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Abstract

The quantification and propagation of mixed uncertain material parameters in the context of
solid mechanical finite element simulations is studied. While aleatory uncertainties appear in
terms of spatial varying parameters, i.e. random fields, the epistemic character is induced by a
lack of knowledge regarding the correlation length, which is therefore described by interval val-
ues. The concept and description of the resulting imprecise random fields is introduced in detail.
The challenges occurring from interval valued correlation lengths are clarified. These include
mainly the stochastic dimension, which can become very high under some circumstances, as
well as the comparability of different correlation length scenarios with regard to the underlying
truncation error of the applied Karhunen-Loève expansion.

Additionally, the computation time can increase drastically, if the straightforward and ro-
bust double loop approach is applied. Sparse stochastic collocation method and sparse polyno-
mial chaos expansion are studied to reduce the number of required sample evaluations, i.e. the
computational cost. To keep the stochastic dimension as low as possible, the random fields are
described by Karhunen-Loève expansion, using a modified exponential correlation kernel, which
is advantageous in terms of a fast convergence while providing an analytic solution. Still, for
small correlation lengths, the investigated approaches are limited by the curse of dimensionality.
Furthermore, they turn out to be not suited for non-linear material models.

As a straightforward alternative, a decoupled interpolation approach is proposed, offering
a practical engineering estimate. For this purpose, the uncertain quantities only need to be
propagated as a random variable and deterministically in terms of the mean values. From these
results, the so-called absolutely no idea probability box (ani-p-box) can be obtained, bounding
the results of the interval valued correlation length being between zero and infinity. The idea
is, to interpolate the result of any arbitrary correlation length within this ani-p-box, exploiting
prior knowledge about the statistical behaviour of the input random field corresponding to the
correlation length.

The new approach is studied for one- and two-dimensional random fields. Furthermore,
linear and non-linear finite element models are used in terms of linear-elastic or elasto-plastic
material laws, the latter including linear hardening. It appears that the approach only works
satisfyingly for sufficiently smooth responses but an improvement by considering also higher
order statistics is motivated for future research.

Keywords uncertainty quantification and propagation, aleatory and epistemic uncertainties,
imprecise random fields, probability boxes, stochastic finite element simulation, elasto-plasticity





Zusammenfassung

Es wird die Quantifizierung und die Berücksichtigung von gemischt ungewissen Materialparame-
tern im Rahmen von Finite-Elemente-Simulationen in der Festkörpermechanik untersucht.
Während aleatorische Ungewissheiten in Form von räumlich variierenden Parametern, d.h.
Zufallsfeldern, auftreten, fließt der epistemische Charakter durch die Unwissenheit über die
Korrelationslänge ein, die daher durch Intervallwerte beschrieben wird. Das Konzept und die
Beschreibung der entstehenden unpräzisen Zufallsfelder wird im Detail vorgestellt. Die Heraus-
forderungen, die sich aus intervallbasierten Korrelationslängen ergeben, werden verdeutlicht.
Dazu gehören vor allem die stochastische Dimension, die unter Umständen sehr hoch werden
kann, sowie die Vergleichbarkeit verschiedener Korrelationslängenszenarien im Hinblick auf den
zugrundeliegenden Abbruchfehler der verwendeten Karhunen-Loève-Entwicklung.

Außerdem kann die Rechendauer drastisch ansteigen, wenn der einfache und robuste Doppel-
schleifenansatz verwendet wird. Die spärliche stochastische Kollokationsmethode und die spär-
liche polynomiale Chaos-Entwicklung werden untersucht, um die Anzahl der erforderlichen
Stichproben-Evaluierungen, d.h. die Rechenkosten, zu reduzieren. Um die stochastische Di-
mension so gering wie möglich zu halten, werden die Zufallsfelder durch die Karhunen-Loève-
Entwicklung beschrieben, wobei ein modifizierter exponentieller Korrelationskern verwendet
wird, der hinsichtlich seiner schnellen Konvergenz von Vorteil ist und gleichzeitig eine analyti-
sche Lösung ermöglicht. Für kleine Korrelationslängen sind die untersuchten Ansätze jedoch
durch den Fluch der Dimensionalität begrenzt. Außerdem erweisen sie sich als ungeeignet für
nichtlineare Materialmodelle.

Als einfache Alternative wird ein entkoppelter Interpolationsansatz vorgeschlagen, der eine
ingenieurpraktische Abschätzung ermöglicht. Zu diesem Zweck müssen die ungewissen Größen
lediglich als Zufallsvariable und deterministisch unter Annahme der Mittelwerte simuliert wer-
den. Aus diesen Ergebnissen lässt sich die so genannte "absolut keine Ahnung Wahrschein-
lichkeitsbox" (absolutely no idea probability box: ani-p-box) bestimmen, die die Ergebnisse
begrenzt, die aus einer intervalbasierten Korrelationslänge zwischen Null und Unendlich resul-
tieren. Die Idee besteht darin, das Ergebnis einer beliebigen Korrelationslänge innerhalb dieser
ani-p-box zu interpolieren, wobei das Vorwissen über das statistische Verhalten des zugrunde-
liegenden Zufallsfeldes der entsprechenden Korrelationslänge genutzt wird.

Der neue Ansatz wird für ein- und zweidimensionale Zufallsfelder untersucht. Außerdem
werden lineare und nichtlineare Finite-Elemente-Modelle in Form von linear-elastischen oder
elasto-plastischen Materialgesetzen verwendet, wobei letztere eine lineare Verfestigung beinhal-
ten. Es zeigt sich, dass der Ansatz nur für hinreichend glatte Systemantworten zufriedenstellend
funktioniert, es wird jedoch eine Verbesserung durch die Berücksichtigung statistischer Werte
höherer Ordnung für eine zukünftige Erforschung angeregt.

Stichworte Quantifizierung und Berücksichtigung von Ungewissheiten, Aleatorische und Epis-
temische Ungewissheiten, Impräzise Zufallsfelder, Wahrscheinlichkeitsboxen, Stochastische Fi-
nite Elemente Simulation, Elasto-Plastizität
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û displacement of finite element nodes
umax maximum deflection of a tensioned rod



Glossary xxv

v velocity
v volume dilatation
wmax maximum deflection of a bending beam
z location in physical space
z location in a one-dimensional physical domain
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1. Introduction

In any engineering design and building processes uncertainties are not avoidable. To judge
the risk of failure, unforeseen events must be considered within the whole process of planning,
building and using. For that purpose, codes (e.g. Eurocodes in civil engineering) are used in
conventional engineering design. The listed knockdown and safety factors result from experi-
ments and analytic expertise and may depend on environmental or regional conditions (e.g.
snow load). Still, to be generally applicable in different scenarios, they lead to conservative
designs to the expense of economical and ecological costs. However, not only regarding climate
change but also with respect to efficiency in general, more sustainable and resource saving
approaches are desired. For this purpose, quantifying and considering uncertainties within the
engineering design process can help to reduce both, ecological and economical costs.

Instead of the conservative safety and knockdown factors, a finite element (FE) analysis
considering individual uncertainties may enable an optimised design. While deterministic finite
element method (FEM) is well established in engineering application to solve partial differential
equations (PDEs), computational techniques to treat stochastic partial differential equations
(SPDEs) are intensively discussed in the scientific community but not yet established in engi-
neering design. Quantifying all (critical) uncertainties involved within the design, simulation
and building process is the crucial point. Their appearance may have different reasons and can
formally be categorised into three source types [Der Kiureghian and Ditlevsen, 2009]: (i) uncer-
tainty in basic variables such as load or material data, (ii) model uncertainty considering both,
the physical and the probabilistic/possibilistic model and (iii) parameter uncertainty regarding
the parameters used within a model. Especially in civil engineering, building prototypes (as e.g.
crash test dummies in car manufacturing) is usually not possible and environmental impacts
are barely predictable for several decades for which the building is planned to be used.

In this work, it is distinguished into uncertainty quantification (UQ) and uncertainty prop-
agation (UP). The fist term is understood as the description and modelling of uncertain input
parameters, while the second means a general analysis including uncertain input parameters
to describe the stochastic response at the outcome of a model. The quantity of interest (QoI)
obtained by UP can then again be described in terms of UQ. In the following section, different
terms and concepts in the context of UQ are introduced before briefly summarising the most
important developments regarding UP in structural mechanics Section 1.2 and motivating the
aim of this work. An outlook on the following chapters is given in Section 1.3.
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1.1. Uncertainty quantification

Uncertainties can be distinguished into two types, epistemic and aleatory [Der Kiureghian and
Ditlevsen, 2009] but can also be described of mixed type. Appropriate approaches to model
different kind of uncertain variables are exemplified in Figure 1.1. Note that they can be
extended to uncertain fields or processes, which include additionally a spatial or temporal
dependency. For the sake of clarity, only scalar valued uncertain variables are depicted and
discussed here but uncertain fields will be addressed as well in the course of this thesis.

A deterministic value can be found in Figure 1.1 (a) as the special case of a certain variable
X = x0 (i.e. the probability density function fX(x) = 1) in the context of aleatory uncertainty.
Regarding epistemic uncertainty, the deterministic value X does not contain imprecision and
is therefore defined as a crisp number in terms of set theory, i.e. the membership function is
exactly equal to one at this very value, θ(x) = 1. The UQ models depicted in Figure 1.1 (b) to
(h), assigned to aleatory, epistemic or mixed uncertainty, are further explained in the following
corresponding subsections.

1.1.1. Aleatory uncertainty

The intrinsic randomness of a phenomena itself can be characterised as aleatory (or stochastic)
uncertainty, arising from the Latin word alea meaning dice or gambling [Der Kiureghian and
Ditlevsen, 2009]. These include for example the material behaviour which is varying from
sample to sample. Furthermore, imperfections during the manufacturing process are usually
not avoidable and future loading conditions can only be estimated. Aleatory uncertainties are
therefore not reducible, i.e. the material property of a next sample or real building cannot be
predicted for sure but only estimated with a certain probability. The same holds true regarding
the geometry of the object or loading conditions resulting from natural phenomenons. Aleatory
uncertain parameters can be classified into random variables (or vectors of random variables),
as exemplified in Figure 1.1 (b) and (c), random fields and random processes, depending on
their (in)dependency on space and time.

Aleatory uncertainties are described in terms of stochastic theory, composed by two main
branches, statistics and probability theory [Georgii, 2004]. Experiments can be performed
to describe parameters statistically, e.g. in terms of mean value, standard deviation, higher
stochastic moments or even a probability family. This information can then be used to model
aleatory uncertainties mathematically by probability theory. Afterwards, the stochastic model
can again be verified by statistics.

Depending on the assumed sample space Ω being countable or uncountable, a random
quantity X is distinguished into discrete variables xi and continuous variables x. The first is
described by finite probability theory given in the left column of the probability theory block.
It is a special case of the more general infinite probability theory [Grigoriu, 2002] depicted on
the right. The corresponding probability densities fXi

and fX(x) as well as the distribution
functions FXi

=
∑

i fXi
and FX(x) =

∫
x
fX(x) dx, are exemplified in Figure 1.1 (b) and (c).

Infinite probability theory will be briefly introduced in Section 2.1.
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1.1.2. Epistemic uncertainty

Uncertainties resulting from a lack of knowledge or data are defined as epistemic uncertainties,
originating from the Greek term επιστηµη (episteme) meaning knowledge [Der Kiureghian and
Ditlevsen, 2009]. These imprecisions - also referred to incertitudes [Ferson and Troy Tucker,
2006] - are traced back, e.g. to a small sample size or a poor measurement accuracy and can
(theoretically) be reduced by collecting more information, for example choosing a more precise
model or improving the measurement equipment.

Epistemic uncertainties can be observed by possibilistic theories, e.g. in terms of inter-
vals [Moore et al., 2009] or fuzzy parameters [Zadeh, 1965, 1978, Hanss, 2005], both of which
visualised in the left block of Figure 1.1 depicting the models to describe purely epistemic un-
certainty. Note that both concepts can be extended towards interval fields and fuzzy fields,
respectively, in order to model spatial/temporal variability [Faes and Moens, 2020b].

Defining a membership function θ(x), an epistemic uncertain parameter X which is de-
scribed by an interval XI = [x, x] is clearly defined to be either within (θI(x) = 1 if x ∈ XI) or
outside (θI(x) = 0 else) of the interval, see Figure 1.1 (d). Regarding a fuzzy number X̃ or a
fuzzy interval X̃

I
as depicted in (g), the membership function θ̃(x) ∈ [0, 1] assigns a weighted

membership of x towards the fuzzy number X̃ or fuzzy interval X̃
I
. As fuzzy parameters require

further assumptions on θ̃(x), epistemic uncertain parameters are limited to an interval valued
description within this thesis. The underlying interval theory is therefore further introduced
in Section 2.2. A detailed introduction to the given and further theories to model epistemic
uncertainties can be found, e.g. in the book by Klir and Wierman [1999].

Note that probabilistic concepts are not appropriate to model epistemic uncertainties. Even
when assuming a uniform distribution instead of an interval, an arbitrary assumption of an -
actually unknown - probability family is made [Beer et al., 2013]. The following example illus-
trates the different meaning of a uniform distribution and an interval. Imagine two discrete,
uniformly distributed values A ∼ U(1, 3) and B ∼ U(2, 5), the possible results of C=A+B are

C = {1+2; 1+3; 1+4; 1+5; 2+2; 2+3; 2+4; 2+5; 3+2; 3+3; 3+4; 3+5}

= {3; 4; 5; 6; 4; 5; 6; 7; 5; 6; 7; 8}

and the corresponding probability fC(ci) results in

fC(c = 3) = 1/12, fC(c = 4) = 2/12, fC(c = 5) = 3/12,

fC(c = 6) = 3/12, fC(c = 7) = 2/12, fC(c = 8) = 1/12.

Then, the probability of gaining for example fC(c = 5) is three times higher than to gain
fC(c = 3). On the contrary, modelling AI = [1, 3] and BI = [3, 5] as intervals without any
distribution assumed, the result is

CI = AI +BI = [min(A)+min(B); max(A)+max(B)] = [3; 8]

and the only information about C is that its value lays somewhere between C = 3 and C = 8

without dedicating any probability or weighting to the possible values.
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1.1.3. Mixed uncertainty

If one or more parameters contain a mixed, aleatory and epistemic uncertainty, both probabilis-
tic and possibilistic theories can be combined in terms of imprecise probabilities [Beer et al.,
2013], as exemplified in Figure 1.1. Such mixed uncertainties are also referred to polymorphic
uncertainty [Götz, 2017, Fina, 2020].

Using interval valued parameters within discrete probability theory, the cumulative density
function is not given by a crisp step function anymore but by two step function bounds, describ-
ing the lower and upper bound of each quantity. This concept is visualised in Figure 1.1 (e)
and referred to as evidence theory or Dempster-Shafer structure [Dempster, 1967, Shafer, 1976,
Ferson et al., 2003]. Equivalently, probability boxes [Ferson et al., 2003, Faes et al., 2021]
provide the more general case regarding interval valued parameters within infinite probability
theory. For example, the mean value µIX of a parameter could be described by an interval,
see Figure 1.1 (f). The information on the distribution function can then be given by a left
and right bound of FX(x), the so-called probability box (p-box). It may also be interpreted
as the combination of an interval valued variable xI (i.e. a Dempster-Shafer structure) and an
interval valued probability f IX(x) [Beer et al., 2013]. Finally, fuzzy probabilities [Kwakernaak,
1978, 1979, Zadeh, 1984, Gil et al., 2006] as depicted in Figure 1.1 (h) cover both, finite or
infinite theories combined with any kind of fuzzy parameters, i.e fuzzy numbers and/or fuzzy
intervals. This can be interpreted as a more general case of a p-box where additional informa-
tion on the membership weighting is available. A sound overview on the discussed and further
concepts to describe imprecise probabilities can be found in the review by Beer et al. [2013] or
the dissertation by Schöbi [2019].

The focus of this contribution is on the description of continuous random quantities including
interval valued parameters leading to a classical p-box. For this purpose, the construction of
p-boxes is introduced more profound in Section 2.3. Furthermore, the theory of p-box valued
variables is extended to the concept of imprecise random fields in Chapter 3, in order to describe
also a spatial variability of mixed uncertain parameters.

1.2. Uncertainty propagation

The different theories to describe uncertainties require appropriate methods to propagate them
through a given model, e.g. an FE simulation. It is distinguished into forward and inverse
approaches [Faes and Moens, 2020b]. The first describes a model response given a set of
uncertain parameters in the model input [Moens and Vandepitte, 2006] and will be the main
focus of this work. On the contrary, inverse methods enable to draw conclusions about the
input parameters from a response, e.g. in terms of updating approaches [Faes et al., 2019].
There exist intrusive and non-intrusive methods [Le Maître and Knio, 2010], meaning that
the model solver is or is not affected by the approach. In the latter case, the model does not
change and can be used as a black box within the UQ/UP framework. In this contribution,
only non-intrusive methods are applied. Furthermore, FEM is used to solve the (stochastic)
PDEs. Therefore, the focus is on propagation methods using FE analysis.
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While aleatory uncertainties are usually propagated by probabilistic approaches, epistemic
uncertainties require possibilistic approaches, which are also referred to non-probabilistic ap-
proaches. Both methods are briefly reviewed in Subsection 1.2.1 and Subsection 1.2.2, re-
spectively. Afterwards, an overview about general hybrid approaches to propagate mixed (or
polymorphic) uncertainties is given in Subsection 1.2.3, before motivating and reviewing the
idea of imprecise random field propagation in more detail. A profound introduction into and a
comparison of both, probabilistic and non-probablistic approaches can be found by Moens and
Vandepitte [2006].

1.2.1. Probabilistic approaches

Regarding probabilistic approaches to propagate uncertainties, it can be distinguished into sam-
pling approaches and approximation approaches. The latter comprise for instance perturbation
methods [Stefanou, 2009], such as the first or second order reliability methods [Der Kiureghian
et al., 1987], and reliability methods based on limit state functions [Sudret and Der Kiureghian,
2000]. They are not further addressed in this work. Instead, the focus lays on stochastic finite
element method (SFEM) using sampling approaches.

Before aleatory uncertain input parameters can be propagated through a model, they must
be parameterised based on a set of independent random variables. Regarding random fields, i.e.
spatially varying random parameters, a discretisation is necessary. For that purpose, a spectral
representation - e.g. by Karhunen-Loève (KL) or polynomial chaos (PC) decomposition -
becomes usefull to reduce the number of random variables within the approximation [Le Maître
and Knio, 2010]. In this work, KL expansion is used with this regard and is therefore described
and investigated more detailed in Section 3.1.

Aiming to propagate uncertainties, an early development to solve SPDEs is the (intrusive)
spectral SFEM using Galerkin approach [Ghanem and Spanos, 1991], also referred to as stochas-
tic Galerkin method [Xiu, 2009]. The advantage of intrusive methods is given by the fact that
only one linear equation system needs to be solved, while non-intrusive sampling methods are
based on the repetitive solution of many deterministic equation systems. For the latter purpose,
a set of input parameters is sampled pseudo-randomly or chosen artificially, leading to straight-
forward methods using the model as a black box. The equation system of intrusive approaches
requires to discretise the random space and therefore may become very large. Furthermore,
only linear problems are applicable [Stefanou, 2009]. For this reason, intrusive methods are not
further considered in this work.

Three sampling techniques are discussed in more detail in Chapter 5. The brute force Monte
Carlo (MC) simulation [Le Maître and Knio, 2010] is based on pseudo-random sampling and
a statistical evaluation. On the contrary, the idea of stochastic collocation (SC) method [Xiu
and Hesthaven, 2005] is to interpolate within the probability space, discretiesed by a grid of
pre-defined samples. The PC expansion [Sudret, 2015] aims to find a surrogate model based
on a pseudo-randomly sampled experimental design.
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An overview on well-established SFEM can be found in the reviews by Stefanou [2009] and
Xiu [2009]. Additionally, Le Maître and Knio [2010] provide in their book a sound introduction
to various spectral expansion methods, non-intrusive sampling as well as (intrusive) stochastic
Galerkin methods, including many examples and applications. A sound overview on SFEM
including comprehensive instructions on the implementation in Matlab are provided by Sudret
and Der Kiureghian [2000].

1.2.2. Possibilistic approaches

Interval FEM provides a broad range of approaches to propagate interval variables. For in-
stance, based on interval arithmetic [Moore et al., 2009], the FE problem can be solved in
terms of interval valued stiffness or mass matrices [Muhanna and Mullen, 2001, Sofi and Romeo,
2016], which is however an intrusive approach. Alternatively, different optimisation strategies
are available, aiming to find the smallest conservative hypercube [Moens and Hanss, 2011, Faes
and Moens, 2020b]. A survey on interval FEM including different implementation strategies
can be found by Moens and Vandepitte [2005]. Extending the epistemic uncertainty towards
fuzzy valued variables, these are propagated by fuzzy FEM, accordingly, e.g. in terms of α-cut
discretisation or α-cut optimisation [Möller et al., 2000]. Moens and Hanss [2011] provide a
sound review on interval and fuzzy FEM regarding interval or fuzzy variable input parameters.
A more recent review by Faes and Moens [2020b] additionally covers interval and fuzzy FEM
in terms of interval fields and fuzzy fields, respectively.

1.2.3. Hybrid approaches

Acknowledging a mixture of both types of uncertainties in hybrid approaches while maintaining
efficiency and accuracy has become an important field of research. The German Research Foun-
dation currently grants an own priority program regarding “Polymorphic uncertainty modelling
for the numerical design of structures - SPP 1886”, advancing this topic as recently published
in a special issue [Kaliske and Graf, 2019].

Several approaches are available to propagate imprecise probabilities as given in Figure 1.1.
In analogy to interval valued quantities as applied in Dempster-Shafer theory, also the assigned
probability [Weichselberger, 2000] or reliability [Qiu et al., 2008] can be defined to be interval
valued. A very general approach is the probability bounds analysis [Faes et al., 2021], which
can be used to propagate mixed uncertain input parameters described by a p-box, but also
Dempster-Shafer structures as the discrete case of a p-box. For this purpose, the p-box can
either be considered within a double loop approach, decoupled approaches or in terms of sur-
rogate models, as recently reviewed by Faes et al. [2021]. The double loop approach will be
introduced in more detail in Section 3.3 in order to propagate imprecise random fields. Prob-
ability bounds analysis can be extended to fuzzy probability bounds analysis [Schietzold et al.,
2021], to propagate all kind of fuzzy probabilities, e.g. in terms of fuzzy SFEM [Möller, 2004].

In this work, mixed uncertain and spatially varying parameters are considered as imprecise
random fields. In the following, this concept is motivated and existing experience regarding the
propagation of imprecise random fields as well as their application in engineering is reviewed.
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Imprecise random fields in engineering application: Mixed uncertain parameters which
also include a spatial dependency are described by imprecise random fields. While classical
random fields are purely aleatory, imprecise random fields may include interval and/or fuzzy
valued hyper parameters, i.e. parameters that are required to describe the random field, e.g. the
mean value or the standard deviation. Random fields do not only imply a dependence on chance
(such as random variables) but also on space (and/or time, which is then usually referred to as
random process). On the contrary to white noise, where the data at two arbitrary points within
the field are completely uncorrelated, a random field implies a certain correlation within the
field. For instance, it is realistic that the material data of a steel specimen are relatively similar
(i.e. more correlated) while soil can be much more inhomogeneous and therefore might be less
correlated. There are different (auto1)correlation functions available to model the correlation
within the random field in terms of a so called (auto)correlation length. This material parameter
is a measure for how fast the correlation decreases with increasing distance. Regarding its
limit representation, the random field converges towards white noise for a correlation length
converging to zero and towards a random variable (i.e. the field is constant) if the correlation
length converges towards infinity.

