summarised as
follows.

Within the tools that analyse structural global identifiability, there is a
clear distinction between the more recent ones and the older ones. DAISY
was the first tool of its kind to be made publicly available; however, the ar-
ray of models that it is capable of analysing is currently smaller than that of
other tools. The next one to appear, COMBOS, was a welcome innovation
at the time of its release thanks to its web app implementation; however,
it exhibits similar or worse limitations as DAISY. The two most recent
methods, SIAN and StructuralIdentifiability, do not share the limitations
of the oldest ones. GenSSI lies somewhere in the middle of both groups.
In summary, we recommend using either SIAN (Maple) or StructuralIden-
tifiability (Julia) for analysing structural global identifiability. The choice
between them can boil down to a matter of software environment.

The tools that analyse structural local identifiability do not exhibit the
same differences in performance between older and newer implementa-
tions. We can classify them in two groups, depending on whether they
use some version of Sedoglavic’s algorithm – ObservabilityTest, EAR,
STRIKE-GOLDD (ProbObsTest), and RORC-DF – or not – STRIKE-
GOLDD (FISPO) and StrikePy. The first group yields faster calculations
than the second one, but it cannot analyse non-rational models. For the
analysis of rational models we recommend, in order of computational ef-
ficiency, (1) ObservabilityTest, which is by far the fastest tool; (2) EAR;
(3) STRIKE-GOLDD (ProbObsTest) or RORC-DF. Naturally, the final
decision depends on the access to Maple, Mathematica, and Matlab en-
vironments. For the analysis of non-rational models, STRIKE-GOLDD
(FISPO) is in some cases the only available option. StrikePy does not out-
perform other tools and, given its limitations, it should be avoided unless
it is necessary to perform the analysis in Python.

4.3 Directions for future research

As our results have shown, recent developments have yielded considerable
advances in the available tools for structural identifiability analysis. How-
ever, further improvements are still needed to facilitate the analysis of more
models, as they tend to become larger and more complex. In this regard, a
promising line of work would be to implement more features in the Julia
programming language, due to its computational efficiency. It should also
be noted that all the tools considered in this paper analyse ODE models.
While they are the most common ones in systems biology, other types of
models are also useful, such as those with partial differential equations or
stochastic dynamics. The development of tools for their analysis would
greatly broaden the applicability of structural identifiability analysis.
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