Concerning material data, their statistical parameters such as the mean value and the
standard deviation can often be determined experimentally. However, the correlation function,
can usually only be assumed by engineering reasoning. The same holds for the correlation
length. As described above, it might be estimated as large or small depending on the underlying
problem but is difficult or even impossible to measure. On the other hand, regarding large
engineering structures, the correlation model can become highly important. Due to mistakes,
imperfections or separated steps in the manufacturing or building process, it is unlikely that
the material is everywhere the same best, worst or any inbetween case, as it would be assumed
describing the parameter by a random variable. Acknowledging a spatial variation in the
material data can therefore be of high value regarding an ecological and economical design.

For this reason, it seems natural to model material data by imprecise random fields, e.g.
occurring from an imprecise correlation length. They have been investigated in several engineer-
ing contexts during the last years. Götz [2017] applied random and fuzzy fields for a numerical
design of a reinforced concrete frame structure. Interval probability based random fields are
described as a special case of fuzzy probability based random fields by Schietzold et al. [2019].
Both are applied to different engineering problems, i.e. for a concrete damage simulation, in
terms of a hydromechanical problem involving auto- and crosscorrelation of different random
fields and considering a structural dependent autocorrelation in case of a timber structure.
Furthermore, Schietzold et al. [2021] use the latter case to simulate a purlin part of timber roof
construction describing the auto- and crosscorrelation of random fields by fuzzy parameters.
Imprecise random fields induced by fuzzy valued autocorrelation lengths are applied by Schmidt
et al. [2019] within a multiphasic and hydro-mechanical coupled FE analysis. Fina [2020], Fina
et al. [2020] use fuzzy random fields and processes to model the geometric imperfections in the
context of shell buckling analysis.

1Note that some application consider a correlation between several random field parameters as well. In such
cases, it is distinguished into autocorrelation, i.e. within the field, and crosscorrelation, i.e. between fields.
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Interval valued induced imprecise random fields can be interpreted as a special case of
fuzzy random fields. There are two main advantages of using interval instead of fuzzy valued
parameters. First, no further assumptions on the membership function need to be done. Second,
the computational cost is not as high as if there was a α-level discretisation or -optimisation
necessary. Imprecise random fields obtained by an interval valued correlation length have been
applied to concrete damage simulation by Dannert et al. [2019] using interval discretisation and
by Dannert et al. [2021a] using an a-priori optimisation to obtain the relevant interval values.
The latter approach has been introduced by Faes and Moens [2019b] and studied in the context
of transient dynamics. Gao et al. [2022] apply imprecise random field for different continuum
structures, performing a topology optimisation.

Concerning the propagation of imprecise random fields in the context of engineering struc-
tures including many degrees of freedom, the computational effort becomes challenging, even
if only interval valued epistemic parameters are considered. This is even more compounded in
terms of non-linear problems, requiring often many load or time steps. Therefore, two different
sophisticated sampling techniques, sparse SC method and sparse PC expansion, are studied
within this contribution. The aim is to reduce the computational cost by requiring less sam-
ples as an MC simulation. It is shown that both methods are limited in terms of non-linear
problems. An additional challenge lays the discretisation of the random fields corresponding to
different correlation length values. The underlying KL series expansion requires different trun-
cation orders to obtain a comparable truncation error, which depends on the correlation length.
Therefore, different stochastic dimensions are induced for the different correlation length sce-
narios. Especially for small correlation length values, this may lead the SC and PC method to
suffer from the curse of dimensionality.

This thesis provides a sound description of the challenges that have to be solved or at least
approached when dealing with imprecise random fields. Many attempts to overcome these
challenges are described and studied. It is shown under which model assumptions some of
them are fruitful. For the other cases, suggestions on further improvements or alternative
methods are provided.

1.3. Outline

This dissertation is structured as following. The next two chapters follow the structure provided
in this introduction to overview the uncertainty quantification and uncertainty propagation of
(1) aleatory, (2) epistemic and (3) mixed uncertainties and corresponding theories. For this
purpose, (1) probability theory, (2) interval theory and (3) imprecise probability theory are
introduced in Chapter 2 and fundamental definitions are provided. Afterwards, the propaga-
tion of imprecise random fields by the double loop approach is presented in Chapter 3. For
that purpose, (1) the discretisation of aleatory random fields by Karhunen-Loève expansion is
described, before providing (2) a brief overview on interval analysis. Both concepts are com-
bined to the probability bounds analysis, which is introduced and investigated in part (3) of
the chapter.
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Before focusing on different sampling based stochastic finite element method to propagate
aleatory random fields through high-dimensional and/or non-linear models in Chapter 5, a
short excursus on the fundamentals of solid mechanics is provided in Chapter 4, in order to
clarify the used notation and material models.

Imprecise random fields are then carefully studied with regard to the influence of the correla-
tion length in Chapter 6. Based on the findings, a decoupled interpolation approach is proposed
and studied intensively concerning one- and two-dimensional (imprecise) random fields regard-
ing linear and non-linear model propagations.

Finally, the main challenges of propagating imprecise random fields as well as all findings of
this thesis are summarised in Chapter 7, providing also further perspectives and future steps
of research.



2. Describing Uncertain Parameters

Uncertainties can appear in all forms of parameters, as (a) uncertain variable meaning a con-
stant but uncertain value in the system, as an (b) uncertain field implying a spatial variability
and as an (c) uncertain process when the parameter is time dependent. Furthermore, uncer-
tain parameters depending on space and time are referred to as space-time uncertain process.
Depending on the classification of uncertainties, (i) aleatory, (ii) epistemic or (iii) mixed, (a)
can be classified into random variables, interval variables or imprecise random variables. Anal-
ogously, (b) and (c) are classified as random field or stochastic process, respectively, interval
field/process and imprecise random field/process. The different classifications are given in
Table 2.1.

Table 2.1: Overviews of theories to model (i) aleatory, (ii) epistemic or (iii) mixed uncertain
parameters p depending on the physical dependency, (a) no dependency, (b) spatial dependency
and (c) temporal dependency.

physical
dependency

(i) probability
theory

(ii) interval
theory

(iii) imprecise probability
theory

(a) non
p = p0

random variable
p = X(ω)

interval variable
p = XI

imprecise random variable
p = [X](ω)

(b) spatial
p = p(z)

random field
p = X(ω,z)

interval field
p = XI(z)

imprecise random field
p = [X](ω,z)

(c) temporal
p = p(t)

random process
p = X(ω, t)

interval process
p = XI(t)

imprecise random process
p = [X](ω, t)

The definitions of random variables, random fields, stochastic processes and space-time
dependent processes in the framework of probability theory can be found, e.g. in the book
on Stochastic Calculus by Grigoriu [2002]. An Introduction to Interval Analysis can be found
by Moore et al. [2009]. Furthermore, Beer et al. [2013] provide a sound review on different
concepts of imprecise probabilities such as evidence theory, probability bound analysis and
fuzzy probabilities.

In the following sections the fundamentals of probability theory, interval theory and im-
precise probability theory are introduced. Regarding the physical dependency of the uncertain
parameters the focus is on constant variables as well as spatially dependent fields. Despite
some minor differences in definition1, processes can be interpreted as fields where the spatial
parameter z is replaced by the time t and will not be discussed further within this work, as
only static problems are considered.

1e.g. the concept of past and future in the context of uncertain processes [Grigoriu, 2002]
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Model assumptions: The theoretical descriptions in the following chapter are limited to-
wards uncertain parameters for which the following model assumptions are given.

• All uncertain parameters are considered to be continuous.

• Epistemic uncertainties are modelled by intervals, there are no fuzzy parameters consid-
ered and therefore not further introduced.

• All aleatory uncertainties are assumed to be Gaussian distributed. For this reason, no
other distribution families are introduced and no transformation strategies are discussed.

• Random variables are considered independent, i.e. a joint probability density function
(PDF) can be obtained by the product of the individual PDFs.

• There is no crosscorrelation between several random field parameters assumed.

The focus of this chapter is to state fundamental definitions and terms which are required for
this thesis as well as to introduce the used notation. For further extensions and definitions as
well as derivations and proofs, please refer to the literature provided accordingly.

2.1. Probability theory for aleatory uncertain parameters

Probability theory provides mathematical models to describe random phenomena by abstrac-
tion or idealisation. The parameters needed to describe a model can be obtained by statistical
evaluation of experiments. Furthermore, statistics can be used to validate probabilistic mod-
els. Together, probability theory and statistics form each one component of stochastic theory
[Georgii, 2004].

Within this section, the main fundamentals of probability theory are briefly summarised.
In the following paragraphs, some general definitions based on Grigoriu [2002] are given, which
are required in terms of probability theory. Afterwards, the concepts of random variables and
vectors are described in Subsection 2.1.1, before introducing random fields in Subsection 2.1.2.

Probability space: The triple (Ω,F , P ) is called probability space and is defined by the
following components.

• The set of all possible events of interest is called sample space Ω and every possible
outcome ω ∈ Ω is called an element of the sample space. The sample space might be
finite, countable or uncountable. If Ω is finite or countable, (Ω,F , P ) is called discrete
while it is called continuous if Ω is uncountable.

• A non-empty collection of subsets of Ω is denoted by F and called set of events. It contains
all relevant subsets, meaning that it is chosen according to the outcome of interest. It is
called σ-field if the following holds true

i) ∅ ∈ F ,
ii) A ∈ F =⇒ Ac ∈ F ,
iii) Ai ∈ F =⇒

⋃
i∈I Ai ∈ F ,
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where A is called event or F -measurable subset, Ac := Ω\A is the complement of A and
I is a countable set of indices.

For countable sample spaces Ω the σ-field can be chosen as F = P(Ω), where P(Ω) is the
power set of Ω containing all its subsets. If the sample space is uncountable, however, F
needs to be chosen as a subset of P(Ω). For example, if Ω ⊂ RN it is F = BNΩ , where
BNΩ is a Borel σ-field on Ω. The latter is a σ-field obtained by sets of a topological space,
so-called Borel sets Bi. If it is generated on RN , where N ≥ 1 is the dimension, the Borel
σ-field is written as B(RN) = BN .

• The probability measure P : F → [0, 1] assigns a probability of occurrence P (A) to the
event A and needs to fulfil the following properties

i) non-negativity: P (A) ≥ 0, ∀A ∈ F ,

ii) normalisation: P (Ω) = 1

iii) σ-additivity: P (
⋃∞
i=1 Ai) =

∑∞
i=1 P (Ai), Ai ∈ F , Ai ∩ Aj = ∅, i 6= j

With P (A) = 1− P (Ac) it follows from ii) that the probability of an impossible event ∅
is zero, P (∅) = 1 − P (Ω) = 0. Furthermore, it is P (Ai) ≤ P (Aj) if Ai ⊆ Aj and
P (Ai ∪ Aj) = P (Ai) + P (Aj)− P (Ai ∩ Aj).

Independence: The sub-σ-fields F i of F given in the probability space (Ω,F , P ) are inde-
pendent if

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai), ∀Ai ∈ F i. (2.1)

Two events Ai and Aj being independent means that the outcome of Ai is independent of the
outcome of Aj, P (Ai|Aj) = P (Ai), and vice versa. If the σ-fields σ(Ai) generated from the
events Ai ∈ F are independent, the events Ai are independent as well and Eq. (2.1) holds.

Measurable functions: The pair (Ω,F) is called measurable space. A function h : Ω 7→ Ψ

is called measurable from (Ω,F) to a second measurable space (Ψ,G) if

h−1(B) = {ω : h(ω) ∈ B} ∈ F , ∀B ∈ G. (2.2)

Random variables and vectors are measurable functions when a probability measure P is as-
signed to the measurable space (Ω,F).

2.1.1. Random variables

A random variable is a parameter depending on chance and assigns a real number to each
result of an experiment. The mathematical definition of a random variable, its properties and
applicable measures is briefly summarised in this subsection. If not indicated differently, all
descriptions are based on the definitions and derivations given by Grigoriu [2002].



14 CHAPTER 2. DESCRIBING UNCERTAIN PARAMETERS

Consider a measurable space (Ω,F), a random variable X = X(ω) is a measurable function
X : (Ω,F) 7→ (R,B), with B = B1 denoting a one-dimensional (1D) Borel σ-field. To be defined
as a random variable, X must hold

X−1 ((−∞, x]) ∈ F , x ∈ R. (2.3)

As visualised in Figure 2.1, X(ω) assigns a real value x ∈ R to the result ω ∈ Ω. A certain
observation xj = X(ωj) is called realisation. Depending on the likelihood of occurrence of
ωj, a probability measure P (X ≤ xj) is assigned to the corresponding value xj. With an N -
dimensional Borel σ-field BN , the concept of random variables can be extended to a random
vector X : (Ω,F) 7→ (RN ,BN), N > 1. With X−1(B) ∈ F for every Borel set B ∈ BN , the
assigned probability measure is P (X ∈ B) = P (X−1(B)) on the measurable space (RN ,BN).
Each coordinate of a random vector is a random variable which needs to hold Eq. (2.3).

x
xj = x(ωj)Bi

P (X ≤ xj)

P

(Ω,F)

ωj

X
Ω

Ai ∈ F
Bi ∈ B

X−1

X−1

X

(R,B)

ωj ∈ Ω
xj ∈ R

Ai

Figure 2.1: A random variable X(ω) defined as a mapping between the measurable spaces
(Ω,F) and (R,B).

Depending on the probability space (Ω,F , P ) being discrete or continuous, a random vari-
able or vector defined within this probability space is distinguished into discrete or continuous
as well. In this work, only continuous probability theory is further described. The discrete case
is a special case of the continuous one and can be obtained from it by discretisation.

Two random variablesX i := X i(ω) andXj := Xj(ω) are independent, if their corresponding
σ-fields F(X i) and F(Xj) are independent according to Eq. (2.1). Then, the joint probability
measure of both random variables is

P (X i, Xj) = P (X i)P (Xj). (2.4)

The linear relationship between X i and Xj is quantified by their covariance Cov{X i, Xj},

Cov{X i, Xj} = E{ (X i − E{X i}) (Xj − E{Xj}) }, (2.5)
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with Cov{X i, X i} = Var{X i} for i = j and Var{X i} the variance of the random variable X i.
Normalising the covariance by the standard deviation Std{X} yields the correlation coefficient

Corr{X i, Xj} =
Cov{X i, Xj}

Std{X i}Std{Xj}
, −1 ≤ Corr{X i, Xj} ≤ 1. (2.6)

If Corr{X i, Xj} = 0, X i and Xj are uncorrelated. Note that X i and Xj being independent
implies them to be uncorrelated but vice versa two uncorrelated random variables are not
necessary independent.

In the following paragraphs, important functions and measures of random variables and
vectors are introduced.

Cumulative distribution function (CDF): If only real numbers are contained in Ω, the
probability P (X ≤ x) of a random variable X(ω) : Ω 7→ R can be described by the cumulative
distribution function (CDF) FX(x) : R 7→ [0, 1] depending on x,

FX(x) = P
(
X−1 ((−∞, x])

)
= P ({A : X(ω) ≤ x}) = P (X ≤ x). (2.7)

A CDF is monotonically increasing, right continuous and follows an asymptotic behaviour,

lim
x→−∞

FX(x) = 0, (2.8)

lim
x→+∞

FX(x) = 1. (2.9)

The reliability of a system is given by RX(x) = 1− FX(x). The joint CDF of a random vector
X(ω) is obtained from the probability measure of its individual random variables X i(ω),

FX (x) = P

(
N⋂
i=1

{X i ≤ xi}

)
, x = (x1, . . . , xN) ∈ RN . (2.10)

If the random vector consists of independent random variables X i(ω), i = 1, . . . , N , the joint
CDF is given by

FX (x) =
N∏
i=1

FXi
(xi). (2.11)

Probability density function (PDF): The function fX(x) ≥ 0 with
∫∞
−∞ fX(x) dx = 1 is

called probability density function if it fulfils

P (a ≤ X ≤ b) = FX(b)− FX(a) =

∫ b

a

fX(x) dx, a ≤ b. (2.12)

Given fX(x) to be integrable, the CDF FX(x) is determined by

FX(x) =

∫ x

−∞
fX(s) ds. (2.13)



16 CHAPTER 2. DESCRIBING UNCERTAIN PARAMETERS

The function fX (x) fulfilling

fX (x) =
∂NFX (x)

∂x1 · · · ∂xN
, x = (x1, . . . , xN) ∈ RN (2.14)

is the joint PDF of the random vector X(ω) and can be obtained by

fX (x) =
N∏
i=1

fXi
(xi), (2.15)

if the coordinates X i(ω) of the random vector are independent.

Stochastic moments: For real-valued random variables X(ω) : Ω 7→ R, the moment of n-th
order is given as

E{Xn} =

∫ ∞
−∞

xnfX(x) dx. (2.16)

The moment of first order E{X} is called expected value and can be estimated statistically by
the mean value µX of the random parameter to be modelled. The central moment of n-th order
is defined by

E{[X − E{X}]n} =

∫ ∞
−∞

[x− E{X}]n fX(x) dx. (2.17)

The second central moment Var{X} = E{[X − E{X}]2 results in the variance, the central
moment of third order in the skewness and the one of fourth order in the kurtosis of the
distribution of X. Furthermore, Std{X} =

√
Var{X} is the standard deviation of X. These

operators on the mathematical model of the distribution can be estimated statistically by the
variance σ2

X , the skewness γX , the kurtosis κX and the standard deviation σX , respectively.
In case of a random vector X(ω), the expected value and the variance are a vector contain-

ing the expected values and variances of the individual random variable coordinates X i, i.e.
E{X} = E{X i} and Var{X} = Var{X i}. Furthermore, the covariance and correlation coeffi-
cient of each combination i, j are included in the covariance matrix Cov{X} = Cov{X i, Xj}
and the correlation coefficient matrix Corr{X} = Corr{X i, Xj}, respectively.

Gaussian random variable: A random variable X(ω) ∼ N (µX , σX) with mean value µX
and standard deviation σX is called Gaussian or normal distributed if its PDF is given by

fX(x) =
1√

2πσX
exp

{
−1

2

(
x− µX
σX

)2
}
, x ∈ R. (2.18)

Due to the symmetry of fX(x) about x = µX , the skewness is zero, γX = 0. Furthermore, it
is κX = 3. The PDF and the CDF of a Gaussian random variable are depicted in Figure 2.2.
Note that 99.73 % of the samples following a Gaussian distribution are located in the range
µX ± 3σX , which is visualised in dash-dotted lines. A special case of the Gaussian random
variable is the standard normal distributed random variable S(ω) ∼ N (0, 1) with zero mean
and unified standard deviation.
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Figure 2.2: Probability density function fX(x) and cumulative distribution function FX(x) of
a Gaussian distributed random variable X(ω) ∼ N (µX , σX).

Note that due to the fact of being unbounded, Gaussian random variables are not appro-
priate from the physical point of view to model parameters that are only defined for positive
values, e.g. material data. However, depending on the relative standard deviation σX = r · µX
with r < 1 a certain percentage of the mean value µX > 0, the appearance of negative values
is unlikely. Therefore, Gaussian distribution is often used nevertheless for convenience, as also
done within this thesis. In this case, a sufficiently small likelihood of obtaining negative values
should be quantified and it should be assured during all studies that no negative values occur
in the sampling process. Although this is mathematically not correct as the probability does
not integrate exactly to be one, this error can be neglected from the engineering point of view.

2.1.2. Random fields

Random fields are parameters depending spatially on chance. They assign a real function
depending on the spatial variable to each result of an experiment. In this subsection, random
fields are defined from the mathematical point of view. If no other literature is referred to, all
definitions follow the book on random fields by Vanmarcke [2010].

On the contrary to random variables, which are only a function X(ω) of chance, ω ∈ Ω, a
random field X(ω, z) : D × Ω 7→ R depends additionally on space z ∈ D within the domain
D ⊂ Rd, d = 1, 2, 3. For a fixed value ωj, the deterministic function xj(z) = X(ωj, z) is
called realisation. On the other hand, for a fixed location zJ , the resulting random variable
XJ(ω) = X(ω,zJ) is called state of the random field.

The autocovariance CX(z, z′) =: Cov{X(ω, z), X(ω,z′)} of two arbitrary values X(ω,z)

andX(ω, z′) within the random field is described by the autocovariance function. Alternatively,
the dependency of two values within the field can also be expressed in terms of the standard
deviation σX(z) and the autocorrelation function ΓX(z, z′) : D ×D 7→ [0, 1],

CX(z, z′) = σX(z)σX(z′)ΓX(z, z′), (2.19)

with ΓX(z, z′) =: Corr{X(ω, z), X(ω, z′)} as defined in Eq. (2.6). If its autocovariance or
autocorrelation function is a function only of the distance z − z′, a random field is called
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homogeneous. Moreover, if the function is even only depending on |z − z′|, the random field is
called isotropic, i.e. the autocorrelation structure is the same in any direction. In this case, the
autocorrelation length LX is a measure describing how fast the autocorrelation between two
values X(ω, z) and X(ω,z′) decreases with respect to their distance z−z′. The autocorrelation
function is then usually described by a function of (z − z′) /LX . If two or more random fields
are defined on the same domain, the dependency of the corresponding parameters between
each other is described by the crosscovariance or crosscorrelation function [Vořechovský, 2008].
However, crosscorrelation is not further discussed and applied in this work. For this reason,
the short terms “covariance”, “correlation” and “correlation length” are used for convenience
whenever autocovariance, autocorrelation or autocorrelation length are meant.

Random fields can be extended to random vector fieldsX(ω,z) : D×Ω 7→ RN , N > 1. Then,
the realisation xj(z) is a deterministic vector function and the stateXJ(ω) is a random vector.
In engineering application, X(ω, z) is often referred to as univariate, X(ω,z) as multivariate
random field, while it is called one-dimensional (d = 1) ormulti-dimensional (d > 1), depending
on the dimension d of the domain D ∈ Rd [Sudret and Der Kiureghian, 2000].

Gaussian random fields: A random field with any vector (X(ω,z1), X(ω, z2), ...) being
jointly Gaussian distributed ∀z ∈ Ω is called Gaussian random field. It then is completely
described by its mean function µX(z) : Ω 7→ R and its covariance function CX(z, z′) : D×D 7→
R [Sudret and Der Kiureghian, 2000]. Regarding the physical aspect of some parameters, also
for Gaussian random fields the same constraints hold as for Gaussian random variables.

In Figure 2.3, five realisations xj(z) = X(ωj, z), j = 1, . . . , 5, of a Gaussian distributed 1D
random field are exemplified as red solid lines, each describing a deterministic function resulting
for ωj. Their value at zJ is depicted as a red circle, representing the state XJ(ωj) = X(ωj, zJ)

of the individual realisation j. For an infinite amount of realisations, the corresponding states
XJ(ω) = X(ω, zJ) of the random field X(ω, z) are Gaussian distributed at any location zJ .
Furthermore, the mean value and standard deviation of XJ(ω) are equal to the values of the
random field X(ω, z), i.e. µXJ

= µX(zJ) and σXJ
= σX(zJ). If all states of a random field are

standard normal distributed, i.e. µX(z) = 0 and σX(z) = 1, the random field is called standard
normal distributed random field S(ω,z).

Random field discretisation: To use a random field X(ω, z) for stochastic simulation it
needs to be discretised in both manners, in terms of the physical domain (i.e. spatial domain
in terms of random fields) as well as the stochastic domain. The spatial domain is usually
discretised already in order to solve a given problem deterministically, e.g. by finite element
method (FEM). Discretisation methods for random fields can be categorised into three groups
[Sudret and Der Kiureghian, 2000]:

• The most straightforward way is to select the values of X(ω,zi) at given points zi as
random variables {X i(ω)} as it is done by point discretisation methods. For example, this
can be the centroid of each element (midpoint method), the Gauss points of each element
(integration point method) or a linear function of nodal values (optimal linear estimation
method).
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• Regarding average discretisation methods, the random variables {X i(ω)} are chosen by
weighted integrals over the element domain, e.g. in terms of a constant value at each
element (spatial average method).

• A spectral representation of a random field is theoretically exact and given by several
series expansion methods. They decouple the dependency on chance and space by de-
scribing the first in terms of random variables and the second by deterministic spatial
functions within an infinite series. To be used within a stochastic simulation, the ex-
panded random field is discretised within the stochastic space by truncating the series
after a certain truncation term T . The stochastic dimension of the approximated random
field X̄(ω, z) is then given by N = T . Among other methods, as e.g. the expansion op-
timal linear estimation method or the orthogonal series expansion method, a commonly
used method of this category is the Karhunen-Loève (KL) expansion. The latter will also
be used within this work and is therefore introduced comprehensively in Section 3.1.

The first and second method connect the stochastic discretisation directly to the spatial dis-
cretisation and are therefore mesh-dependent. For more details on the given examples as well
as further methods of these categories, the reader is referred to the state of the art report by
Sudret and Der Kiureghian [2000] and the literature provided therein.

Figure 2.3: Five one-dimensional random field realisations xj(z) = X(ωj , z), j = 1, . . . , 5,
z ∈ [0, 1] (red) as well as the probability density function fXJ

(x) (blue) corresponding to a
random field state XJ(ω) = X(ω, zJ).
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2.2. Interval theory for epistemic uncertain parameters

An intuitive way to describe imprecision is given by intervals. The interval bounds can be
estimated by expert opinion or - if available, e.g. when the measuring inaccuracy of a machine
is known - defined by available information. An interval I = [a, b], I ⊆ R, is defined as a real-
numbered set containing all elements x between two bounding elements and can be described
explicitly by [Moore et al., 2009]

[a, b] = {x ∈ R : a ≤ x ≤ b}. (2.20)

The interval definition of Eq. (2.20), i.e. including both interval bounds, is called closed. On
the contrary, an open interval does not include its bounds,

(a, b) = {x ∈ R : a < x < b}. (2.21)

The combination of both in either way is called semi-open, i.e. semi-left-open (a, b] and semi-
right-open if [a, b).

In the following subsection, interval variables and vectors are introduced, which are a
straightforward method to describe epistemically uncertain variables. Afterwards, the con-
cept of interval fields is briefly introduced in Subsection 2.2.2, which extends interval variables
towards a spatial dependency.

2.2.1. Interval variables

Interval variables are uncertain parameters described by an interval. They are handled by
arithmetic operations or, regarding more sophisticated problems, can be propagated by dis-
cretisation or sampling and simulation, as described in Section 3.2. Within this subsection, the
basic definitions of interval variables are summarised based on the book by Moore et al. [2009].
Additional literature is adduced as cited accordingly.

Regarding a closed interval, an interval variable XI is given by a lower bound X and an
upper bound X as

XI = [X,X], {x ∈ R : X ≤ x ≤ X}. (2.22)

Otherwise, it is defined accordingly to the definitions of open or semi-open intervals. In order
to not repeat all the interval types all the time, the notation of closed intervals is used in this
work whenever intervals in general are meant. A crisp number can be interpreted as a special
case of an interval variable with x = X = X.

Interval variables can be extended to interval vectors XI containing an ordered n-tuple of
intervals,

XI =
(
XI

1, . . . , X
I
n

)
(2.23)

=
(
[X1, X1], . . . , [Xn, Xn]

)
. (2.24)



2.2. INTERVAL THEORY FOR EPISTEMIC UNCERTAIN PARAMETERS 21

An interval vector represents an n-dimensional hyper-rectangular domain, which can be repre-
sented by the Cartesian productXI = [X1, X1]×· · ·×[Xn, Xn]. Note that the individual inter-
val variables are independent by definition [Faes and Moens, 2020b]. A vector x = (x1, . . . , xn),
xi ∈ R is included in an n-dimensional interval vector, x ∈XI , if

xi ∈ XI
i for i = 1, ..., n. (2.25)

In the following paragraphs, some characteristic values of an interval variable or vector
as well as relations, operations and arithmetics for two or more interval variables are briefly
summarised.

Characteristic values: An interval variable XI (or an interval vector XI) has the following
properties.

• The width w(XI) is the range of the interval variable, i.e.

w(XI) = X −X. (2.26)

In case of an interval vector, the width is defined to be the largest component range,

w(XI) = max
i
w(XI

i ), (2.27)

i.e. the longest edge of the hyper cuboid.

• The central point within an interval variable is called midpoint and given by

m(XI) =
1

2

(
X +X

)
, (2.28)

or, in case of an interval vector, by the vector

m(XI) =
(
m(XI

1), . . . ,m(XI
n)
)
. (2.29)

• The absolute value can be interpreted as the Chebyshev distance, which is

|XI | = max{|X,X|} (2.30)

in case of an interval variable and extended to interval vectors by

‖XI‖ = max
i
|XI

i |, (2.31)

which is then called the norm of the interval vector.

• The interval radius is defined by

∆XI =
1

2

(
X −X

)
. (2.32)
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Interval relations and operations: For two interval variables XI
1 and XI

2 - or two n-
dimensional interval vectors XI

1 =
(
XI

1,1, . . . , X
I
1,n

)
and XI

2 =
(
XI

2,1, . . . , X
I
2,n

)
- the following

relations and operations are applicable.

• There are several useful order relations. An interval variable is called positive, XI > 0, if
x > 0 for all x ∈ XI and negative, XI < 0, if x < 0 for all x ∈ XI . Furthermore, it is

XI
1 < XI

2 if X1 < X2. (2.33)

An interval variable is included in another,

XI
1 ⊆ XI

2, if and only if X2 ≤ X1 and X1 ≤ X2. (2.34)

Consequently, for interval vectors it is

XI
1 ⊆XI

2 if XI
1,i ⊆ XI

2,i for i = 1, . . . , n. (2.35)

• If the intersection is not empty, i.e. XI
1 ∩XI

2 = ∅ if either X1 < X2 or X2 < X1 meaning
that both intervals have no points in common, the intersection is defined as an interval
value resulting from

XI
1 ∩XI

2 = [max(X1, X2), min(X1, X2)]. (2.36)

Furthermore, it isXI
1∩XI

2 if any XI
1,i∩XI

2,i. Otherwise, the operation leads to an interval
vector given by

XI
1 ∩XI

2 =
(
XI

1,1 ∩XI
2,1, . . . , X

I
1,n ∩XI

2,n

)
. (2.37)

• The union XI
1∪XI

2 of two interval variables does not necessarily result in an interval and
has no particular relevance in interval analysis. More precisely, the union of two interval
variables lead to an interval only if XI

1 ∩XI
2 6= ∅.

• The interval hull is defined as

XI
1 ∪XI

2 = [min(X1, X2), max(X1, X2)] (2.38)

and is of higher importance for interval computations than the union, as it always leads
to an interval. The interval hull includes the union, i.e. XI

1 ∪ XI
2 ⊆ XI

1 ∪XI
2. It is the

smallest interval containing both intervals, XI
1 and XI

2. Analogously, the interval hull of
two interval vectors is the smallest interval vector containing both interval vectors, XI

1

and XI
2.
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Interval arithmetic: The addition, subtraction, multiplication or division of two interval
variables XI

1 and XI
2 is explicitly defined by

XI
1 �XI

2 = {x1 � x2 : x1 ∈ XI
1, x2 ∈ XI

2}, (2.39)

with � being any of the operators +, −, · or /. Note that the division of two intervals is only
defined for 0 6∈ XI

2. The calculation can also be performed straightforwardly by the following
endpoint formulas

XI
1 +XI

2 = [X1 +X2, X1 +X2], (2.40)

XI
1 −XI

2 = [X1 −X2, X1 −X2], (2.41)

XI
1 ·XI

2 = [min (S) , max (S)]; (2.42)

S = {X1X2, X1X2, X1 ·X2, X1X2},

XI
1/X

I
2 =XI

1

[
1

X2

,
1

X2

]
if 0 6∈ XI

2, undefined else. (2.43)

2.2.2. Interval fields

Assuming interval valued parameters often leads to a conservative estimate as each parame-
ter is assumed to be either best case or worst case at the whole domain and a dependency
between several interval parameters cannot be modelled. In order to acknowledge a spatial
dependence of an interval, Moens et al. [2011] introduced the concept of explicit interval fields
as a non-probabilistic equivalent to random fields. Note that there exist also other methods
to model dependency, e.g. ellipsoid approaches [Elishakoff and Elettro, 2014] or admissible set
decomposition [Faes and Moens, 2020a].

The idea of interval fields is to superpose a number n of deterministic base functions ϕi(z) :

D 7→ [0, 1], i.e. a set of patterns describing the spatial dependency, scaled by interval valued
factors ai ∈ IR. The latter describe the magnitude of the epistemic uncertainty, with IR being
the space of real valued intervals. The interval field XI(z) : D × IRn 7→ IR is then described
by the sum of weighted base functions

XI(z) =
n∑
i=1

ϕi(z)ai. (2.44)

With ai being independent, interval fields can be considered as input parameters by common
methods to propagate interval uncertainties [Faes and Moens, 2020b]. Alternatively, an interval
field can be defined implicitly by

XI(z) = {ϕX (aX) , aX ∈ aIX}, (2.45)

withϕX (aX) = (ϕX,1(aX), . . . , ϕX,n(aX)) being implicit functions of predefined interval factors
aIX [Verhaeghe et al., 2013].
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In general, the base functions are not orthogonal by construction, i.e. for the inner product
〈· , ·〉 it is

〈ϕi(z), ϕj(z)〉 =

∫
D
ϕi(z)ϕj(z) dz 6= δij, (2.46)

with δij the Kronecker delta. This way, they can be used to control the dependence between
the intervals at two locations z and z′ [Faes and Moens, 2020c]. The base functions can be
constructed, e.g. by inverse distance weighting interpolation [Faes and Moens, 2020c] or local
interval field decomposition [Imholz et al., 2015], as summarised in a recent review paper by
Faes and Moens [2020b]. Furthermore, Faes and Moens [2019a] extended the concept of interval
fields to also describe inter-dependencies between multivariate interval fields. Sofi et al. [2019]
apply a response surface approach to propagate interval fields using interval FEM.

The mentioned methods are not further discussed here, as interval fields are not applied
particularly in this work. However, the basic idea of interval fields becomes useful to describe
imprecise random fields, which will be introduced in Subsection 2.3.2 before discussing and
studying them intensively in Chapter 3.

2.3. Probability box theory for mixed uncertainties

In many cases of engineering application, both kind of uncertainties appear in a mixed manner.
The theory of imprecise probabilities [Beer et al., 2013] provides a broad choice of approaches
to model mixed uncertain parameters, as briefly reviewed in Subsection 1.1.3. In the following,
the probability box (p-box) approach is introduced in further detail to model imprecise random
variables. Afterwards, the concept of imprecise random variables is extended to the idea of
imprecise random fields in Subsection 2.3.2, to describe uncertain parameters including both,
imprecision and spatial variation.

2.3.1. Imprecise random variables

A p-box is a straightforward and flexible approach to describe imprecise random variables
[X](ω) = XI(ω). Instead of a crisp CDF, the distribution of a p-box is enveloped by two
probability bounds [Ferson et al., 2003], the left bound FX(x) and the right bound FX(x),

P = {P | ∀x ∈ R, FX(x) ≤ FX(x) ≤ FX(x)}. (2.47)

As exemplified in Figure 2.4, the bounds can be discrete or continuous. If all distributions
F i
X(x) ∈ P are discrete, this special case of the probability bounds analysis results in evidence

theory. Furthermore, there are two ways to derive or interpret a p-box, as also depicted in
Figure 2.4:

i) Considering a certain value x∗, the p-box provides an interval valued probability F I
∗(x) =

[F ∗(x), F ∗(x)], with F ∗(x) = P x∗ = P (X ≤ x∗) being the upper (left) bound and F ∗(x) =

P x∗ = P (X ≤ x∗) being the lower (right) bound of the probability assigned to x∗, compare
the red sketch in Figure 2.4.
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ii) Considering a certain probability P ∗, the p-box provides an interval valued parameter
xI∗ = [xP ∗ , xP ∗ ], with xP ∗ being the lower (left) bound and xP ∗ being the upper (right)
bound of the parameter assigned to P ∗, compare the blue sketch in Figure 2.4.

Both ways result in the same p-box. Note that in any case, one bound of the p-box is assigned
to the lower bound of the first but to the upper bound of the second interpretation. Therefore,
the bounds are not referred to as lower and upper bounds as it is done for intervals but are
called left and right bound instead.

1

FX(x)

x

FX

P x∗

P x∗

P ∗

FX

xP ∗xP ∗ x∗

Figure 2.4: Probability box defined by a continuous left bound FX = FX(x) and a discrete
right bound FX = FX(x), to be interpreted as an interval valued probability P I or an interval
valued parameter xI .

A p-box is minimally defined by its left and right bound,

P = [FX , FX ], (2.48)

leading to a distribution free p-box. Note that defining only the outer bounds theoretically may
also include non-physical CDFs. On the other hand, a parametric p-box is a more restricted
definition, e.g. in terms of the quintuple

P = 〈FX , FX , µ
I
X , σ

I
X ,F〉, (2.49)

if more information is available [Beer et al., 2013, Faes et al., 2021]. For instance, the distribu-
tion family F might be known or the confidence intervals of the mean value µIX or the variance
(σ2

X)
I are given as ∫ ∞

−∞
x dFX(x) ∈ µIX , (2.50)(∫ ∞

−∞
x2 dFX(x)

)
−
(∫ ∞
−∞

x dFX(x)

)2

∈
(
σ2
X

)I
. (2.51)
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As depicted in Figure 2.5, a p-box can be visualised in terms of its interval radii, ∆xI

and ∆F I
X , with respect to the corresponding interval midpoints m(xI) and m(F I

X). This
representation is useful to compare results which are relatively similar in relation to the range
of the CDF. Alternatively, a logarithmic scale can be used, which is however not as intuitively
to read.

FX(x)

x

1

x

∆F IX

∆xI

FX(x)

x∗

w
(F

I ∗
)

F ∗X

w(xI∗)

m(xI)

m(F IX)

FX FX

Figure 2.5: Classical visualisation of a probability box (top right), supplemented with its
interval radii ∆xI (left) and ∆F IX (bottom) with respect to the corresponding midpoints m(xI)
and m(F IX) [Dannert et al., 2021a].

Several ways to construct a p-box are available, e.g. in terms of incomplete distribution
properties, available data sets, aggregation methods or parametric construction. A sound review
on these and dedicated methods has been recently published by Faes et al. [2021]. They
furthermore review different ways to propagate p-box parameters. A very robust method is
given by double loop approach which will be introduced in Section 3.3 to propagate imprecise
random fields. Alternatively, decoupled approaches such as importance sampling or operator
norm theory are available for parametric p-boxes, see Faes et al. [2021] and the literature
provided therein. Schöbi and Sudret [2017] apply sparse polynomial chaos (PC) expansion as
a surrogate model to propagate p-box valued parameters.

In this work, p-boxes are used to describe the quantity of interest (QoI) resulting from the
propagation of (discretised) imprecise random fields. For this purpose, it is constructed by the
minimum and maximum bounds of all input scenarios and therefore results in a parametric
p-box containing at least information on the mean and standard deviation confidence intervals.

2.3.2. Imprecise random fields

To quantify a random field, several hyper parameters are needed. For example, as described in
Subsection 2.1.2, a Gaussian random field X(ω, z) requires information about its mean func-
tion µX(z) and its covariance function CX(z, z′). The latter can be expressed as well by the
standard deviation σX(z) and the correlation function ΓX(z, z′), see Eq. (2.19). These hyper
parameters leave room for further uncertainties. While mean value and standard deviation
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might be determined relatively easily by experiments, especially the correlation structure is
difficult to measure and inherits a certain lack of knowledge. To consider also epistemic uncer-
tainties, Dannert et al. [2018] and Faes and Moens [2019b] independently extended the idea of
(aleatory) random fields towards imprecise random fields to model mixed uncertain, spatially
(or temporally) varying parameters.

A straightforward way to model imprecision within the correlation function is to assume an
interval valued correlation length LIX . Alternatively (or additionally), the correlation function
itself could be considered with model uncertainty, i.e. regarding different correlation functions
ΓX(z, z′) ∈ C with C the set of admissible correlation functions. However, this is beyond the
scope of this dissertation. In this work, the focus is on interval valued correlation lengths.

Considering one or several hyper parameters to be interval valued, an imprecise random
field is denoted by [X](ω, z) and can be described by the sextuplet

P = 〈FX , FX , µ
I
X , σ

I
X ,F , LIX〉. (2.52)

In other words, an imprecise random field is a set of correlated p-boxes given at each location
z ∈ D. This means that the state [XJ ](ω) = [X](ω,zJ) at a certain location zJ ∈ D is an
imprecise random variable described by a p-box. On the other hand, a realisation [Xj](z) =

[X](ωj, z) of an imprecise random field assigned to a certain sample ωj is given by an interval
field.

Instead of considering epistemic hyper parameters as intervals, they might also be described
by fuzzy numbers or fuzzy intervals, leading to fuzzy random fields [Schietzold et al., 2019].
Indeed, imprecise random fields can be interpreted as a special case of fuzzy random fields
with the membership function of the fuzzy quantity being either zero or one, see Figure 1.1 (d)
and (g). However, despite this special case, fuzzy random fields require additional assumptions
regarding the membership function and are therefore not further considered in this work.
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3. Propagating Imprecise Random Fields

In Chapter 2, different ways to describe uncertain parameters in the input parameter space have
been introduced, depending on whether the uncertainty is considered to be aleatory, epistemic
or of mixed nature. Within this section the propagation of uncertain input parameters through
a model is prepared.

A general model can be described, e.g. following Faes and Moens [2020b], as delineated.
A random field realisation xj(z) = X(ωj, z) is propagated through a modelM to obtain the
model response Y j(z) = M(xj) for a certain quantity of interest (QoI). The vector Y j(z) =

(y1, . . . ,yn)j contains all admissible model responses obtained by a set of function operators
Mi : Rk 7→ R,

M(x) : yi(z) = Mi (x(z)) , i = 1, . . . , n, (3.1)

where n depends on the model problem (e.g. number of elements regarding a spatial discreti-
sation or the number of eigenpairs to be computed). For instance, a finite element (FE) model
is usually considered in terms of solid mechanics in order to numerically solve the partial dif-
ferential equation which describes the equilibrium of internal and external forces. Then, n is
the number of degrees of freedom. If the solution scheme is non-intrusive, it can be used as a
black-box within the framework of uncertainty quantification (UQ) and uncertainty propaga-
tion (UP). If the model response Y is related monotonically to the input vector X that has
been propagated through the modelM, the model is referred to as monotonic model.

Independent of the input parameter being an uncertain variable or vector, the model re-
sponse can be a variable Y or a vector Y . This depends only on the QoI, e.g. it is a vector
if the displacement field of the whole domain is required but a variable if only the maximum
displacement (in one direction) is of interest.

To propagate an imprecise random field through a model, it needs to be discretised. For that
purpose, the discretisation of (aleatory) random fields by Karhunen-Loève (KL) expansion is
described in Subsection 3.1, while interval analysis is introduced in Subsection 3.2 to propagate
(epistemic) interval variables. In Subsection 3.3, both methods are combined to a nested
probability box (p-box) algorithm, to consider (mixed uncertain) imprecise random fields.

Model assumptions: The approaches introduced in this chapter are chosen according to the
following model assumptions.

• The random field hyper parameters mean value and standard deviation can be determined
sufficiently exact, e.g. by experiments.
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• The correlation length is modelled as an interval as it is difficult or even impossible to be
measured.

• The type of the correlation function (i.e. the smoothness of the random field) does not
affect the model outcome as much as the correlation length (i.e. the variability of the
random field). For this purpose, the correlation function is chosen according to optimal
conditions, i.e. as a function for which an analytic solution is available while providing a
good convergence.

• Only Gaussian random fields are considered which are assumed to be homogeneous and
isotropic.

• Only a spatially constant standard deviation is applied, i.e. a Gaussian distributed random
field can be obtained by scaling and shifting a standard normal distributed random field.

• Only static problems are investigated, there is no cyclic loading

• Only monotonic models are used, i.e. vertex propagation is assumed to be sufficient.

If appropriate for the sake of completeness or a better understanding, some further remarks
beyond the topic are discussed, e.g. in terms of imprecise random fields arising from interval
valued hyper parameters, but not investigated.

3.1. Karhunen-Loève expansion to discretise random fields

In order to propagate random fields through a model as described above, they need to be
discretised. A widely used method to discretise continuous Gaussian random fields as defined
in Subsection 2.1.2 is given by the KL expansion. A comprehensive introduction, derivation
and discussion of the method is provided by Ghanem and Spanos [1991] or Sudret and Der
Kiureghian [2000] and the fundamentals are only summarised here.

The basic idea of the KL expansion is to spectrally decompose the correlation structure
ΓX(z, z′) : D ×D 7→ [0, 1] of the random field

ΓX(z, z′) =
∞∑
i=1

λiφi(z)φi(z
′), (3.2)

where λi are the eigenvalues, sorted such that λ1 > λ2 > · · · > λ∞, and φi(z) are the corre-
sponding eigenfunctions. The eigenpairs are obtained by the Fredholm integral equation of the
second kind, ∫

D

ΓX(z, z′)φi(z
′) dz′ = λiφi(z). (3.3)

In this context, ΓX(z, z′) is also referred to as kernel function. In general, Eq. (3.3) needs
to be solved numerically. For some special cases, analytical solutions are available, which are
described in Subsection 3.1.3.
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As ΓX(z, z′) is bounded, symmetric and positive definite, λi are real and non-negative and
φi(z) form a complete orthogonal basis on an L2 Hilbert space satisfying

〈φk(z), φl(z)〉 =

∫
D
φk(z)φl(z) dz = δkl, (3.4)

where 〈·, ·〉 : D×D 7→ R is an inner product space and δkl is the Kronecker delta defined to be
equal to 1 for k = l and 0 for k 6= l.

A standard normal distributed random field S(ω,z) ∼ N (0, 1) can then be described by
the KL series expansion

S(ω,z) =
∞∑
i=1

√
λiφi(z)ξi(ω). (3.5)

Herein, it is
∑∞

i=1

√
λiφi(z) = 1 and ξi(ω) ∼ N (0, 1) is a standard normal distributed random

variable following

ξi(ω) =
1√
λi

∫
D

[X(ω, z)− µX(z)]φi(z) dz, i = 1, ...,∞. (3.6)

By this, the spatial dependency on z and the random dependency on ω of the random field
are decoupled. Assuming a constant standard deviation within the domain, σX(z) = σX , an
arbitrary Gaussian random field X(ω, z) ∼ N (µX , σX) can be described by scaling Eq. (3.5)
with σX and shifting the scaled field towards its mean value µX(z),

X(ω, z) = µX(z) + σX

∞∑
i=1

√
λiφi(z)ξi(ω). (3.7)

Note that in literature the KL expansion of a random field X(ω,z) is often introduced in
terms of its covariance function

CX(z, z′) = σX(z)σX(z′) ΓX(z, z′) (3.8)

instead of its correlation function ΓX(z, z′). Then, solving the Fredholm integral equation
given in Eq. (3.3) with CX(z, z′) used as the kernel function, the resulting eigenpairs {λi, φi}
depend on the standard deviation σX(z) and the sum in Eq. (3.7) is not multiplied by σX as
this information is already included in λi and φi. The only advantage of using the covariance
as kernel function is that the standard deviation can be assumed to be depending on space as
well. On the contrary however, when a constant standard deviation σX(z) = σX is assumed,
describing the KL expansion in terms of the correlation function has many benefits. At first, the
formulation in terms of the correlation function is given by unitless eigenvalues and -functions1

and a more straightforward understanding of the random field in Eq. (3.7) in terms of a scaled
and shifted standard normal distributed random field is enabled. Furthermore, the KL expan-
sion for a given kernel function and correlation length can be solved once as a standard normal

1This way, the unit of the random field is clearly connected to µX and σX .
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distributed random field S(ω, z) and then be used for any arbitrary random field X(ω, z) as
described above. This can reduce the computational cost when several random field parame-
ters with the same correlation structure are considered. It will be discussed in Section 3.3 that
this can become especially beneficial when imprecise random fields are investigated. In this
contribution, only constant standard deviations are considered and the KL expansion is always
expressed in terms of the correlation function.

To propagate a random field through a model, the sum of Eq. (3.7) needs to be truncated.
For the resulting truncation error, different measures are introduced in the following subsection.
Afterwards, different correlation structures are discussed in Subsection 3.1.2, before the solution
of the Fredhold integral Eq. (3.3) is provided in Subsection 3.1.3.

3.1.1. Truncation error of the Karhunen-Loève expansion

To propagate a random field X(ω,z) through a model, M(X(ω, z)), the series needs to be
truncated such that it retains only the T largest eigenvalues. This leads to an approximated
random field,

X̄(ω,z) = µX(z) + σX

T∑
i=1

√
λiφi(z)ξi(ω) (3.9)

A realisation x̄j(z) = X̄(ωj, z) can then be created by inserting one set ξj(ωi) = (ξ1, . . . , ξT )j

of standard normal distributed random variables, e.g. obtained by pseudo-randomly sampling.
Following Betz et al. [2014], the normalised local error variance εσ2(z) remaining by trun-

cating the random field is given by

εσ2(z) =
Var

{
X(ω,z)− X̄(ω, z)

}
Var {X(ω, z)}

(3.10)

and can be expressed globally by a scalar value in terms of the mean error variance

ε̄σ2 =
1

|D|

∫
D
εσ2(z) dz. (3.11)

With a constant variance σ2
X = σ2

X(z), inserting Var {X(ω,z)} = σ2
X into Eq. (3.10) and

expressing Var
{
X̄(ω, z)

}
= C̄X(z, z′) in terms of the correlation function Γ̄X(z, z′) approxi-

mated by truncating Eq. (3.2),

C̄X(z, z′) = σ2
X Γ̄X(z, z′) = σ2

X

T∑
i=1

√
λiφi(z)ξi(ω), (3.12)

Eq. (3.10) can be simplified to express the local truncation error in terms of the truncated
correlation function,

εΓ̄(z) = 1−
T∑
i=1

λiφ
2
i (z). (3.13)
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Furthermore, with the orthogonality condition given in Eq. (3.4) the mean error variance in
Eq. (3.11) can be transferred to the mean truncation error of the truncated correlation function

ε̄Γ̄ = 1− 1

|D|

T∑
i=1

λi. (3.14)

Again, the error measures are mostly introduced in terms of the covariance function C̄X(z, z′)

in literature [Betz et al., 2014], leading to the sums in Eq. (3.13) and Eq. (3.14) being scaled
by 1/σ2

X and consequently

εC̄(z) = 1− 1

σ2
X

T∑
i=1

λiφ
2
i (z), (3.15)

ε̄C̄ = 1− 1

|D|
1

σ2
X

T∑
i=1

λi. (3.16)

The truncation of the KL expansion is a crucial point when regarding imprecise random
fields including imprecise correlation structures, as the truncation error does not only depend
on T but also on the chosen correlation function as well as the correlation length. For this
reason, the influence of the correlation function and its describing parameters is investigated
intensively in Subsection 3.3.2.

3.1.2. Correlation structures

The correlation kernel ΓX(z, z′) used in Eq. (3.3) is a function describing the correlation of two
valuesX(ω, z) andX(ω,z′) at two arbitrary locations z and z′ within the random field in terms
of their distance |z − z′|. The larger the distance is, the less correlated the random variables
located at these points within the field are. The decay can be described by the correlation
length LX , a measure driving the extend of the correlation and consequently the variability of
the random field.

The simplest way to describe the correlation decay is given by the binary noise (BN) kernel
[Ching and Phoon, 2019] as given in Table 3.1 (a). Here, the decay of the correlation ΓX(z, z′)

is described linearly in terms the distance |z−z′|, the slope depending on the correlation length
LBN
X . The drawback of this correlation model is its non-differentiability, not only at zero lag
|z − z′| = 0 but also at the distance |z − z′| ≥ LBN

X where the correlation becomes zero.

A more general way to describe the correlation function is given by the Whittle-Matérn
(WM) kernel family [Ching and Phoon, 2019]

ΓνX,WM(z, z′) =
21−ν

γ(ν)

(√
2ν
|z − z′|
LX

)ν
Kν

(√
2ν
|z − z′|
LX

)
, (3.17)

providing also a parameter ν to drive the smoothness of the random field variability. Here, γ(ν)

is the Gamma function and Kν the modified Bessel function of the second kind [Abramowitz
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and Stegun, 1964]. For ν = p + 0.5, p ∈ N+, Eq. (3.17) can be described in terms of an
exponential function [Faes et al., 2022] as follows

Γp+0.5
X,WM(z, z′) = exp

{
−
√

2p+ 1 |z − z′|
LX

}
p!

(2p)!

p∑
i=1

(p+ i)!

i!(p− i)!

(
2
√

2p+ 1 |z − z′|
LX

)p−i
.

(3.18)

Table 3.1: Overviews of different correlation kernels with an effective correlation length LX =
1.0, (b)-(d) belonging to the WM kernel family with p as given.

kernel correlation surface correlation function

(a) binary
noise (BN)

ΓX(z, z′) = max
{

0 ; 1− |z−z
′|

LBN
X

}
LBN
X = 1.6835

(b) single
exponential (SE)

ΓX(z, z′) = exp
{
− |z−z

′|
LSE

X

}
LSE
X = 1.0(
WM : p = 0 → ΓX = Γ0.5

X,WM

)

(c) modified
exponential (ME)

ΓX(z, z′) =
(

1 + |z−z′|
LME

X

)
exp

{
− |z−z

′|
LME

X

}
LME
X = 0.4249(
WM : p = 1 → ΓX = Γ1.5

X,WM

)

(d) squared
exponential (QE)

ΓX(z, z′) = exp

{
−
(

z−z′

LQE
X

)2
}

LQE
X = 0.9018(
WM : p =∞ → ΓX = Γ∞X,WM

)

Three often used correlation kernels are the single exponential (SE) kernel (p = 0), the
modified exponential (ME) kernel (p = 1) and the squared exponential (QE) kernel (p = ∞),
see Table 3.1 (b) to (d), all of them belonging to the WM kernel familiy. Note that the corre-
lation lengths of the different kernel types are not comparable with respect to how quickly the
correlation decays. To compare the properties of different kernel functions, the corresponding
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correlation length Lkernel
X should therefore be determined equivalently with respect to one ref-

erence kernel by means of minimising the mean squared error between the correlation function
and the reference function [Spanos et al., 2007]. As the SE kernel is one of the most often used
kernel functions, it is chosen as the refrence kernel within this contribution. The correlation
length LSE

X is then called the effective correlation length. In Table 3.1 the correlation surface
of the different kernel types is each exemplified for a correlation length LX , the corresponding
equivalent correlation lengths Lkernel

X are given next to the correlation function2.

As the kernels given in Table 3.1 (b) to (d) are described in terms of an exponential function,
the correlation converges towards zero with increasing distance |z − z′| and therefore do not
involve non-differentiabilities at this point. However, like the BN kernel, the SE kernel is not
differentiable at zero lag |z − z′| = 0. It can be seen in Figure 3.1 that this increases the
number of required truncation terms T drastically. Here, the mean error ε̄Γ̄ corresponding to
the truncation order T is compared for the SE (blue) and the ME (red) correlation function
for three different correlation length ratios, LX/l = 0.1 (solid line), LX/l = 1.0 (dashed line)
and LX/l = 10.0 (dash-dotted line), regarding a one-dimensional (1D) random field. It can
be seen that the mean error of the ME kernel decreases much faster than for the SE kernel.
Furthermore, the larger the correlation length LX is with respect to the domain length l, the
smaller the mean truncation error. Note that also for the SE kernel, ε̄Γ̄ drops towards zero, as
it can be noted for the ME kernel for T > 170. However, due to the slow convergence, much
higher values of T are required, e.g. around T = 1000 terms for LX/l = 10.0, and even higher
ones for smaller correlation length ratios.

Figure 3.1: Mean truncation error ε̄Γ̄ corresponding to the truncation order T , regarding the
analytic solution of the SE (blue) and the ME (red) correlation function ΓX(z, z′) considering a
one-dimensional random field for different correlation length ratios LX/l.

2Note that ΓX(z, z′) needs to be multiplied with σ2
X(z) if Eq. (3.3) is solved using the covariance function

CX(z, z′), which is often not differentiated consistently in literature.
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The reason why the SE kernel is often applied nevertheless is the fact that an analytic
solution is available for special cases, which is straightforward to implement [Sudret and Der
Kiureghian, 2000]. The advantage of an analytic solution is not only that Eq. (3.3) is solved
exactly and computationally more efficient than applying a numeric solution. Huang et al.
[2001] further showed that the analytic solution also converges faster in terms of T than the
numeric solution when comparing both solutions schemes for the single exponential kernel
function. However, comparing the convergence rate of different kernel functions, due to their
differentiability at zero lag the ME and QE kernels still converge much faster in terms of T
than the SE kernel [Huang et al., 2001]. As the stochastic dimension N increases with T , this
can become crucial in terms of the curse of dimensionality. Spanos et al. [2007] provide also an
analytic solution for the ME kernel for 1D domains.

In the following, the SE correlation function,

ΓX(z, z′) = exp

{
−|z − z

′|
LX

}
, (3.19)

and the ME correlation function,

ΓX(z, z′) =

(
1 +
|z − z′|
LME
X

)
exp

{
−|z − z

′|
LME
X

}
, (3.20)

are compared in terms of a 1D random field. Both kernel functions are depicted in Figure 3.2 for
the three different effective correlation length ratios, LX/l = 0.1, LX/l = 1.0 and LX/l = 10.0.
The correlation length LME

X is chosen such that the resulting correlation structure fits the
one of the SE kernel. For the used effective correlation length ratios, the corresponding ME
correlation length ratios LME

X /l = 0.0471, LME
X /l = 0.4249 and LME

X /l = 2.1114 are obtained.
Below each correlation function, three realisations of a standard normal distributed random
field s̄j = S̄(ωj, z), j = 1, 2, 3, according to the corresponding correlation length are depicted.
For the sake of comparability, the same psuedo-randomly sampled sets ξ1, ξ2 and ξ3 have been
used to create the three realisations. It can be seen that the random fields gained by the same
set of ξj inherit the same global characteristic for the different correlation lengths, however,
the local variation becomes higher for small correlation lengths.

For both kernel functions it can be noted that the variability of the random field depends
on the correlation length LX . For small values LX < l, the random field is weakly correlated,
i.e. the variability increases. On the other hand, the variability is reduced for highly correlated
random fields, i.e. LX > l. However, comparing the two different kernel functions with each
other, it can be seen that the random fields resulting from the ME correlation function are
much smoother than the ones resulting from the SE kernel. Note that the variability of an SE
realisation increases with higher truncation terms without converging towards a certain state,
as can be seen in Figure 3.3a. Decreasing the truncation error of the SE correlation function
therefore leads to more and more fluctuating random field realisations. As can be seen in
Figure 3.3b, this is not the case for the ME random field realisation, which converges towards
a certain distribution with increasing T . This phenomenon is carefully studied and discussed
by Faes et al. [2022], additionally also comparing both kernels to the QE correlation function,
which does not provide an analytic solution.
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In the following subsection, the numeric solution in general and the analytic solution for
these two kernel functions are provided. However, for the reasons discussed above, i.e. the
convergence of the mean truncation error as well as the convergence behaviour of an individual
random field realisation with increasing T , only the ME correlation function is applied in
Chapter 5 and Chapter 6.

(a) single exponential correlation function

(b) modified exponential correlation function

Figure 3.2: Comparison of the correlation function in its closed form (each in top row) as well
as three resulting standard normal distributed random field realisations (each in bottom row)
for different correlation functions regarding three effective correlation length ratios, LX/l = 0.1
(left), LX/l = 1.0 (middle) and LX/l = 10.0 (right), with respect to the domain length l of a
one-dimensional random field.
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(a) single exponential (b) modified exponential

Figure 3.3: Extract x ∈ [0, 0.2] of a standard normal distributed random field realisation
S̄(ωj , x), x ∈ [0, 1], resulting from a fix effective correlation length ratio LX/l = 0.1 obtained by
different truncation orders.

3.1.3. Solution of the Fredhold integral equation

To obtain the eigenpairs (λi, φi) to be inserted into Eq. (3.9), the Fredholm integral equation
given in Eq. (3.3) needs to be solved for the chosen kernel function Γ(z, z′). For 1D random
fields described by an SE or ME correlation function an analytic solution of Eq. (3.3) is available.
Considering other kernel functions, e.g. the QE correlation function, Eq. (3.3) needs to be solved
numerically, which can become very costly. Furthermore, in any case of a multi-dimensional
domain which is not rectangular but arbitrary, also for SE and ME correlation functions a
numerical solution scheme is required.

Within this work, only problems enabling an analytic solution are considered. For this
reason, only a short literature review on numeric solution schemes is provided in the following
before summarising the analytic solution for both, SE and ME correlation functions.

Numeric solution schemes

In most cases, the Fredholm integral equation of second kind, given in Eq. (3.3), needs to be
solved numerically. Atkinson and Han [2009] provide a broad overview on solution schemes
for that purpose, which are for instance projection methods such as collocation or Galerkin
method, or Nyström method. In the context of KL expansion, Galerkin methods are widely
used and extended. The basic idea of Galerkin method [Ghanem and Spanos, 1991] is to
discretise the d-dimensional domainD ⊂ Rd by nel elements and approximate the eigenfunctions
φi(z), i = 1, ..., nel by

φi(z) ≈ φ̂i(z) =

nel∑
k=1

dikhk(z), (3.21)

where the basis functions hk(z) are spanned within L2(D). The coefficients dik ∈ R are deter-
mined solving the eigenvalue problem given by

CD = ΛBD, (3.22)
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for D = Dik = dik and Λ = Λik = λiδik being a diagonal matrix containing the corresponding
eigenvalues λi, i = 1, ..., nel. Furthermore, the symmetric positive definite matrix B = Bik and
the symmetric positive semi-definite matrix C = Cik are obtained by

Bik =

∫
D

hi(z)hk(z) dz, (3.23)

Cik =

∫
D

∫
D

C(z, z′)hi(z), hk(z
′) dz dz′, (3.24)

with C(z, z′) the covariance function. Note that by this, maximally nel eigenpairs are obtained
and therefore nel ≥ T are needed to truncate the KL expansion in Eq. (3.9) after T terms.
Furthermore, due to dense matrices, the traditional Galerkin method can become computational
expensive, especially for two-dimensional (2D) or three-dimensional (3D) domains.

Several basis functions have been applied and investigated in literature, e.g. global Legen-
dre polynomials [Papaioannou, 2012], Chebyshev polynomials [Liu and Zhang, 2017] or Haar
wavelets [Phoon et al., 2002]. A Fourier KL discretisation is proposed by Li et al. [2008]. The
disadvantage of such global interpolation schemes is that the accuracy can only be improved
by an increased order of the basis functions, which can result in numerical instabilities.

Alternatively, the basis functions can be defined locally at each element of the discretised
domain. For example, if the model propagation is performed by finite element method (FEM),
the domain discretisation as well as the local piecewise linear Lagrange polynomials which
are used as basis functions defined on the element domain can be recycled and used to solve
Eq. (3.22) [Ghanem and Spanos, 1991]. Betz et al. [2014] propose an approach based on
hierarchic basis functions defined by Gegenbauer polynomials, while Basmaji et al. [2022a]
developed a discontinuous Legendre polynomial based Galerkin approach defining the Legendre
polynomials locally but without considering continuity between the elements.

With regard to meshless approaches, Betz et al. [2014] propose to use the finite cell method
as a quasi meshless approach. Furthermore, isogeometric Galerkin approaches using B-splines
and NURBS have been investigated by Rahman [2018] as well as Mika et al. [2021].

Analytic solution for special cases

Considering a 1D random field described by an SE or ME correlation function the solution of
Eq. (3.3) can be determined analytically. Furthermore, in case of 2D rectangular random fields
the 2D solution can be obtained from the 1D solution corresponding to each dimension [Sudret
and Der Kiureghian, 2000], i.e.

λ2D
i = λ1D

i1,z1
⊗λ1D

i2,z2
, (3.25)

φ2D
i (z) = φ1D

i1
(z1)⊗φ1D

i2
(z2). (3.26)

Note that the eigenvalues and corresponding eigenfunctions need to be sorted in descending
order after applying the tensor product. Analogously, the same holds for 3D random fields in
case of rectangular cubic domains. However, note that due to the multiplication of the values
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λ1D
i

i→∞−−−→ 0, the convergence rate of the truncation error with respect to the truncation order
T decreases when increasing the dimension. This can be directly seen when inserting λ2D

i or
λ3D
i to Eq. (3.13) or Eq. (3.14) in order to determine the truncation error.
In the following, the analytic solution schemes for both, SE and ME correlation functions,

are summarised considering a 1D random field given on the domain D = [−a, a]. For the
derivation, the reader is referred to the provided literature.

Single exponential (SE) correlation function: The Fredholm integral equation given in
Eq. (3.3) can be solved analytically as described by Sudret and Der Kiureghian [2000]. The
i-th eigenvalue is given by

λi =
2LX

1 + w2
iL

2
X

, (3.27)

with wi being the solution of the transcendental equation 1
LX
− wi tan(wia) = 0 in the range

[
(i− 1)π

a
, (i− 1

2
)π
a

]
; if i is odd,

1
LX

tan(wia) + wi = 0 in the range
[
(i− 1

2
)π
a
, iπ

a

]
; if i is even.

(3.28)

The corresponding eigenfunctions are then determined by

φi(z) =


(
a+ sin(2wia)

2wi

)− 1/2

cos(wiz); if i is odd,(
a− sin(2wia)

2wi

)− 1/2

sin(wiz); if i is even.
(3.29)

The first twenty eigenvalues λ1, . . . , λ20 of the SE kernel function are depicted in blue lines in
Figure 3.4 for different correlation length ratios LX/l = 0.1 (solid line), LX/l = 1.0 (dahsed
line) and LX/l = 10.0 (dash-dotted line). It can be seen that λi converges towards zero faster
the larger the correlation length LX is with respect to the domain length l.

Figure 3.4: First twenty eigenvalues λ1, . . . , λ20 obtained by the analytic solution of the SE
(blue) and the ME (red) correlation function ΓX(z, z′) considering a one-dimensional random
field for different effective correlation length ratios LX/l.
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Modified exponential (ME) correlation function: The analytic solution of the modified
exponential correlation function is derived in Spanos et al. [2007]. With the values w1 and w2,

w1 =

√
L2
X +

√
4L3

Xλ
−1
i , (3.30)

and

w2 =

√
L2
X −

√
4L3

Xλ
−1
i if L2

X ≥
√

4L3
Xλ
−1
i , (3.31)

w2 =

√
−L2

X +
√

4L3
Xλ
−1
i if L2

X <
√

4L3
Xλ
−1
i , (3.32)

the following coefficients can be determined:

A = (w2
1 + 2LXw1 + L2

X) exp(w1a), (3.33)

B = (w2
1 − 2LXw1 + L2

X) exp(−w1a), (3.34)

C = (L2
X − w2

2) cos(w2a)− 2LXw2 sin(w2a), (3.35)

D = (L2
X − w2

2) sin(w2a) + 2LXw2 cos(w2a), (3.36)

E = (w3
1 − 3L2

Xw1 − 2L3
X) exp(w1a), (3.37)

F = (−w3
1 − 3L2

Xw1 − 2L3
X) exp(−w1a), (3.38)

G = (w3
2 + 3L2

Xw2) sin(w2a)− 2L3
X cos(w2a), (3.39)

H = (−w3
2 − 3L2

Xw2) cos(w2a)− 2L3
X sin(w2a). (3.40)

Then, the odd-numbered eigenvalues λi are gained by solving

det

[
A+B 2C

E + f 2G

]
= 0 (3.41)

and the even-numbered eigenvalues λ∗i by solving

det

[
A−B 2D

E − F 2H

]
= 0. (3.42)

With the scaling coefficients bi and b∗i ,

bi =

[
2

w1i

sinh(2aw1i) +
1

2w2i

(
A+B

C

)2

sin(2aw2i) + a

((
A+B

C

)2

+ 4

)

−2
A+B

C

√
λi
L3
X

(
w1i cos(aw2i) sinh(aw1i) + w2i sin(aw2i) cosh(aw1i)

)]−1/2

, (3.43)

b∗i =

[
2

w∗1i
sinh(2aw∗1i)−

1

2w∗2i

(
A∗ −B∗

D∗

)2

sin(2aw∗2i) + a

((
A∗ −B∗

D∗

)2

− 4

)

+2
A∗ −B∗

D∗

√
λ∗i
L3
X

(
w∗2i cos(aw∗2i) sinh(a∗w∗1i)− w∗1i sin(aw∗2i) cosh(aw∗1i)

)]−1/2

, (3.44)



42 CHAPTER 3. PROPAGATING IMPRECISE RANDOM FIELDS

using w1i and w2i gained by the odd or even eigenvalues λi or λ∗i , respectively, the corresponding
normalised eigenfunctions are determined by

φi(z) =

bi
[
2 cosh(w1iz)− A+B

C
cos(w2iz)

]
; if i is odd,

b∗i
[
2 sinh(w∗1iz)− A∗−B∗

D∗ sin(w∗2iz)
]

; if i is even.
(3.45)

In Figure 3.4, next to the first twenty eigenvalues corresponding to the SE kernel (depicted
in blue), also the results λ1, . . . , λ20 obtained by the analytic solution using the ME kernel
function are depicted in red. Again, λi converges faster towards zero for larger correlation
length ratios LX/l. Comparing the two kernel types, it can be seen that for LX/l = 1.0 and
LX/l = 10.0, the eigenvalues of the ME kernel drop much faster than the ones of the SE kernel.
In case of LX/l = 0.1, the ME kernel falls below the SE kernel only for i ≥ 12. Still, as the
number of required eigenvalues increases with decreasing LX/l, the ME still outperforms the
SE kernel in terms of convergence behaviour.

3.2. Interval analysis to consider interval variables

Propagating an interval variable or vector through a model, the response can be approximated
by an interval as well, which bounds the true solution. The problem to be solved is then to
find the minimum and maximum response, which means in general to find

M(XI) =

[
inf
x∈XI

(M(x)) , sup
x∈XI

(M(x))

]
, (3.46)

if M(XI) is a continuous function on R. The interval valued response for the QoI Y I = [Y , Y ]

is directly given by the bounds following from Eq. (3.46). However, as it is in the nature of
interval vectors that there is no dependency between its entries, while the model might include
a coupling between the model responses, Y I can become non-physical and highly conservative.
Furthermore, the intensity of this conservative overestimation increases proportionally with
the number of interval valued input parameters as well as with their individual width w(XI).
Generally, there exist a non-convex manifold Ỹ ∈ Rn which is a subset of Y I . However, its
solution in a closed form is only obtainable when an explicit analytic solution of the problem
exists [Faes and Moens, 2020b].

There have been several methods proposed by the research community which aim to limit
the dependency phenomenon, e.g. the improved interval arithmetical technique [Muhanna and
Mullen, 2001] or the affine arithmetic [Manson, 2005], which are however intrusive. A review of
these advanced interval arithmetic methods and further extensions has been recently provided
by Faes and Moens [2020b]. Alternatively, the dependency between different input interval
parameters can be described in terms of an interval field XI(z). Then, Ỹ is approximated by
propagating a set of of interval field realisations xIj = XI(zj) through the model. Depending on
whether implicit or explicit interval fields are used, the propagation of them is performed non-
intrusively or in terms of an optimisation approach, correspondingly [Verhaeghe et al., 2013].
A sound introduction into interval methods can be found in the dissertation by Faes [2017].
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If the deterministic output of a model behaves monotonically, the interval valued results
of a QoI can be determined directly by propagating all vertex combinations of the interval
space through the model [Moens and Hanss, 2011]. In this case, classical interval arithmetic
is sufficient to operate with interval inputs within the model. Then, the problem can be
solved by a pure vertex propagation as briefly described in Subsection 3.2.1. Otherwise, a
global optimisation approach is required, as outlined in Subsection 3.2.2. Additionally to these
two methods, in their latest review paper Faes and Moens [2020b] also mention perturbation
methods and hybrid approaches, which will not further be discussed in this work.

3.2.1. Vertex propagation

In case of monotonic problems, interval variables can be considered by pure vertex analysis.
This means that only the interval bounds need to be propagated deterministically through the
model. In case of a single interval variable as input, this means [Faes and Moens, 2020b]

M
(
XI
)

=


[
M (X) , M

(
X
)]

if M (·) is monotonically increasing[
M
(
X
)
, M (X)

]
if M (·) is monotonically decreasing

. (3.47)

When several input interval variables or an interval vector as input parameter are considered,
the hyper cuboid vertices that have to be propagated are given by all combinations of the
individual interval bounds [Moens and Hanss, 2011].

3.2.2. Global optimisation

Regarding an interval variable as input parameter XI to be propagated through a general, non-
monotonic modelM as given in Eq. (3.1), the smallest conservative hyper cuboid approximation
Y I =

(
Y I

1, . . . , Y
I
n

)
of Ỹ is determined by searching within XI . Then, the i-th interval valued

output quantity Y I
i = [Y i, Y i] out of n output quantities of the model (e.g. the degrees of

freedom) can be found by optimising

Y i = min
x∈XI

Mi(x), i = 1, . . . , n, (3.48)

Y i = max
x∈XI

Mi(x), i = 1, . . . , n. (3.49)

When a global minimum and maximum can be obtained, the optimisation is successful and the
smallest approximation of Ỹ has been found. Note that only in this case conservatism can be
guaranteed [Faes and Moens, 2020b].

Depending on the problem to be solved as well as the chosen model, the optimisation can
become computationally costly, according to the computational time needed for a single model
evaluation. However, as the global optimisation is completely non-intrusive, commercial solvers
as well as any advanced solution scheme such as model order techniques can be easily used. A
comprehensive discussion of these issues as well as a broad literature review on applied solution
schemes is provided by Faes and Moens [2020b]. In this work, only monotonic models will be
applied to propagate uncertain input parameters to receive a model response of a certain QoI.
For this reason, global optimisation techniques are not further deepened.
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3.3. Probability bounds analysis for imprecise random fields

If one or several hyper parameters of a random field are considered imprecise, an imprecise
random field occurs, which includes both, aleatory and epistemic uncertainties. In this work,
epistemic uncertainties are described by interval variables. Aleatory uncertainties are considered
to be spatially dependent (i.e. modelled by random fields), following an isotropic correlation
structure that is assumed to be known, e.g. in terms of an SE or ME correlation function.
Furthermore, only constant mean values µX(z) = const. and standard deviations σX := σX(z)

are considered. If they were a function of the location z and additionally assumed to be an
interval, the parameters would become an interval field. However, as will be pointed out in the
following paragraphs, the crucial point is when an interval valued correlation length is used.
This case has been addressed by Dannert et al. [2018, 2019] in terms of interval discretisation
as well as by Faes and Moens [2019b] in terms of optimisation.

Following the notation of Faes and Moens [2019b], a Gaussian imprecise random field can
be described by extending the KL expansion given in Eq. (3.7) towards

[X](ω,z) = µIX(z) + σIX

∞∑
i=1

√
λIiφ

I
i (z)ξi(ω). (3.50)

The interval valued eigenvalues λIi ∈ IR+ and corresponding interval fields φIi (z) : D×IR 7→ IR,
representing the bounds of the eigenfunctions, occur if an interval valued correlation length LIX
is considered. Then, a realisation [x̄j](z) = [X̄](ωj, z) of an imprecise random field results
in an interval field. It is obtained by truncating Eq. (3.50) after T terms and inserting a set
ξj(ωi) = (ξ1, . . . , ξT )j of standard normal distributed random variables.

In the next two paragraphs, the influence of the different hyper parameters being interval
valued is discussed. Afterwards, a nested p-box algorithm to propagate imprecise random fields
through an arbitrary, non-intrusive model is introduced.

Interval valued mean value and standard deviation: As discussed in Section 3.1, an
arbitrary Gaussian random field X(ω,z) ∼ N (µX , σX) can be understood as a standard normal
distributed random field S(ω,z) ∼ N (0, 1) scaled by σX and shifted towards µX(z). This
implies that both hyper parameters influence the random field monotonically and - applying
a monotonic modelM - a pure vertex analysis is sufficient regarding imprecise random fields
occurring from the mean value µIX(z) or the standard deviation σIX being interval valued. By
this, two scenarios have to be propagated through the model if one of the two hyper parameters
is an interval variable while there is need for four scenarios in case of both hyper parameters
are considered as interval variables.

Assuming the mean value and standard deviation additionally to be constant, yields another
advantage. As the arbitrary Gaussian random field can be obtained from a unified, standard
normal distributed random field in this case, Eq. (3.3) has to be solved only once (with respect
to a certain spatial domain). This becomes beneficial when imprecise random fields and hence
its individual interval realisations are applied on the same domain. Then, the computational
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effort can be reduced by solving the KL expansion only once instead of for each (combination
of) interval bound(s) resulting from µIX and/or σIX . This can become crucial when arbitrary
2D or 3D domains are used and numerical expensive solution schemes are required to solve the
Fredholm integral equation.

Interval valued correlation length: In case of an interval valued correlation length, a pure
vertex analysis can become insufficient. As can be seen in Figure 3.5, for i > 1 the eigenvalues λi
- and hence the random field - are not monotonically depending on the correlation length LX3.
Note that also the phase and amplitude of the eigenfunctions φi(z) change according to LX
[Faes and Moens, 2019b]. However, for the sake of vividness, the following visual discussion is
focused on the eigenvalues.

(a) λ1/l converging monotonically towards one, while for i > 1 λi/l converges towards zero after reaching a
maximum turning point

(b) intermediate correlation length ratios L∗X,i/l corresponding to the maximum turning point of the eigenvalue
λi, i = 2, . . . , 7

Figure 3.5: Normalised eigenvalues λi/l, i = 1, . . . , 7 as a function of the correlation length
ratio LX/l, with l the domain length, obtained by a one-dimensional Gaussian random field
considering a single exponential correlation kernel [Dannert et al., 2021a].

3Note that this is independent from the fact whether the model M through which the imprecise random
field is propagated is monotonic or not.
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In Figure 3.5, the first seven eigenvalues occurring from the analytic solution of a 1D ran-
dom field with an SE correlation function are depicted as a function of the correlation length
from a very small to a high range. Both, the eigenvalues and the correlation length are nor-
malised by the domain length l, which has been chosen to be in meters for this example. For
decreasing correlation length ratios LX/l, all eigenvalues converge towards zero, as visible in
Figure 3.5a. In case of an increase of the correlation length towards LX � l, however, λ1/l

increases monotonically and finally converges towards one, while λi/l increase to a maximum
turning point before decreasing again for i > 1 and finally converge to zero again. The turning
points are depicted in Figure 3.5b in a closer view as indicated by the grey dashed box and will
be discussed further in the context of the following optimisation procedure.

Due to the non-monotonic behaviour of the eigenvalues and -functions with respect to the
correlation length, also values L∗X ∈ [LX , LX ] can become significant for the bounds of the
model response, even if the model itself is monotonic. These values L∗X are referred to as
intermediate values. This issue can be handled either by global optimisation [Faes and Moens,
2019b] or by discretising the interval valued correlation length [Dannert et al., 2018, 2019].
However, both approaches can become computational costly.

For a scenario where only monotonic models are applied to propagate imprecise random
fields (as it will be done in this work), Faes and Moens [2019b] developed an efficient approach
to determine L∗X a priori and this way avoiding a global optimisation over the whole model
propagation. The idea is to find the values L∗X which lead to the extreme values in

√
λiφi(z).

These can be obtained by optimising

L∗Xi
= arg min

G(LX)
‖
√
λiφi(z)‖2, s.t. LX ∈ LIX , (3.51)

L
∗
Xi

= arg max
G(LX)

‖
√
λiφi(z)‖2, s.t. LX ∈ LIX , (3.52)

for i = 1, . . . , T , with G(D, LX) : D×LX 7→ {λi, φi(z)}nep

i=1 being the process of solving Eq. (3.3)
for nep eigenpairs given a crisp value LX . As the L2 norm is differentiable, the resulting non-
linear approximation problem is smooth, convex and of limited dimension. Furthermore, a
complete bounding set of the basis function in each mode is obtained by searching those LX
corresponding to the extrema of their L2 norm. The optimisation leads to maximally 2T

solutions in a single vertex set L,

L = {L∗X1
, L
∗
X1
, . . . , L∗XT

, L
∗
XT
}. (3.53)

Note that the intermediate values L∗X,i ∈ LIX resulting for an interval valued correlation length
LIX correspond to the maximum turning point values of the eigenvalues λi, laying within the
considered interval, see Figure 3.5b.

In the context of damage mechanics, Dannert et al. [2021a] have shown that intermediate
correlation length values do not have a significant effect on the resulting p-box, when monotonic,
static problems are applied. Indeed, a small influence of the intermediate values was shown,
however it has not proven to be of relevant impact to the p-box from the engineering point



3.3. PROBABILITY BOUNDS ANALYSIS FOR IMPRECISE RANDOM FIELDS 47

of view. The focus of the following discussions and studies is therefore on the challenge of
assuming different correlation length values in general, using three different ratios LX/l = 0.1,
LX/l = 1.0 and LX/l = 10.0 with respect to the domain length l, in order to investigate the
influence and resulting problems raising from different magnitudes of correlation length ratios
and the corresponding variability of the random field.

Double loop approach: Imprecise random fields can be propagated through a monotonic
model as described in Algorithm 1. As the approach is non-intrusive, any monotonic model can
be used as a black box and is therefore not discussed in this section. In the later applications,
an FE model will be used considering linear elastic or elasto-plastic material behaviour. The
algorithm is implemented in Matlab while Abaqus is used as FE solver. In order to use material
data described by random fields, the subroutine USDLFD4 of Abaqus is used to define the material
data at the integration point level.

Before starting the algorithm, the imprecise random field parameters as well as their hyper
parameters need to be defined. Furthermore, the parameters for the stochastic approach, e.g.
the number of samples in case of a Monte Carlo (MC) approach, are required as well as the
quantities of interest to be evaluated.

In the outer loop, the epistemic uncertainties, i.e. interval valued hyper parameters, are
discretised. In analogy to the p-box propagation in terms of discretisation or sampling described
by Zhang et al. [2010], the interval valued parameters might also be sampled. However, as
pointed out before, in case of monotonic models a pure vertex analysis is sufficient. For more
than one imprecise random field input parameter, this means that all vertex combinations
are determined. If intermediate correlation length values are considered, also these values are
combined with each value of the other parameter.

For each discretised epistemic parameter (combination), called scenario c, the following is
performed. First, the crisp random field resulting for the current parameters is discretised by
KL expansion. If the eigenpairs are already available for the current case, i.e. the Fredholm
integral equation has been solved already for the current correlation length value regarding the
underlying problem domain, the results can be recycled. Else, Eq. (3.3) needs to be solved
either numerically or analytically.

In the inner loop, the aleatory uncertainties, i.e. the crisp random field resulting for the
current parameters, are propagated. For each realisation number j out of a pre-defined number
ns of realisations, a deterministic random field realisation is created for every parameter that
is considered to be uncertain. This is done by inserting the current hyper parameter values,
the eigenpairs as well as ξj into Eq. (3.9). Different ways to choose ξj will be discussed in
Chapter 5. The resulting realisation can then be propagated deterministically through the
model and is stored in combination with the corresponding results of the model response.

As soon as all realisations have been propagated, the statistical evaluation is performed
for each QoI (stochastic post-processing). This includes to determine the stochastic moments
as well as the cumulative distribution function (CDF) of the current aleatory random field

4https://abaqus-docs.mit.edu/2017/English/SIMACAESUBRefMap/simasub-c-usdfld.htm#
simasub-c-usdfld

https://abaqus-docs.mit.edu/2017/English/SIMACAESUBRefMap/simasub-c-usdfld.htm#simasub-c-usdfld
https://abaqus-docs.mit.edu/2017/English/SIMACAESUBRefMap/simasub-c-usdfld.htm#simasub-c-usdfld
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Algorithm 1 Nested algorithm to propagate imprecise random fields based on interval valued
parameters applying a monotonic model.

Require:
monotonic model (black box)
imprecise random field hyper parameters
sample size ns

quantity of interest (QoI)

% initialising
if LX is epistemic uncertain then

% optimisation
c = (LX , L

∗
X,i, LX)

else
% vertex analysis
c = I×

end if

% outer loop: discretise epistemic uncertainties
for i = c do

% discretise random field
if (λ, φ) available then

load (λ, φ) of current correlation structure
else

solve Fredholm integral equation
save (λ, φ) of current correlation structure

end if

% inner loop: propagate aleatory uncertainties
for j = ns do

generate random field realisation
propagate through model . black box, e.g. FE solver by Abaqus
save realisation and model response

end for

% stochastic post-processing (for each QoI)
evaluate stochastic moments
generate CDF
save statistics

end for

% interval post-processing (for each QoI)
determine interval bounds of stochastic moments
determine CDF bounds
save p-box results
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propagation. Again, methods to be applied for this purpose are discussed further in Chapter 5.
When the crisp random fields of all epistemic parameter combinations are propagated and
evaluated, the double loop approach is finished. The resulting p-box is determined within the
interval post-processing. From all epistemic scenarios, the minimum and maximum stochastic
moments are identified. Furthermore, the left and right bound of the CDFs are determined.

Propagating imprecise random fields implies some additional challenges compared to the
quests to be solved in terms of UQ and UP already. This applies especially for interval valued
correlation lengths as studied in the following. In the subsections below, the main issues in
terms of the computational cost, the influence of the truncation order as well as the spatial
discretisation are investigated and discussed.

3.3.1. Computational cost

Due to the double loop approach as contoured in Algorithm 1, the computational cost can
increase drastically depending on the number of imprecise random fields as well as the number
of their interval valued hyper parameters. The effect of both is visualised in Figure 3.6. Each
circle stands for the propagation of one scenario, i.e. a crisp random field, which may already
include a high number ns of deterministic model evaluations.

RF1 ns

pRF1
1 ∈ I1

(a) one imprecise random field,
one interval valued hyper para-
meter: ns ≥ 2

RF1 ns

pRF1
1 ∈ I1

pRF1
2 ∈ I2

(b) one imprecise random field,
two interval valued hyper para-
meters: ns ≥ 4

RF1

RF2

ns

pRF1
1 ∈ I1

pRF1
2 ∈ I2

(c) two imprecise random fields,
two interval valued hyper para-
meters: ns ≥ 16

Figure 3.6: Computational cost depending on the number of crisp random field scenarios
(each symbolised by a circle) to be propagated with a number ns of realisations, according
to the number of considered imprecise random fields and corresponding interval valued hyper
parameters.

If one parameter RF1 is described by an imprecise random field, which results from only
one interval valued hyper parameter pRF1

1 , at least two crisp random field scenarios have to
be propagated, see Figure 3.6a. In case of intermediate values even more crisp random fields
arise, as indicated by the dashed circle between the two circles assigned to the interval bounds.
Considering a pure vertex analysis without intermediate values, this leads already to four
scenarios when a second hyper parameter pRF1

2 of the first imprecise random field is considered
to be interval valued (Figure 3.6b). Then, the computational cost to propagate this imprecise
random field is already four times the computational cost required for an standard aleatory
uncertainty analysis. Adding further interval valued hyper parameters or a second imprecise
random field, the number of vertex combinations and therefore the number of crisp random
fields to be propagated increases drastically, as exemplified in Figure 3.6c for two imprecise
random fields including each two interval valued hyper parameters.



50 CHAPTER 3. PROPAGATING IMPRECISE RANDOM FIELDS

In order to keep the computational cost feasible, the individual model evaluation should be
aimed to be as efficient as possible. This can be achieved by highly developed (commercial)
solvers, parallel computing as well as model order reduction techniques. Additionally, the
number of realisations to be propagated for each crisp random field should be kept as low as
possible. For this purpose, different sophisticated sampling techniques are investigated and
discussed in Chapter 5.

3.3.2. Influence of the truncation error

Considering an interval valued correlation length LIX , the truncation error of the input param-
eter is of high importance. As already pointed out in Subsection 3.1.2, the convergence rate of
the truncation order depends on the type of the correlation function as well as on the correla-
tion length ratio LX/l with respect to the domain length. This means, if different correlation
lengths are considered in terms of an interval valued correlation length hyper parameter, each
individual crisp random field resulting from a certain value LX has to be truncated at a differ-
ent order. Otherwise, the resulting p-box might be not only affected by the uncertainty of the
input, but also by a different approximation error. For this reason, according to the current
correlation length, the truncation is usually chosen adaptively such that it falls below a certain
predefined mean truncation error ε̄Γ̄ ≤ εmax.

As an example, the truncation order T required to maintain a mean truncation error of
ε̄Γ̄ ≤ 0.015 % is compared for both kernel types in Table 3.2 considering the effective correlation
length ratios LX/l = 0.1, LX/l = 1.0 and LX/l = 10.0. In case of the smallest chosen correlation
length, the SE kernel requires more than 130 times the number of truncation terms than the
ME kernel. With regard to the curse of dimensionality, which will be further discussed in
Chapter 5, the ME is therefore highly advantageous.

Table 3.2: Comparing the truncation order T required to obtain a comparable mean correlation
error of ε̄Γ̄ ≤ 0.015 % considering different effective correlation length ratios LX/l assuming an
SE or an ME correlation function for a 1D random field.

LX/l [−] 0.1 1.0 10.0

SE
LSE
X /l [−] 0.1 1.0 10.0
T [−] 13472 1392 118

ε̄Γ̄ [%] 0.01499 0.01498 0.01491

ME
LME
X /l [−] 0.0471 0.4249 2.1114
T [−] 102 12 3

ε̄Γ̄ [%] 0.01468 0.01304 0.01475

Regarding the SE correlation function, a much higher mean truncation error has to be
accepted, if small correlation lengths are considered. In Figure 3.7, the resulting truncation
errors are compared for the different values LX/l, regarding an SE correlation function.

Regarding the mean truncation error ε̄Γ̄ depicted in Figure 3.7a as a function of the trun-
cation order T , a first challenge arises. As the truncation error decreases much faster for large
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(a) mean truncation error ε̄Γ̄ (b) local truncation error εΓ̄(z)

Figure 3.7: Comparing the mean and local truncation error of the single exponential correlation
function regarding a one-dimensional random field obtained by different correlation length ratios
LX/l with respect to the domain length l.

correlation length ratios, not every arbitrary value ε̄Γ̄ can be chosen. For example, for ε̄Γ̄ ≤ 3 %,
for LX/l = 10.0, the next truncation error falling below this aimed value would be ε̄Γ̄ ≈ 1.3 %,
using a truncation order of T = 2. However, the error resulting from the other correlation
lengths would approximately fit the aim and this way the approximation error of the input
is again not comparable. For this reason, the aimed error should always be oriented at the
largest correlation length. On the other hand, as the error decreases that quickly in case of
large values LX > l, a further issue is then to maintain acceptable truncation orders for the
small values LX < l. As can be seen for an aimed value ε̄Γ̄ ≤ 1.3 %, this results in T = 2 in
case of LX/l = 10.0 but in T > 150 for LX/l = 0.1 already.

In Figure 3.7b, the local truncation error εΓ̄(z) is depicted with respect the domain. Again,
the three different correlation length ratios are compared. Here, the local error is depicted for a
mean truncation error ε̄Γ̄ ≤ 1.3 %, i.e. a different truncation order (as indicated in the legend)
is chosen for each considered value LX/l. It can be seen that in case of a large correlation length
LX > l, εΓ̄(z) varies locally significantly around the aimed mean truncation error, while it is
relatively close to ε̄Γ̄ within the whole domain for small values LX < 1. This is another challenge
to be addressed when dealing with imprecise random fields. Applying imprecise random fields
to damage mechanics, Dannert et al. [2021a] have shown that a high local variation of εΓ̄(z)

can cause artificial localisation effects. Regarding large correlation lengths, the variation of the
local truncation error can be reduced by increasing the truncation order. However, this leads
again to a smaller global error ε̄Γ̄ and therefore higher required truncation terms regarding the
small correlation length values.

This viscous circle cannot be broken without increasing the truncation order to very high
values (then both errors converge towards zero), which is not feasible in terms of the curse
of dimensionality. The problem can be reduced however by choosing correlation functions
providing a fast convergence, e.g. the ME correlation function. As can be seen in Table 3.2 the
ME kernel outperforms the SE kernel by far in terms of the required truncation order when a
comparable effective correlation length is applied. In any case, dealing with imprecise random
fields resulting from interval valued correlation lengths, the resulting truncation errors of the
individual input fields must be carefully investigated and weighed appropriately.
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3.3.3. Influence of the spatial discretisation

Considering small correlation lengths, i.e. a high variability, the domain discretisation must be
chosen accordingly. This is exemplified in Figure 3.8 for nel = 5 and nel = 50. If the number of
elements is chosen too small, the resulting random field realisations are artificially smoothed.
However, the computational cost of a single random field propagation usually increases accord-
ing to the discretisation. Note that as an alternative (or additionally) to h-refinement, this
problem can also be addressed by p-refinement.

(a) five elements (b) fifty elements

Figure 3.8: Random field realisation resulting from a single exponential correlation function
with LX/l = 0.1 (blue) as well as the values assigned to the discretised domain considering
different numbers of elements nel.

Sudret and Der Kiureghian [2000] conclude from their literature review that the element
length should be chosen approximately between LX/4 and LX/2. They further emphasise that,
in the context of FE analysis, it might additionally be essential to consider singular points
when creating the FE mesh. In this case, solving the KL expansion and the FE problem based
on different meshes can become useful to reduce the computational cost for solving Eq. (3.22).
Still, the FE mesh needs to be fine enough to capture the variability of the random field.



4. Solid Mechanics

Scientific and engineering problems are usually described by ordinary or, more generally, partial
differential equations (PDEs). Given a spatial d-dimensional bounded domain D ⊂ Rd, with
d = 1, 2, 3, a PDE is given by L(z; y) = f(z; y), z ∈ D

B(z; y) = g(z; y), z ∈ ∂D
, (4.1)

with L denoting a linear or non-linear differential operator and B describing the boundary
conditions at the body surface ∂D, see Figure 4.1. The aim is to solve the PDE for the (usually
spatial dependent) primary variable y = y(z). It is distinguished into Dirichlet boundary condi-
tions, defining the primary variables at the boundary ∂uD, and Neumann boundary conditions,
when the spatial gradient of the primary variables is described at ∂tD.

n

∂D
∂uD

∂tD
da

df , t

D

u∗

t∗

Figure 4.1: Arbitrary cut through a continuous body including general definitions.

When the PDE cannot be solved analytically, numerical methods are required to approxi-
mate the solution y. For instance, in the finite element method (FEM) y is defined based on
a piecewise continuous basis by dividing the domain D into an arbitrary amount i = 1, . . . , nel

of finite sub-domains De,i, so-called finite elements (FEs). Before introducing the main idea of
FEM in Section 4.3, Eq. (4.1) is specified in the context of the continuum mechanical framework
in Section 4.1 and the used material laws are described in Section 4.2.

Model assumptions: In this work, linear-elastic and elasto-plastic material laws are used,
the latter including linear hardening. For the purpose of all studies, the following model as-
sumptions are made.

• Only static problems without cyclic loading, i.e. a one-way loading history, are considered.
Therefore, isotropic and kinematic hardening are indistinguishable.

• Only isotropic materials are applied, i.e. the material response does not depend on the
loading direction.
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• For the scope of this chapter, homogeneous materials are considered, although spatial
uncertain material properties are investigated in the later studies1.

• All examples are applied assuming small strains (ε < 5 %) and small rigid body rotations,
i.e. all quantities can be defined in the reference configuration and the linear strain tensor
can be decomposed additively into an elastic and a plastic part.

• A Cartesian coordinate system is used, i.e. tensor notations (e.g. denoted by a := aiei or
A := Aijei ⊗ ej) can be simplified by a pure matrix notation in terms of their coefficient
matrix, neglecting the base unit vectors (i.e. a := ai and A := Aij).

• In case of elasto-plasticity, the plastic behaviour is independent of the hydrostatic stress
state, i.e. the yield criterion depends only on the deviatoric part and the plastic defor-
mations are considered to be volume conservative (von Mises plasticity).

• Only isothermal processes are considered, i.e. the temperature does not change.

The focus of this chapter lays on describing the framework adjusted to these model as-
sumptions rather than covering the whole generalised concept. As FEM in the context of solid
mechanics using linear-elastic and elasto-plastic material descriptions is well established and
will be applied as a black box model in the context of a uncertainty propagation (UP), only the
main terms and equations are provided here. For detailed derivations and further extensions,
e.g. with regard to large deformations, the reader is referred to additional literature, such as
the books by Holzapfel [2000], de Souza Neto et al. [2008], Altenbach [2015].

4.1. Continuum mechanical framework

A continuum is understood to be a domain of closed region (also called body) which is described
by a continuous set of material points, at which the properties of the continuum are defined. In
general, this can imply fluids or solid bodies but only the latter are considered and discussed in
this work. The aim of continuum mechanics is to describe the kinematic and kinetic behaviour of
continua. A more detailed introduction into continuum mechanics as well as into the underlying
tensor algebra can be found e.g. in the books by Altenbach [2015] or Holzapfel [2000].

Considering the continuum to be an arbitrary solid body as exemplified in Figure 4.1, exter-
nal impacts such as forces or (prohibited) displacements may cause deformations, translations
and/or an internal stress state. Particularly, when large deformations can occur, it is dis-
tinguished into reference and current configuration. These are often labelled by capital and
lower-case letters [Holzapfel, 2000], respectively, e.g. ‘dZ’ and ‘dz’ to denote an incremental
length or ‘Grad (·)’ and ‘grad (·)’ as gradient operator. Regarding any material point given
by the vector Z in the current configuration, with z being the corresponding point in the
reference configuration, the displacement vector can be found by u = z − Z. Based on this
connection, the stress and strain measures need to be defined in both configurations and can

1Varying material data can be considered straightforwardly at the Gauss point level when assembling the
stiffness matrix within FEM.
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be connected via push-forward and pull-back relations. However, assuming only small strains,
the gradient of the displacement with respect to the current configuration, Gradu = ∂ui/∂ZJ ,
and with respect to the reference configuration, gradu = ∂ui/∂zj, are approximately equal, i.e.
Gradu ≈ gradu. Then, the linear strain tensor is defined by

ε =
1

2

(
gradu+ gradTu

)
, (4.2)

εij =
1

2

(
∂ui
∂zj

+
∂uj
∂zi

)
,

i.e. the continuum mechanical framework can be exclusively described in terms of the reference
configuration. Note that the linear strain tensor is symmetric, i.e. εij = εji. As all examples in
this work are based on small strain assumptions, all equations and formulations described in
the following are directly discussed in the reference configuration only.

The stress state of a continuum results from the internal forces. Regarding an arbitrary cut
through the body D, as visualised in Figure 4.1, and therein an infinitesimal small area da, the
vector of tension t is defined as

t =
df

da
, (4.3)

where df is the force acting on da. Applying Cauchy’s theorem, t = σ ·n, with n the normal
vector on the surface da, the tension t can be expressed as the Cauchy stress tensor σ := σ(z),
with

σ =

 σ11 σ12 σ13

σ22 σ23

sym. σ33

 . (4.4)

By that, the stress state is described precisely at a certain point z ∈ D in terms of the normal
stresses σii in the direction of the corresponding orthonormal cut ni and the shear stresses σij.

In the following subsection, the balance equations required for the scope of this work are
briefly discussed, before introducing the constitutive relations to describe the considered mate-
rial behaviour in Subsection 4.1.2.

4.1.1. Balance equations

The following universal balance laws are required to describe physical systems in general.

i) Assuming a mass conserving system, the balance of mass describes the change of the mass
density ρ due to volume change. In this work, the mass of the body is considered time
invariant, i.e. dm

dt
= 0.

ii) The balance of momentum describes the equilibrium of the internal and external forces to
be fulfilled over time.

iii) From the balance of angular momentum, the symmetry of the Cauchy stress tensor, σ =

σT, can be derived.
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iv) The balance of energy, also called the first law of thermodynamics, describes the equilibrium
of the thermodynamic properties of a system.

v) The balance of entropy (second law of thermodynamics) is an inequality condition providing
the direction of energy transfer of a process.

In the following paragraphs, the balance laws (ii), (iv) and (v) are described more detailed with
respect to the applications provided in this work as they are of specific importance.

Balance of momentum: Newton’s law of motion describes the time dependent change in
the momentum of a mechanical system resulting from the internal forces and external forces,
i.e. the body forces and the applied forces. Applying Cauchy’s theorem and the divergence
theorem, the momentum balance can be transformed to the linear momentum equation,

ρ
dv

dt
= ρb+ divσ, (4.5)

to be fulfilled at an arbitrary material point z ∈ D. Here, the rate of the linear momentum
ρv is equal to the external forces, composed by the body forces b := b(z) and the internal
forces divσ. The density ρ is independent of time and space. Furthermore, in case of a
static problem, the velocity v := v(z) is zero and the left side vanishes, leading to Cauchy’s
equilibrium equation,

ρb+ divσ = 0. (4.6)

The boundary conditions are given by the (applied or restricted) deflections as well as the
external forces,

u = u∗ on ∂uD, (4.7)

t = σ · n = t∗ on ∂tD. (4.8)

The PDE given in Eq. (4.6) is solved in terms of FEM as described in Section 4.3.

Balance of energy: The first law of thermodynamics can be transformed into the local form
of the energy balance given by

ρė = d · · σ + ρr − div q, (4.9)

where e is the internal energy, d the strain velocity tensor, r the radiant heat and q the heat
flux vector. In case of small deformations, it is d = ε̇p, with ε̇p the plastic strain rate.

Balance of entropy: From the second law of thermodynamics, the local form of the entropy
balance can be derived as

ρϑṡ ≥ ρr − div q +
1

ϑ
q · gradϑ, (4.10)

with s the specific entropy and ϑ the temperature. The free Helmholtz energy ψ is defined by

ψ = e− ϑs. (4.11)
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Inserting Eq. (4.9) and Eq. (4.10) into ρψ̇ = ρė − ρϑṡ and assuming small strains, i.e. d = ε̇,
it follows for the dissipation

D = ε̇p · · σ − ρ
(
ψ̇ + ϑ̇s

)
︸ ︷︷ ︸

Din

− 1

ϑ
q · gradϑ︸ ︷︷ ︸

Dth

≥ 0. (4.12)

Note that the first term follows from d = ε̇ as the elastic part of the strain tensor is not
dissipative. The total dissipation is decomposed into the internal and the thermal dissipation,
Din and Dth, respectively. It describes the irreversible conversion of potential energy and is
important for deriving physically consistent material models.

4.1.2. Constitutive theory

Describing the thermodynamic state of a material point within a continuum, it is distinguished
into independent variables, i.e. the spatial location z and the temperature ϑ of the material
point at time t, and dependent (constitutive) variables, e.g. the free energy ψ, the specific
entropy s, the stress tensor σ and the heat flux vector q. In general, the constitutive variables
may depend on the location, (the rate and/or gradient of) the temperature, the strain (rate)
or the density. Considering small strains and homogeneous materials, the dependency on the
location and the density vanishes. Furthermore, assuming moderate deformation rates, all
time dependent terms can be neglected. For isothermal processes, also the dependency on the
temperature disappears and it remains

ψ = ψ̃ (ε) , (4.13)

σ = σ̃ (ε) , (4.14)

Substituting the time derivation ψ̇ to the remaining terms of Eq. (4.12),(
σ − ρ∂ψ

∂ε

)
· · ε̇p ≥ 0, (4.15)

it follows that

σ = ρ
∂ψ

∂ε
. (4.16)

Material symmetry: Regarding elastic material behaviour under small deformations, the
stress state σ is depending linearly on the strains ε as defined by the generalised Hooke’s law,

σ = C · · ε, (4.17)

σij = Cij kl εkl, (4.18)

with C = Cij kl the fourth order linear elastic material tensor. The free energy function can be
expressed in terms of the linear strain tensor,

ψ =
1

2
ε · · (C · · ε) =

1

2
Cij klεijεkl. (4.19)
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Due to the symmetry of stress and strain tensor, σij = σji and εkl = εlk, it is consequently
Cij kl = Cji kl = Cij lk and the general 81 components of C reduce to 36 constants. Referring
to Cartesian coordinates, this enables a simple matrix formulation becoming handy for an FE
implementation. Writing the unique components of the symmetric stress and strain tensor as
a column matrix,

σ = [σ11 σ22 σ33 σ12 σ23 σ31 ]T, (4.20)

ε = [ ε11 ε22 ε33 2ε12 2ε23 2ε31 ]T, (4.21)

Eq. (4.17) becomes
σ = C ε, (4.22)

with C being a 6× 6 material matrix. Furthermore, with C being the second partial derivative
of the free energy function,

C =
∂σ

∂ε
=

∂2ψ

∂ε∂ε
=

∂2ψ

∂εij∂εkl
=

∂2ψ

∂εkl∂εij
, (4.23)

it is Cij kl = Ckl ij and C can be expressed symmetrically in terms of 21 material parameters,

C =



C1111 C1122 C1133 C1112 C1123 C1131

C2222 C2233 C2212 C2223 C2231

C3333 C3312 C3323 C3331

C1212 C1223 C1231

sym. C2323 C2331

C3131


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66


.

In Subsection 4.2.1, the material matrix C is further specified in terms of an isotropic,
linear-elastic material behaviour. Then the number of independent elastic constants reduces to
two material parameters.

Internal variables and dissipation: For the description of inelastic material behaviour,
Eq. (4.13) and Eq. (4.14) are supplemented by internal variables, which can be understood
as unobservable state variables βi, i = 1, . . . , n. These are determined in terms of evolution
equations given by functions of the constitutive variables and the internal variables. For the
model assumptions stated earlier in this work, this results in

dβi
dt

= β̇i(ε,β1, . . . ,βn). (4.24)

The evolution equations have to be integrated numerically, e.g. by implicit Euler method. If the
system is not time dependent, a so-called pseudo-time is introduced to develop the non-linear
response step by step. For example, considering quasi-static problems, the load can be applied
incrementally by introducing such a pseudo-time.

Describing the free energy given in Eq. (4.13) not only as a function of the strain ε but also
of the internal variables βi,

ψ = ψ̃ (ε,β1, . . . ,βn) , (4.25)
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the internal dissipation Din given in Eq. (4.12) describes the mechanical dissipation resulting
from inelastic material behaviour,

Din = σ · · ε̇p − ρ
n∑
i=1

∂ψ̃

∂βi
· · β̇i ≥ 0. (4.26)

The time rate variables are called thermodynamic fluxes, while Bi = −∂ψ/∂βi describe the
thermodynamic forces.

In the context of elasto-plastic material behaviour, the internal variable is given by the
plastic strain rate tensor ε̇p. If hardening is considered, this internal variable is supplemented
by a scalar valued internal variable to describe the isotropic hardening and/or a tensor valued
internal variable in case of kinematic hardening. An elasto-plastic material model considering
linear hardening is introduced in Subsection 4.2.2.

4.2. Material descriptions in terms of small strains

To simulate the behaviour of solids under loading, the response needs to be modelled properly
according to the typical behaviour of the underlying material. For example, the behaviour of
steel can be described as linear-elastic as long as the stress occurring due to loading maintains
a certain threshold. Afterwards, the material starts to deform irreversibly and plastic material
laws need to be considered.

Apart from (linear) elastic material models, there exist many well established laws to model
elasto-plasticity, including hardening effects as the circumstances require. In the following, the
fundamentals of isotropic linear-elastic material behaviour are summarised in Subsection 4.2.1
and supplemented by a standard elasto-plastic material law including linear hardening in Sub-
section 4.2.2, according to the constitutive relations introduced in Subsection 4.1.2. If not
indicated differently, this section is based on the book by de Souza Neto et al. [2008]. However,
the equations are reduced to the scope of the examples applied in this work, based on the model
assumptions introduced in the beginning of this chapter.

4.2.1. Linear-elasticity

Assuming an isotropic material such as steel, the number of different entries in the material
matrix C can be further reduced. Then, the model response is a function only of the Young’s
modulus E and the Poisson’s ratio ν and Eq. (4.22) can be written with the components

C11 = C22 = C33 =
E(1− ν)

(1 + ν)(1− 2ν)
,

C12 = C23 = C13 =
Eν

(1 + ν)(1− 2ν)
,

C44 = C55 = C66 =
E(1− 2ν)

2(1 + ν)(1− 2ν)
,
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and all other entries C = 0. Alternatively, Eq. (4.22) can be described in terms of the bulk
modulus κ and the shear modulus G,

σij = κ εkkδij︸ ︷︷ ︸
−p I

+ 2G

(
εij −

1

3
εkkδij

)
︸ ︷︷ ︸

σ̃

, (4.27)

which represents the stress tensor by the hydrostatic pressure

p = −1

3
trσ (4.28)

and its deviatoric part σ̃ = σ+p I, with I the identity matrix. Analogously to this hydrostatic-
deviatoric split, the strain tensor can be decomposed into

ε =
1

3
vI + ε̃. (4.29)

The first term represents the volumetric part in terms of the volume dilatation v = tr ε and
the second term is the deviatoric part. This tensor decomposition becomes important in the
following subsection, where the plastic deformation is assumed to be volume conservative, i.e.
the plastic flow does not change the volume significantly (von Mises plasticity).

4.2.2. Elasto-plasticity

Plastic flow means an irreversible deformation of the material. Regarding elasto-plastic material
models, it is assumed that the response of a material is elastic (i.e. reversible) as long as a
certain threshold, the yield stress σy, is not reached. When the yield stress is exceeded, plastic
flow occurs associated with plastic deformations.

Assuming small rigid body rotations, the linear strain tensor can be decomposed into a part
of elastic strains εe and the remaining plastic strains εp,

ε = εe + εp. (4.30)

Furthermore, for isothermal processes the free energy is a function only of the elastic strains,
i.e. ψ := ψ(εe) while the internal dissipation depends on the plastic strain rate,

Din = σ · · ε̇p ≥ 0. (4.31)

Following the principle of maximum internal dissipation, i.e. maximising Din by convex opti-
misation leads to a stationary saddle point problem to be solved,

L = −Din(σ) + γ̇f(σ), (4.32)

with γ̇ being a Lagrange multiplier used as plastic parameter in this context. The associated
flow rule follows from differentiating L with respect to σ,

∂L
σ

= −ε̇p + γ̇
∂f

∂σ
= 0, (4.33)

⇒ ε̇p = γ̇
∂f

∂σ
. (4.34)
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The yield criterion f (also called flow law) is chosen according to the assumptions made for
plastic flow, e.g. by the von Mises yield criterion as described in the next paragraph. The fact
that either the flow law is fulfilled (f < 0), i.e. elastic behaviour occurs and the plastic param-
eter is zero, or the plastic region is reached and the plastic parameter appears, is summarised
in the Kuhn-Tucker conditions

γ̇ ≥ 0, f ≤ 0, γ̇f = 0. (4.35)

Then, the plastic parameter γ̇ is obtained from the consistency condition ḟ = 0 if f = 0.

Von Mises plasticity: Concerning the material behaviour of metals, the plastic flow does
not affect the volume. This means that plasticity is independent of the hydrostatic stress, i.e.
the yield criterion depends only on the stress deviator σ̃,

f(σ̃) ≤ 0, (4.36)

and the plastic strain rate given in Eq. (4.34) becomes

˙̃εp = γ̇
∂f

∂σ̃
. (4.37)

Under this assumption as well as considering isotropic material behaviour, the von Mises yield
criterion can be applied. By this hypothesis it is assumed that plastic flow depends on the
equivalent von Mises stress σvM,

f = σvM − σy ≤ 0. (4.38)

The plastic region is reached and yielding starts as soon as the equivalent von Mises stress

σvM =

√
3

2
σ̃ · · σ̃ =

√
3

2
‖σ̃‖ (4.39)

exceeds the yield stress σy, i.e. when the yield criterion

f = ‖σ̃‖ −
√

2

3
σy ≤ 0, (4.40)

is violated. For ideal plasticity, the plastic parameter γ̇ is obtained by inserting Eq. (4.40) to
the consistency condition, leading to

γ̇ = n · · ˙̃ε, with n =
σ̃

‖σ̃‖
. (4.41)

Here, n is a second order tensor normal to the yield function, pointing into the direction of the
deviatoric stress.

Hardening: When hardening effects occur, the material can bear a further increase of stress
also after yielding starts. There are two kinds of linear hardening, isotropic and kinematic.
While the first is physically associated with dislocations of the crystal lattice, the latter is
caused by the resulting residual stress.
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Hardening is described by further internal variables, a scalar internal variable a in case of
isotropic hardening and a tensor valued internal variable β in case of kinematic hardening. The
free energy is then supplemented by these internal variables, ψ := ψ(εe, a,β) and the internal
dissipation in Eq. (4.31) becomes

Din = σ · · ε̇p−∂ψ
∂a︸ ︷︷ ︸
α

ȧ−∂ψ
∂β︸ ︷︷ ︸
τ

β̇. (4.42)

Due to the hardening, the yield surface changes and the flow law needs to be adapted, e.g. in
case of linear hardening

f = ‖σ̃ − τ‖ −
√

2

3
(σy + α) ≤ 0. (4.43)

In terms of isotropic hardening, this can be interpreted as an increase of the yield surface, i.e.
the initial yield stress σy raises by α. Alternatively (or additionally), the yield surface is shifted
in the deviatoric space by the stress back tensor τ in the case of kinematic hardening.

In case of a monotonically increasing load, the two hardening laws are indistinguishable
as the different effects of the hardening types start to occur due to reverse loading. As only
monotonic loading is applied in this work, assuming an elasto-plastic material with linear
kinematic hardening is therefore sufficient. The commercial software Abaqus is used to solve
the corresponding FE problem. Abaqus provides von Mises plasticity combined with a linear
kinematic hardening model based on the linear hardening law by Ziegler [1959],

τ̇ = H
1

σy

(σ − τ ) ˙̄εp, (4.44)

with H the hardening parameter and the scalar

˙̄εp =

√
2

3
ε̇p · · ε̇p =

√
2

3
‖ε̇p‖ (4.45)

describing the equivalent plastic strain rate.

4.3. Non-linear finite element method

The FEM is a well established approach to approximate the solution of PDEs in terms of its
weighted integral mean, by multiplying the strong form by a test function δu and integrating
over the domain, which is then called the weak form of the PDE. In this section, the basic con-
cept of (non-linear) FEM is briefly exemplified using the momentum balance given in Eq. (4.6)
under the boundary conditions Eq. (4.7) and Eq. (4.8). Note that for bar and beam elements,
the underlying PDE is given by the corresponding differential equations describing the deflec-
tion of a bar and the bending of a beam, respectively. For these examples as well as further
derivations regarding the given example, the reader is referred to the book by Bathe [1996], on
which this section is based.
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The weak form of Eq. (4.6) is obtained as described above and results in∫
D

δu · (divσ + ρb) dv = 0. (4.46)

In the context of solid mechanics, the test function δu can be interpreted as a virtual displace-
ment. After a partial integration and applying the Gaussian divergence theorem, the weak form
results in the mechanical equilibrium∫

D

grad (δu) · · σ dv −
∫
D

δu · ρb dv −
∫
∂tD

δu · t∗ da = 0. (4.47)

The first term describes the virtual work of the internal forces, while the second and third terms
are the virtual works of the body forces and the surface forces, subsumed to the virtual work
of the external forces.

Spatial discretisation: To solve the weak form for the displacement field u, the domain D
is discretised into nel elements De,

D ' Dh =

nel⋃
e=1

De, (4.48)

accepting a certain discretisation error. In Figure 4.2a the discretisation of an arbitrary two-
dimensional (2D) domain D by 18 four-node elements is exemplified.

D

De

∂D

∂De

(a) Discretisation of the domain D into nel

elements De

x1

x2

De
D�

r1

r2

(1, 1)

(1,−1)

det(J)

(−1, 1)

(−1,−1)

det(J−1)

(b) Relation between an element De and the reference
element D�

Figure 4.2: Spatial discretisation of a domain D and the transformation of a finite element De

to a reference element D�.

The weak form can then be solved for each element De, using shape functions hi(r) which are
defined at a reference element D� given in a reference coordinate system r. For that purpose,
each FE is transformed to the reference element by the Jacobian determinant,

det J = det
∂z

∂r
. (4.49)

The transformation of a four-node element into a unified reference square is exemplified in Fig-
ure 4.2b. The shape functions have to fulfil the conditions of being complete and differentiable
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as well as the requirements on the continuity of the model. In classical FE applications, this
implies C0-continuous shape functions, except for beam elements, where C1-continuous shape
functions are required. In this work, examples using one-dimensional (1D) bar elements, 1D
beam elements and bi-linear 2D four-node elements are applied.

Isogeometric concept: The body geometry can be approximated locally for each element
in terms of the shape functions by

z ≈
nn∑
i=1

hi(r)zi, (4.50)

with nn the number of nodes at each element. Storing the shape functions of each node in the
H-matrix, this leads to the matrix formulation z = H ẑ, where ẑ denotes the values determined
at the nodes. Applying the isoparametric concept, displacements are approximated by the same
shape functions, i.e.

u ≈
nn∑
i=1

hi(r)ui, (4.51)

u = H û and δu = H δû. (4.52)

Furthermore, with the B-matrix containing the spatial derivations of the shape functions with
respect to the global coordinates ∂hi/∂zj, the strain ε = gradu can be obtained using matrix
notation,

ε = B û and δε = B δû. (4.53)

Assembling: Using matrix instead of tensor notation, Eq. (4.47) can be formulated at each
element by inserting Eq. (4.22) and Eq. (4.53),

δûT

[ ∫
De

BTCB dv

︸ ︷︷ ︸
Ke

û−
∫
De

HTρb dv −
∫

∂tDe

HTt∗ da

︸ ︷︷ ︸
f̂e

]
= 0. (4.54)

Here, Ke is the so-called element stiffness matrix and f̂ e includes both, the body and the surface
forces. The integrals are solved numerically, e.g. by Gaussian quadrature. Reassembling the
FEs De to the complete domain Dh as given in Eq. (4.48),

nel⋃
e=1

[
Ke ûe − f̂ e

]
= 0, (4.55)

the global mechanical equilibrium equation results in the linear equation system

K û = f̂ . (4.56)

From the primary variables u, the secondary variables at each element are obtained within the
postprocessing, e.g. the strains by ε = B û and the stresses by σ = CB û.
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Linearisation: Regarding non-linear material laws, the load is applied in incremental steps
and the material matrix tC = ∂σ

∂u
|t has to be determined depending on the current primary

variables within each step. For this purpose, a pseudo-time t is introduced in case of static
problems. Then, the linearised equilibrium is given by

t+∆tσ = tσ + tC ∆û (4.57)

and Eq. (4.54) results in

δûT

[ ∫
De

BT tCB dv

︸ ︷︷ ︸
tKe

∆û−
∫
De

HTρ t+∆tb dv −
∫

∂tDe

HT t+∆tt∗ da

︸ ︷︷ ︸
t+∆t f̂ex

e

+

∫
De

BT tσ dv

︸ ︷︷ ︸
t f̂ in

e

]
= 0. (4.58)

Assembling the elements to the global element stiffness matrix as well as the external and
internal forces to a global column matrix, the linearised equation system at time t reads

tK ∆û = t+∆tf̂ ex − tf̂ in. (4.59)

While the load increment is increased with each pseudo-time step in an outer loop, the equi-
librium Eq. (4.59) needs to be solved iteratively for each load step in an inner loop, e.g. by the
Newton-Raphson method.
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5. Sampling Based Stochastic Finite Element Methods

When aleatory uncertain quantities are considered as input parameters within a partial differ-
ential equation (PDE), Eq. (4.1) can be extended to a stochastic partial differential equation
(SPDE),  L(ω, z;Y ) = f(ω, z), z ∈ D

B(ω, z;Y ) = g(ω, z), z ∈ ∂D
, (5.1)

which additionally holds within the probability space (Ω,F , P ) as defined in Section 2.1. The
aim of a stochastic finite element method (SFEM) is to find the stochastic function Y =

Y (ω,z) : Ω×Ω 7→ R, which is the solution for P -almost everywhere ω ∈ Ω [Xiu and Hesthaven,
2005]. The dimensionN of the sample space Ω = Ω1×· · ·×ΩN , Ωi ⊂ R, i = 1, . . . , N depends on
the amount of considered random input quantities. Especially when random fields are included,
N increases quickly as it is driven by the chosen truncation order T in this case. In general,
the stochastic dimension is given by

N = nRV +

nRF∑
i=1

T i, (5.2)

where nRV is the number of random variables and nRF the number of random fields which
are considered as random input quantities. Concerning sophisticated sampling techniques, the
stochastic dimension can become challenging in terms of the curse of dimensionality.

There exist intrusive SFEM as well as non-intrusive, i.e. sampling based approaches. In this
work, only the latter are considered as the applicability of intrusive SFEM is quite limited. Note
that besides SFEM, there exist also the interval finite element method [Moens and Vandepitte,
2005, Moens and Hanss, 2011] to consider epistemic (i.e. interval valued) parameters in finite
element (FE) problems. This approach is however not considered in this work.

In this chapter, three well-established, sampling based approaches are introduced in Sec-
tion 5.1 in order to solve SPDEs. Afterwards, the methods are applied to one-dimensional
(1D) and two-dimensional (2D) stochastic FE problems in Section 5.2. Here, the focus is on
the propagation of random fields, which involves high stochastic dimensions. Furthermore, the
applicability of the methods regarding non-linear material models is investigated. Finally, the
approaches are compared and discussed in Section 5.3.

Model assumptions: Additionally to the model assumptions stated in Chapter 4 in terms
of the mechanical conditions, the following model assumptions are made with respect to the
uncertainties.
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• Only aleatory uncertainties are considered in this chapter. The propagation of mixed (i.e.
aleatory and epistemic) uncertainties is discussed in Chapter 6.

• All aleatory input quantities are considered Gaussian distributed, although this is physi-
cally not consistent with the used material parameters. In terms of the largest considered
relative standard deviation of σX = 0.1µX , this means a probability of fX(x < 0) =

7.62× 10−24 to obtain a negative sample. It is assured during all simulations that no
negative samples occurred.

• Input random quantities are assumed to be independent, i.e. the joint probability den-
sity function (PDF) can be obtained by Eq. (2.15). This holds for both, for an input
random vector X = (X1(ω), . . . , XN(ω) of different parameters or for the components
ξ = (ξ1, . . . , ξT ) corresponding to an input random field.

• All applied models are assumed to be sufficiently smooth. In Subsection 5.2.2 it will be
shown that this is not always appropriate and the consequences following in that case are
discussed.

• Only static problems are considered, i.e. there are no (time depending) random processes.

• Each quantity of interest (QoI) is considered as an individual scalar stochastic response
field Y (x, z), e.g. the displacements u1(x, z) and u2(x, z), instead of summarising them
into vector fields, Y (x, z) accordingly.

The aim of this chapter is to introduce and apply well-known global sampling techniques.
All of them have some severe drawbacks which will be discussed and exemplified. There has
been (and still is) a great effort in the research community to overcome these challenges for
each of the described approaches, no matter whether they occur in terms of high dimensionality,
non-linearity or computational effort. However, when different correlation length scenarios are
compared within an imprecise random field, assuring an appropriate input description is already
challenging, as pointed out in Section 3.3. Introducing further difficult to control error sources in
the model propagation by applying highly sophisticated sampling techniques featuring adaptive
or anisotropic refinements seems therefore not appropriate at this state of research concerning
imprecise random fields. Therefore, advanced techniques are mentioned incidentally but not
discussed further in this work.

5.1. Sampling approaches

The fundamental idea of all sampling approaches is to propagate individual realisations de-
terministically through a given model. Regarding input parameters which are described by
a random variable, a realisation xj = X(ωj) follows directly from ωj. On the other hand,
a random field realisation x̄j(z) = X̄(ωj, z) described by a truncated Karhunen-Loève (KL)
expansion is generated by inserting a set of independent standard normal distributed random
variables ξj(ωi) = (ξ1, . . . , ξT )j into Eq. (3.9). These values ξj can be either sampled pseudo-
randomly or chosen artificially, depending on the applied approach.
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Three sampling techniques are briefly introduced in the following. In each of the approaches,
Eq. (5.1) is solved repetitively in terms of the deterministic PDE L(xj, z; yj) = f(xj, z), z ∈ D

B(xj, z; yj) = g(xj, z), z ∈ ∂D
(5.3)

resulting for each N -dimensional realisation xj, j = 1, . . . , ns, with ns the number of realisations
[Xiu and Hesthaven, 2005]. The approaches differ in the way of choosing xj and consequently in
the way of evaluating the stochastic response Y (x, z) from the model evaluations yj =M(xj).

The approaches are valid for both, random vector (or variable) input parameters X(ω) and
random field parameters X(ω,z). Therefore, when random input quantities are denoted by X
or input realisations by xj, this can always mean both, a random vectorX := X(ω) or a random
field X := X(ω,z), and consequently a random vector realisation xj := X(ωj) or a random
field realisation xj := xj(z) = X(ωj, z). The model response yj(z) =M(xj, z) of a propagated
realisation xj is a deterministic function. Analogously to the state of a random field, the state of
the stochastic response field at a specific point zJ is denoted by Y J(x) = Y (x, zJ) =M(X, zJ).

As mechanical problems given on a physical domain D are considered in this work, the
stochastic response Y (x, z) = M(X, z) is generally described by a stochastic response field,
independent of the random input parameterX being a random vector (or variable)X := X(ω)

or a (or several) random field X := X(ω, z). Regarding the used FE models, this means that
the stochastic response is available for the node values ẑ, i.e. the statistic evaluations can be
straightforwardly performed at each individual node value. To keep this in mind, the spatial
coordinate ẑ is kept in the equations to emphasise the spatial dependency of the stochastic
response and to make clear that each equation is evaluated individually at each FE node.

5.1.1. Monte Carlo simulation

A straightforward method to use random quantities within a stochastic simulation is given by
Monte Carlo (MC) methods [Fishman, 1996]. In case of a brute force MC simulation, nMC

realisations xj, j = 1, . . . , nMC are sampled pseudo-randomly, either in terms of the random
variable input parameters or the set of standard normal distributed random variables ξj to
obtain a random field realisation. Eq. (5.3) is then solved for each realisation by propagating
xj directly through the considered model,

yj(ẑ) =M(xj, ẑ), j = 1, . . . , nMC. (5.4)

As the sampled input parameters follow the chosen distribution, the stochastic response Y (x, ẑ)

of the quantity of interest can be determined directly by a statistical evaluation of the model
outcome yj(ẑ) - e.g. in terms of an empirical PDF fY (yi) or an empirical cumulative distribution
function (CDF) F Y (yi) - if the sample size nMC is sufficiently large. Furthermore, the stochastic
moments can be evaluated by statistics as well. For instance, the mean value follows as

µ{Y }(ẑ) =
1

nMC

nMC∑
i=1

yj(ẑ) (5.5)
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and the standard deviation σ{Y }(ẑ) can be obtained from the variance, which is given by

σ2{Y }(ẑ) =
1

nMC − 1

nMC∑
i=1

[ yj(ẑ)− µ{Y }(ẑ) ]2 . (5.6)

The stochastic moments are suited to evaluate the convergence. If several MC simulations
with each j = 1, . . . , nMC realisations result in sufficiently similar stochastic moments, the
simulations can considered to be converged. Alternatively, an MC simulation can be enlarged
gradually by further realisation sets, until the relative error of the new sample set with regard
to the old one is sufficiently small.

The main advantages [Le Maître and Knio, 2010] of brute force MC method are its indepen-
dence from the stochastic dimension as well as its straightforward implementation. Furthermore
it is very robust, i.e. it is applicable for any model, no matter whether it is monotonic or not,
linear or non-linear, smooth or non-smooth and so on. The number of sample propagations
can be increased until a required error is achieved. Results that are already obtained can be
simply enriched by further realisations. However, the complexity of the model naturally affects
the computation time of each individual realisation. In this case, MC method can become com-
putationally expensive due to its poor convergence rate of 1/

√
nMC. This often leads to about

nMC = 104 samples to be propagated to obtain sufficiently converged stochastic moments. Fur-
thermore, if a probability of failure of 10−p is supposed to be estimated, nMC = 10p+2 samples
are required [Sudret, 2015]. For example, if a reliability of 99.9 % is required, i.e. the probability
of failure is 0.001 = 10−3, this results in nMC = 105 MC samples to be propagated.

There are many attempts to improve MC method in terms of the convergence rate, but
they restrict the brute force approach with regard to its general applicability discussed above.
For instance, the samples can be chosen more expedient by using Sobol sequences (quasi MC
method) [Kuo et al., 2012] or Latin hypercube sampling [Helton and Davis, 2003]. While the
first is only applicable for low-dimensional problems, the second approach most notably suffers
from the fact that already obtained simulations cannot be recycled by adding further samples,
if a required error is not achieved. Alternatively, multi-level MC methods [Giles, 2015] aim to
reduce the computational cost by introducing different levels of mesh refinements, using only
small sample sizes for the higher resolutions. A more general approach enabling all different
kinds of high- and low-fidelity measures is given by multi-fidelity MC method [Peherstorfer
et al., 2018].

5.1.2. Stochastic collocation method

The main idea of the stochastic collocation (SC) method [Xiu and Hesthaven, 2005] is to choose
the random input from a pre-defined grid, so-called collocation points, instead of sampling
it pseudo-randomly. Given a set of nSC collocation points XN = (x1, . . . ,xnSC

), each N -
dimensional collocation point xj = (x1, . . . , xN)j defines one realisation of N independent
random variables with the joint PDF fX (x) as given in Eq. (2.15). For each collocation point,
Eq. (5.3) is solved repetitively by deterministic model evaluations inserting xj. In order to
use SC method to propagate random fields, each random field realisation x̄j = X̄(ωj, ẑ), j =
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1, . . . , nSC, is obtained by inserting the coordinates of one N -dimensional collocation point xj =

(x1, . . . , xN=T ) into the standard normal distributed random variables ξj(ωi) = (ξ1, . . . , ξT )

required for the truncated KL expansion given in Eq. (3.9).
Assuming the stochastic response Y (x, ẑ) to be sufficiently smooth within the random space

ζ ⊆ RN and obtaining the solution yj(ẑ) =M(xj, ẑ) of Eq. (5.3) by propagating each colloca-
tion point xj, the stochastic response Ỹ (x, ẑ) is approximated globally by interpolation within
the N -dimensional random space ζ,

Ỹ (x, ẑ) = M̃(x, ẑ) =

nSC∑
j=1

yj(ẑ)Hj(x), ẑ ∈ D, x ∈ ζ, (5.7)

withHj(x) ∈ V being Lagrange polynomials within the interpolation space V fulfillingHj (xi) =

δij, i = 1, . . . , N , j = 1, . . . , nSC for each collocation point xj [Xiu and Hesthaven, 2005]. The
multivariate Lagrange polynomials Hj(x) can be constructed by divided differences, e.g. re-
cursively in terms of the Newton scheme or adaptively using the Aitken-Neville algorithm
[Jablonski, 2014]. In case of ζ1 = · · · = ζN and fX1(x1) = · · · = fXN

(xN) - as it is the case for
Gaussian random fields described by KL expansion - a univariate quadrature rule is enabled
for the same quadrature level.

Using the metamodel M̃ given by Eq. (5.7), the solution of Eq. (5.3) can be estimated
for any randomly sampled input realisation without propagating it through the model again.
Doing so for a sufficiently large sample size, the stochastic response can be obtained by statistics
[Bressolette et al., 2010]. Additionally, the stochastic moments can be determined directly by
interpolation, for instance it is for the expected value and variance,

µ{Ỹ }(ẑ) =

nSC∑
j=1

yj(ẑ)

∫
ζ

Hj(x)fX (x) dx, (5.8)

σ2{Ỹ }(ẑ) =

nSC∑
j=1

[
yj(ẑ)− µ{Ỹ }(ẑ)

]2
∫
ζ

Hj(x)fX (x) dx. (5.9)

Here, the information about the input distribution is not incorporated by the sampling process
but in terms of the joint probability function fX (x) [Xiu and Hesthaven, 2005]. Note that
solving the N -dimensional integral can become computational expensive for high stochastic
dimensions. However, when Gaussian random fields are considered using KL expansion, the
integrals corresponding to j only need to be solved (and stored) once for each grid type of
predefined collocation points according to N , as the underlying random variables ξ are always
standard normal distributed.

Smolyak algorithm: A straightforward approach to construct the set XN of N -dimensional
collocation points is to apply the full tensor product XN =

(
X (i1) ⊗ · · · ⊗ X (iN )

)
on the 1D

collocation point sets X (i), each containing mi nodes. However, with nSC = mN
i the number of

collocation points increases quickly for high stochastic dimensions, which is known as the curse
of dimensionality.
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As introduced by Xiu and Hesthaven [2005], the aim of applying Smolyak algorithm is to
reduce the number of collocation points by neglecting certain polynomial order combinations in
the higher dimensions, which do not have a significant effect to the result. This is achieved by
combining only these 1D collocation point sets, for which the multi-index α = (α1, . . . , αN) ∈
NN

+ fulfils
k + 1 ≤ |α| ≤ k +N, with |α| = α1 + · · ·+ αN , (5.10)

where k is the Smolyak level controlling the univariate polynomial order. Consequently, only
these indices αi are contained in the index set A(k,N), for which Eq. (5.10) is fulfilled. By
this, the number of collocation points nSC contained in the sparse grid depends on both, the
Smolyak level k and the stochastic dimesnion N . Note that there are also further (isotropic
and anisotropic) rules to select α, as reviewed e.g. by Jablonski [2014]. However, in this work
only the rule given by Eq. (5.10) is used.

Based on the index set A := A(k,N), a sparse set of collocation points is obtained by

XN
s =

⋃
α∈A

(
X (α1)

s × · · · × X (αN )
s

)
, (5.11)

which is called sparse grid in the following. The Smolyak metamodel is then given by

Ỹ (x, ẑ) = M̃(x, ẑ) =
∑
α∈A

η(|α|) ·
(
I(α1) × · · · × I(αN )

)
, (5.12)

with the 1D interpolants

I(αi) := I(Ỹ )
(
x(αi), ẑ

)
=

mα∑
k=1

y
(
x

(αi)
k , ẑ

)
·H(αi)

k (x) (5.13)

and the factor η(|α|) defined as

η(|α|) = (−1)k+N−|α| ·
(

N − 1

k +N − |α|

)
. (5.14)

The number mαi of collocation points used within the dimension i is chosen by the rule

mαi =

1 if αi = 1

2αi−1 + 1 if αi > 1
. (5.15)

For the stochastic moments given before, it is now

µ{Ỹ }(ẑ) =
∑
α∈A

η(|α|)
mα1∑
k1=1

· · ·
mαN∑
kN=1

y
(
x

(α1)
k1

, . . . , x
(αN )
kN

, ẑ
)
· J (k, α), (5.16)

σ2{Ỹ }(ẑ) =
∑
α∈A

η(|α|)
mα1∑
k1=1

· · ·
mαN∑
kN=1

[
y
(
x

(α1)
k1

, . . . , x
(αN )
kN

, ẑ
)
− µ{Ỹ }(ẑ)

]2

· J (k, α), (5.17)

with the N -dimensional integral

J (k, α) =

∫
ζ

(
Hα1
k1

(x)⊗ · · · ⊗HαN
kN

(x)
)
fX (x) dx. (5.18)
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Note that the stochastic dimension has not changed using the Smolyak algorithm and therefore,
solving Eq. (5.18) is computationally as expensive as solving the integral for the full grid. Still,
compared to the full grid SC method, the efficiency is improved significantly by requiring far
less model evaluations. For high stochastic dimensions, solving Eq. (5.18) by Gauss cubature
or similar integration schemes can become too expensive. Instead, the integral can be solved
by deterministic MC or collocation methods.

As N is usually fixed, the accuracy of the sparse SC method is improved by increasing
the Smolyak level k. However, for higher stochastic dimensions, this may lead to a significant
increase of nSC from one level to the next. For this reason, the number of collocation points
cannot be chosen in a flexible manner. Furthermore, due to the use of global interpolation,
Smolyak algorithm requires a sufficiently smooth solution within the random space in order
to achieve a fast convergence. Several extensions have been proposed regarding the challenges
occurring from non-smooth or high-dimensional problems, e.g. spatially adaptive [Pflüger, 2010]
or anisotropic [Nobile et al., 2008] sparse grids. A sound survey of different sparse grids and
interpolation strategies in terms of general collocation methods regarding PDEs is provided by
Bungartz and Griebel [2004].

Choice of nodal points: Multiple sparse grid definitions are available based on different
choices regarding the 1D collocation point set includingmαi points. An often applied sparse grid
is the Clenshaw-Curtis grid, obtained by choosing the extrema of Chebyshev polynomials for
the 1D point set, but also Gauss points can be considered [Xiu and Hesthaven, 2005]. However,
these grids are defined on a bounded domain ζ = [−1, 1]N but unbounded grids ζ = (−∞,∞)N

appear more useful in terms of KL expansion, where the collocation points are used to model
standard normal distributed (i.e. unbounded) random variables. For that purpose, unbounded
sparse grids can be obtained by Gauss-Hermite points [Jablonski, 2014], Kronrod-Patterson
sequences [Genz and Keister, 1996] or Gauss-Leja points [Narayan and Jakeman, 2014].

All three unbounded sparse grid types have been investigated intensively in a recent survey
by Dannert et al. [2022] regarding their applicability in terms of high stochastic dimensions
and non-linear material models. It has been shown in this study that global SC method is
not appropriate to propagate (high-dimensional) random fields through non-linear problems,
especially when they are not sufficiently smooth. Although the grid size of the Kronrod-
Patterson sparse grid increases much faster than the grid sizes of the alternative sparse grid
formulations, it has proven to be the most robust one with respect to the given application.
For this reason, the Kronrod-Patterson grid is used in this work, when comparing different
sampling approaches in Section 5.2. The 2D SC grids obtained by Kronrod-Patterson sequence
are exemplified for an increasing Smolyak level k = 1, . . . , 4 in Figure 5.1.

While the full grid is depicted in grey circles, the sparse grid points are given as black points.
It can be seen that the number of collocation points is reduced drastically using sparse grids.
Furthermore, it can be noticed that the collocation points spread in the random space with
increasing k. Note that Kronrod-Patterson grids are nested (i.e. XN

k1
⊂ XN

k2
if k1 < k2) and

symmetric but the underlying quadrature rule does not provide strictly positive weights.
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(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

Figure 5.1: Two-dimensional sparse grids (black points) of the unbounded Kronrod-Patterson
grid with its grid size nSC increasing with a raising Smolyak level k as well as the corresponding
full grids (grey circles) [Dannert et al., 2022].

Error measure: Starting the SC simulation with k = 1 and increasing the level step by step,
a relative error of any quantity {·} (e.g. the stochastic moments of a QoI) can be quantified
for each level k in comparison to the level before,

εk{·} =
|{·}k − {·}k−1|
|{·}k|

. (5.19)

The deterministic solution (i.e. all random parameters considered with their mean values) is
defined to be {·}k=0. It corresponds to a sparse grid containing only one collocation point, i.e.
the point [0]N . During an SC simulation, k is increased until a required error εk is achieved or
the number of collocation points nSC exceeds a predefined threshold.

Note that the result of a propagated collocation point from the lower levels can be reused,
if the collocation point is also included in the grid obtained by the higher level. For this
purpose, nested grids such as the Kronrod-Patterson sparse grid are particularly beneficial to
save computational effort.

5.1.3. Polynomial chaos expansion

Also for polynomial chaos (PC) expansion methods [Sudret, 2015], the realisations are sampled
pseudo-randomly, as it is done for the brute force MC method and the SPDE to be solved
follows as given in Eq. (5.3). In the context of PC expansion, the sampled input realisations
xj, j = 1, . . . , nPC and corresponding solutions yj(ẑ) =M(xj, ẑ) are called experimental design
and can be obtained by brute force MC or any advanced sampling of xj. However, the concept
is then to create a metamodel from a set of propagated samples which is much smaller than the
number of MC samples, i.e. nPC � nMC. Then, similar to the use of the SC metamodel, the
response of further samples can be estimated directly by the PC metamodel and do not have
to be propagated.

In the case of PC methods, a stochastic response Ỹ (x, ẑ) with finite variance can be de-
scribed by an orthonormal basis Ψα(x) using the metamodel

Ỹ (x, ẑ) = M̃(x, ẑ) =
∑
α∈A

âα(ẑ)Ψα(x), (5.20)
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with the coefficients âα(ẑ) to be determined from the experimental design as described later.
The multivariate polynomials Ψα(x) corresponding to the multi-index α = (α1, . . . , αN), αi ∈
NN , are obtained from the univariate polynomials ψ(i)

αi (xi),

Ψα(x) =
N∏
i=1

ψ(i)
αi

(xi), (5.21)

with ψ(i)
αi (xi) being (normalised) 1D orthonormal polynomials according to the polynomial de-

gree p. For Gaussian random quantities, Hermite polynomials are the optimal choice, which
is also known as homogeneous chaos expansion [Wiener, 1938]. Using the Askey scheme of
orthogonal polynomials, Xiu and Karniadakis [2002] generalised the PC approach to converge
optimally according to an arbitrary underlying probability distribution on x ∈ ζ ⊆ RN .

Next to a statistical evaluation of the samples propagated by the metamodel in Eq. (5.20),
the stochastic moments can be determined directly from the coefficients â(ẑ), e.g. it is for the
expected value and the variance

µ{Ỹ }(ẑ) = â0(ẑ), (5.22)

σ2{Ỹ }(ẑ) =
∑
α∈A\0

â2
α(ẑ). (5.23)

The index set A can be determined according to different truncation schemes as described in
the following.

Truncation scheme: The multi index α ∈ A depends on the stochastic dimension N and a
chosen polynomial degree p as follows

A(N, p) = {α ∈ NN : |α| ≤ p}, (5.24)

|α| = α1 + ...+ αN .

Instead of using the total polynomial degree p, the set can be further reduced by choosing a
hyperbolic truncation, i.e.

A(N, p, q) = {α ∈ NN : ||α||q ≤ p}, (5.25)

||α||q = (αq1 + ...+ αqN)1/q.

In Figure 5.2 three index sets α = (α1, α2) for N = 2 are depicted for different q-norms
regarding the polynomial degrees p = 3 and p = 6. The index set of the q-norm ‖α‖1 ≤ p is
equivalent to the total polynomial degree |α| ≤ p.

Determine the coefficients: The coefficients âα(ẑ) can be obtained by the experimental
design using projection methods or a regression approach [Sudret, 2015]. In case of projection,
an N -dimensional integral needs to be solved, limiting the approach in terms of high stochastic
dimensions similarly to the integral in Eq. (5.18). For this reason, only the regression approach
based on least-square minimisation is used in this work. The aim of the underlying least-square
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minimisation approach is to find the set of coefficients â(ẑ) = {âα(ẑ),α ∈ A} for which the
mean square error

E
[
ε2
]

= E

[(
M(xj, ẑ)− M̃(x, ẑ)

)2
]

(5.26)

is minimised. Note that the first term is given by the model evaluation of the sampled re-
alisations (i.e. the experimental design) while the second term is the metamodel given by
Eq. (5.20). With the information matrix A containing the values of the orthonormal basis of
x, i.e. Aji = Ψαj(xj), the solution of Eq. (5.26) can be found by

â(ẑ) = (ATA)−1AT Y(ẑ), (5.27)

where the column matrix Y(ẑ) = (y1(ẑ), . . . , ynPC
(ẑ))T contains the experimental design yj(ẑ) =

M(xj, ẑ), j = 1, . . . , nPC.

(a) p = 3

(b) p = 6

Figure 5.2: 2D index sets α = (α1, α2) of two different polynomial degrees p corresponding to
different q-norms, ‖α‖1 = |α| ≤ p (left), ‖α‖0.75 ≤ p (centre) and ‖α‖0.5 ≤ p (right).

Sparse polynomial chaos expansion: For high stochastic dimensions, general PC expan-
sion method suffers from the curse of dimensionality, i.e. many samples are required to obtain
sufficiently converged results. To overcome this issue, Blatman and Sudret [2008] propose a
sparse PC expansion approach, which is also used in this work. The idea is to further reduce
the set A by determining the optimal basis of the candidate set in an adaptive algorithm.
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Starting with an initial experimental design, i.e. a sampled candidate set X = (x1, . . . ,xnPC
)

and the corresponding response Y(ẑ) = (y1(ẑ), . . . , ynPC
(ẑ))T, the optimal PC basis A∗ is

selected as follows. The optimal basis A(p) with regard to the polynomial order p is obtained
from the candidate basis A for a pre-defined q-norm based on least angle regression [Blatman
and Sudret, 2011]. For that purpose, the leave-one-out error εLOO is determined for each
candidate set point xj ∈ X to estimate its influence to the experimental design, i.e.

εLOO(ẑ) =
1

nPC

nPC∑
j=1

(
M(xj, ẑ)− M̃(−j)

A (xj, ẑ)
)2

, (5.28)

with M̃(−j)
A being the metamodel built from the experimental design based on the candidate

set X\(xj). When the coefficients â(ẑ) are determined by least-square regression as described
above, the leave-one-out error can be obtained directly from the metamodel based on the
original experimental design as follows

εLOO(ẑ) =
1

nPC

nPC∑
j=1

(
M(xj, ẑ)− M̃A(xj, ẑ)

1− hj

)2

, (5.29)

where hj is the j-th diagonal term of A
(
ATA

)−1
AT with Aji = Ψαj(xj). Furthermore, εLOO

can be normalised by the variance σ2{Y } and corrected by a factor accounting for the limit
size of the experimental design, resulting in the relative leave-one-out error

εLOO
∗(ẑ) =

1

nPC − P

(
1 + 1

nPC
tr C−1

emp

σ2{Y }

)
εLOO(ẑ), (5.30)

with P = cardA and Cemp = 1
nPC

ΨTΨ [Sudret, 2015].

When εLOO
∗ increases twice in a row, this indicates an overfitting of the metamodel to

the given basis and the initial experimental design needs to be enriched by further candidate
samples X+ and corresponding model responses Y+. As soon as a required error is achieved,
the optimal PC basis A∗ is obtained and the corresponding coefficients â∗(ẑ) can be determined
by least-square regression.

As an alternative to sparse PC expansion, also anisotropic PC expansion methods [Jakeman
et al., 2015, Zygiridis, 2021] have been proposed to reduce the curse of dimensionality. As
the sparse SC method introduced in Subsection 5.1.2, the sparse PC expansion is based on
global polynomials within the sample space. For this reason, also for sparse PC expansion the
stochastic response is required to be sufficiently smooth. To be applicable also for non-smooth
responses, adaptive multi-element PC expansion methods [Wan and Karniadakis, 2005, Li and
Stinis, 2016] may become necessary. Basmaji et al. [2022b] combine both, the anisotropic and
the adaptive multi-element approach towards an hp-adaptive framework.

Error measure: Besides the leave-one-out error used within the sparse PC algorithm, a
second error measure can be used to validate the quality of the metamodel obtained from
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the optimal PC basis a posteriori. For this purpose, a validation set X val is sampled and the
validation error then follows as

εval(ẑ) =
1

nval

nval∑
j=1

(
M(xj, ẑ)− M̃A(xj, ẑ)

)2

. (5.31)

Here, M(xj, ẑ) is the regular model evaluation of each realisation xj ∈ X val, j = 1, . . . , nval

and M̃(xj, ẑ) the metamodel evaluation of the same realisation xj.

5.2. Comparison in terms of solid mechanical applications

In the following, the three sampling based SFEM approaches are compared in terms of their
general applicability regarding an efficient and accurate propagation of random fields. For this
purpose, the propagation of different correlation length scenarios and the impact of the - under
some circumstances high - stochastic dimension due to the truncated KL expansion is studied
at first in Subsection 5.2.1 for 1D random fields in terms of linear-elastic material behaviour.
Afterwards, propagating a 2D random field through a non-linear material model (i.e. an elasto-
plastic material including linear hardening) is studied in Subsection 5.2.2. Note that the MC
and SC results have already been published as a part of a broader investigation on SC methods
[Dannert et al., 2022].

Remarks on the implementation: As described before in Section 3.3, Abaqus is used as a
black-box FE solver, using the subroutine USDLFD to define material parameters described by
a random field at the integration point level. However, on the contrary to the mixed uncertain
approach described by Algorithm 1, only aleatory uncertainties are considered in this chapter,
i.e. the initialising of epistemic parameters, the outer loop and the interval post-processing are
not necessary. Depending on the applied SFEM approach, the following functions or toolkits
are used for the stochastic framework.

• Brute force MC method: The samples ξj = (ξ1, . . . , ξT )j, j = 1, . . . , nMC to create nMC

random field realisations truncated at T , are generated pseudo-randomly by the ran-
dom number generator xi_j = randn([1,N]) provided by Matlab. The default gen-
erator (Mersenne Twister) is used while its seed is initialised by the current time by
rng(’shuffle’) to ensure unique samples when a given sample set is enlarged by further
samples. The statistical evaluation is performed using the respective Matlab functions.

• Sparse SC method: The Kronrod-Patterson sparse grid and the corresponding inter-
polants are generated using the toolbox Sparse Grids Matlab Kit1 [Bäck et al., 2011]. Each
N -dimensional collocation point xj = (x1, . . . , xN=T ) is inserted to ξj = (ξ1, . . . , ξT )j to
obtain a random field realisation.

1©2009-2018 L. Tamellini and F. Nobile: https://sites.google.com/view/sparse-grids-kit, release
“Esperanza” (10/2018)

https://sites.google.com/view/sparse-grids-kit
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• Sparse PC expansion: The sample set to generate the experimental design is generated
by brute force MC sampling as described above. With these, the sparse PC is determined
using the toolkit UQLab2 [Marelli and Sudret, 2014, Marelli et al., 2022].

In order to obtain a fair comparison between the approaches, besides their individual relative
error measures, a comparable reference error of each method m = MC, m = SC and m = PC

is determined based on a reference solution,

εref{·} =
‖{·}m − {·}ref‖
‖{·}ref‖

. (5.32)

The reference solution is generated by brute force MC with nref
MC � nMC. In the following, the

mean value and standard deviation of the QoI are inserted to the placeholder {·}. However,
any quantity can be considered.

5.2.1. One-dimensional example including high stochastic dimensions

The three approaches are applied to estimate the maximum deflection wmax of the steel beam
depicted in Figure 5.3 assuming linear elasticity. While the line load q0 = 50 kN m−1 is con-
sidered constant, the Young’s modulus E(ω, z) is modelled as a 1D Gaussian random field
described by constant hyper parameters, µE = 210 GPa and σE = 0.1µE.

z
wmax

q0 = 50 kN m−1

E = 210 GPa

ν = 0.3

l = 1 m

a

a

Deterministic material parameters

Young’s modulus:

Poisson’s ratio:a = 0.1 m

Figure 5.3: Linear-elastic steel beam model under a constant line load q0 with the deterministic
solution resulting in a maximal deflection wmax = 0.37 mm [Dannert et al., 2022].

Three correlation length ratios LE/l = 0.1, LE/l = 1.0 and LE/l = 10.0 are studied,
applying a modified exponential (ME) correlation function. For each correlation length scenario,
the truncation term T is chosen such that a comparable mean truncation error ε̄Γ̄ = 0.08 % is
achieved, i.e. T = 56 for LE/l = 0.1, T = 7 for LE/l = 1.0 and T = 2 for LE/l = 10.0. Note
that the correlation lengths are chosen in different magnitudes despite the physical meaning
for steel, as the aim is to investigate the general effect of the correlation length and truncation
order to the applicability of the provided methods. The beam is discretised by nel = 50 beam
elements using a third order quadrature scheme for integration. The mean value µ{wmax}
and standard deviation σ{wmax} =

√
σ2{wmax} of the maximum beam deflection wmax are

estimated, respectively, by Eq. (5.5) and Eq. (5.6) in case of MC method, by Eq. (5.16) and
Eq. (5.17) in case of sparse SC method and by Eq. (5.22) and Eq. (5.17) in case of sparse PC
method.

2©2018-2022 S. Marelli and B. Sudret: https://www.uqlab.com/, release 2.0.0

https://www.uqlab.com/
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The internal error measures of the SC and PC approach are depicted in Figure 5.4. For
the SC method, the relative error εk is obtained adaptively with the Smolyak level k for both
quantities, the mean value µ{wmax} and the standard deviation σ{wmax} of the maximum beam
deflection wmax, see Figure 5.4a. On the contrary, the PC expansion provides two more general
error measures of the metamodel, the leave-one-out error εLOO{wmax} and the validation error
εval{wmax} in Figure 5.4b.

(a) SC method using the Kronrod-Patterson sparse grid

(b) sparse PC expansion

Figure 5.4: Relative error measures of the sparse SC and the sparse PC methods obtained for
the estimate of the maximum beam deflection wmax with respect to the sample size, comparing
different correlation length ratios LE/l and accordingly different stochastic dimensions.

For both methods, it can be seen that the error converges faster for large correlation length
ratios, i.e. less stochastic dimensions are required to obtain the chosen mean truncation error
of the input random field. For LE/l = 0.1, including N = T = 56 (results depicted in blue),
both methods show difficulties regarding the convergence. Still, the results of the sparse PC
expansion are much better even for less samples (nPC = 500) than the results of the SC
method, where the relative error of the standard deviation is larger than one percent, although
the grid size is already quite large (nSC = 6609). Increasing the Smolyak level once more
would result in a grid size which cannot compete with a brute force MC simulation anymore.
Another disadvantage of SC method is the fact that the grid size nSC depends on the stochastic
dimension N , while nPC can be chosen flexibly for the sparse PC expansion. However, note that
the time required to obtain the sparse PC basis raises drastically for large stochastic dimensions.
For this reason, also for sparse PC method the sample size is limited with regard to efficiency,
independent of the computational cost caused by the propagation of the sample set.
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(a) LE/l = 0.1 (T = 56)

(b) LE/l = 1.0 (T = 7)

(c) LE/l = 10.0 (T = 2)

Figure 5.5: Comparing the reference error εref{·} of the mean value µ{wmax} (left) and the
standard deviation σ{wmax} (right) of the maximum beam deflection wmax for different correla-
tion length ratios LE/l. The coloured solid lines represent the results of sparse SC method using
the Kronrod-Patterson sparse grid, the dashed lines the results of the sparse PC expansion and
the grey lines three MC trajectories, each with nMC = 1× 104 samples. The reference solution
is obtained by brute force MC method using nref

MC = 5× 104 samples.
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The internal error measures of SC and PC method each provide a convergence estimate
to run (and stop) the simulation without any reference solution available. However, as they
are obtained differently, they are actually not comparable for the two methods. For a fair
comparison, the relative error of the mean value µ{wmax} and the standard deviation σ{wmax} is
determined by Eq. (5.32) for each method. For this purpose, a brute force MC reference solution
with nref

MC = 5× 104 samples is used. The results are depicted in Figure 5.5. As a comparison,
also three brute force MC trajectories are depicted, each obtained by nMC = 1× 104 samples. It
can be noted that for large stochastic dimensions, SC method does not even compete with the
brute force MC method. This improves a bit for moderate stochastic dimensions but still the
SC method does not appear much beneficial. On the contrary, the sparse PC expansion results
in a much better convergence in terms of the reference error obtained by a certain sample size.
For this reason and as the sample size can be chosen flexibly, sparse PC expansion is found to
be the best choice regarding the given example, i.e. propagating (in some circumstances high-
dimensional) 1D random fields through a linear-elastic material model. In the next section, a
2D random field is investigated in terms on non-linear material behaviour.

5.2.2. Two-dimensional example including a non-linear model

In the following the approaches are investigated for non-linear model propagation. For this
purpose, the one square-meter sized steel plate depicted in Figure 5.6 is pulled at its top by a
constant line load q0 = 400 MN m−1. An elasto-plastic material law including linear hardening
is applied. In the deterministic case with E = 210 GPa, the yield stress of σy is exceeded by
the resulting stress state and therefore hardening occurs with a linear hardening parameter
H = 1.5 GPa. Then, the maximum deflection is constantly u2 = 68.36 mm along the whole top
of the square and the equivalent plastic strain ε̄p = 6.65 % is constant in the whole domain. The
FE model is applied with a domain discretisation of nel = 10× 10 bi-linear four-node elements.

z2

z1

l1 = 1 m

l 2
=

1
m

q0 = 400 MN m−1

deterministic material parameters116

61

E = 210 GPa

ν = 0.3

σy = 300 MPa

H = 1.5 GPa

Figure 5.6: Elasto-plastic steel plate model pulled by a constant line load q0 with the deter-
ministic solution resulting in the maximum deflection u2 = 68.36 mm and a constant equivalent
plastic strain ε̄p = 6.65 %. The quantities of interest are investigated at node (61) in case of u2

and at node (116) in case of ε̄p as marked by circles [Dannert et al., 2022].

Describing the Young’s modulus as a 2D random field with µE = 210 GPa, σE = 0.1µE and
LE = 2 m, the constant behaviour of the QoI is not observable for the individual realisations
but again achieved for the stochastic moments, i.e. µ{Y ,z} and σ{Y ,z}, if the results are
sufficiently converged. The QoI Y is further investigated in terms of the deflection u2 at node
116 and of the equivalent plastic strain ε̄p at node 61, both nodes marked by circles in Figure 5.6.
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(a) SC method using the Kronrod-Patterson sparse grid

(b) sparse PC expansion

Figure 5.7: Relative error measures of the sparse SC method and the sparse PC method with
respect to the sample size, obtained for the estimate of the deflection u2 at node 116 and of
the equivalent plastic strain ε̄p at node 61, describing the Young’s modulus as a random field
truncated at T = 5.

The SC and PC method are applied to solve the FE problem with a chosen truncation
order T = 5 leading to a mean truncation error ε̄Γ̄ = 1.38 %. The corresponding internal error
measures are depicted in Figure 5.7. In Figure 5.7a, the relative error εk of the mean value
µ{Y } (left) and the standard deviation µ{Y } (right) is depicted as a function of the grid size
nSC resulting for the Smolyak levels k = 1, . . . , 4. Below, the leave-one-out error εLOO (left)
and the validation error εval (right) obtained for the PC metamodels describing the QoI are
depicted in Figure 5.7b. It can be found that for both QoI only εk{µ} becomes small though
not convergent. All other error measures result in values around ten percent and beyond, which
is not acceptable. Increasing the sample size is not expedient as it would lead to a number of
required realisations that could not further compete with the MC method.

However, regarding the corresponding reference errors depicted in Figure 5.8, it is remarkable
that the PC metamodel still appears to provide good results. The reference error of both, the
mean value and the standard deviation, for both QoI outperforms the three trajectories of
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the MC simulations with each nMC = 1× 104 samples by far. As a reference solution, again
a brute force MC simulation with nMC = 5× 104 samples has been used. Still, a reference
solution is usually not available and therefore the error must be quantified internally during
the engineering design process.

(a) displacement: Y = |u2| at node 116

(b) equivalent plastic strain: Y = ε̄p at node 61

Figure 5.8: Comparing the reference error εref{·} of the mean value µ{Y } (left) and the
standard deviation σ{Y } (right) of two different quantities of interest Y . The coloured solid
lines represent the results of SC method using the Kronrod-Patterson sparse grid, the dashed
lines the results of the sparse PC expansion and the grey lines three MC trajectories, each with
nMC = 1× 104 samples. The reference solution is obtained by brute force MC method using
nref

MC = 5× 104 samples.

Regarding the results of the SC method, it is observed that they do not only exceed the
error of the MC simulations but also appear to become worse with increasing sample size. This
can be traced back to instabilities in the Smolyak algorithm due to negative weights [van den
Bos et al., 2017]. Additionally, the Lagrangian polynomials tend to oscillate for large grid sizes
[Jablonski, 2014]. These issues can even lead to negative stochastic moments in some cases
[Dannert et al., 2022].
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5.3. Summary and concluding remarks

In this chapter, SC and PC methods have been reviewed as two well established alternative
approaches towards MC method. The applicability of the SC method using Kronrod-Patterson
sparse grids and of sparse PC expansion has been investigated for high-dimensional as well as
non-linear problems and compared to the performance of a brute force MC simulation.

Although both of the two sophisticated sampling methods suffer from the curse of dimen-
sionality, it has been shown in Subsection 5.2.1 that the sparse PC expansion outperforms
the sparse SC method by far. The latter is even not applicable at all in some cases (i.e. us-
ing LE/l = 0.1 with N = 56), while sparse PC expansion provided a slower convergence in
high-dimensional cases but still outperformed MC method. Furthermore, the advantage of PC
expansion over SC method is that the sample size nPC is not defined by the stochastic dimension
N . For this reason the sample size can be chosen more precisely in this case, while the number
of collocation points nSC increases quickly from one level to the next. Concerning 2D or three-
dimensional (3D) random fields, but also a case where several random field input parameters
are considered, N increases too fast for SC method being a suitable sampling technique.

The SC method could be further improved by applying anisotropic sparse grids [Nobile
et al., 2008], where the multi-index is not chosen equally in each dimension but adaptively
according to the influence of the random variable corresponding to a certain dimension. This
can become especially beneficial regarding random field input parameters which are described
by KL expansion, as the influence of the expansion terms decreases with an increasing number of
the eigenvalues. Regarding sparse PC method, this phenomenon is automatically incorporated
indirectly by searching the optimal basis.

Regarding the non-linear FE problem exemplified in Subsection 5.2.2, both sophisticated
techniques did not appear suitable. Although the reference error of the sparse PC expansion
outperforms the results of a brute force MC simulation, the leave-one-out and validation error do
not decrease sufficiently. The limitations of sparse PC expansion regarding non-linear material
responses also have been reported recently by Voelsen et al. [2023] in terms of elasto-plasticity
as well as problems in damage mechanics. As no reference solution is available in general, these
error measures are required as an internal stopping criterion.

The reason for the slow convergence can be found in the non-linear model demanding much
more samples to obtain enough information about the stochastic response. As will be shown in
Subsection 6.3.2 non-linear models may even include non-differential regions in the response,
which cannot be considered to be a smooth response anymore. However, sufficient smoothness
has been a model assumption on which both, SC and PC approaches have been based on, as
global polynomials are used.

Regarding non-smooth stochastic responses, both approaches can still be improved by spa-
tially adaptive techniques using local polynomials, see e.g. Pflüger [2010] for adaptive SC
methods or Wan and Karniadakis [2005], Li and Stinis [2016] for multi-element PC expansion.
By this a refinement of the random space discretisation at critical regions is enabled. Basmaji
et al. [2022b] improve the efficiency of an adaptive multi-element PC expansion by combining
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it with an anisotropic PC approach. This general procedure is conceivable also for SC method.
However, as it has been shown for sparse PC expansion in this chapter, it is difficult to control
the error measure and corresponding stopping criterion a priori. Considering imprecise random
fields occurring by interval valued correlation lengths, ensuring a comparable input is crucial to
ensure the resulting probability box (p-box) not to be traced back to approximation errors. For
this reason, applying such sophisticated sampling techniques introduces too many difficulties
to control error variables in the propagation process to enable a reliable statement about the
resulting QoI p-boxes.



6. Limit Representation of Imprecise Random Fields

As discussed intensively in Section 3.3, the propagation of imprecise random fields needs to be
well pondered and can become very difficult. The main challenges are recapped once more in
Figure 6.1. Whichever hyper parameter(s) of the random field is or are described by an interval,
a cost-increasing double loop arises within the probability box (p-box) approach. It requires to
simulate at least two interval bound scenarios but the number of scenarios may blow up rapidly
with increasing number of interval valued hyper parameters or input parameters considered as
imprecise random fields. For this reason, an important aim is to reduce the computational cost
of an individual interval parameter scenario. This can be achieved by reducing the number of
samples required to simulate a scenario c, e.g. in terms of sophisticated sampling techniques.
Alternatively, the cost to solve the problem for each sample can be decreased by model reduction
techniques. Within this research project, the focus has been on investigating the first of these
two opportunities. For this purpose, stochastic collocation (SC) method and polynomial chaos
(PC) expansion have been studied intensively in Chapter 5.

reduce number of samples:

sophisticated sampling techniques

 improve scenario propagation

reduce 

sampling 

effort

expensive 

double loop

P-BOX APPROACH KARHUNEN-LOÈVE 
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use cheap samples:
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 improve model propagation

“scenario” with

samples
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Figure 6.1: Challenges in propagating imprecise random fields.

However, considering interval valued correlation lengths LIX , another issue arises which can
cause conflicts with the aim of reducing the sampling effort. Using different correlation length
values, while demanding a comparable truncation error of the corresponding input random
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fields can lead to high truncation orders T and this way increase the stochastic dimension N
drastically. This can conflict with using sophisticated sampling techniques, which suffer usually
from the curse of dimensionality. Additionally, highly variable random fields occurring from
small correlation lengths may require to discretise the domain with a high h- or p-refinement
in order to not smoothen the random field artificially. Here, the conflict arises with the aim
to use cheap samples, which is however beyond the scope of this work. Note that the need
to solve the Fredholm integral equation several times for different correlation length values
may additionally increase the computational cost, especially when arbitrary domain shapes or
correlation functions are used, which do not provide an analytic solution.

In this chapter, a decoupled interpolation approach is introduced, with which the expensive
double loop can be avoided. Furthermore, with the new approach the discussed conflicts can
be evaded up to a certain point underlying certain model assumptions. It has been observed in
Chapter 5 that the correlation length mainly impacts the standard deviation of the outcome
quantity of interest (QoI), but hardly its mean value. Furthermore, the higher the variability
(i.e. the smaller the correlation length) of the input random field is, the smaller the standard
deviation of the QoI and vice versa. In other words, highly correlated random fields (i.e. large
correlation lengths) result in larger standard deviations of the QoI than those with small corre-
lation lengths. This means that the variability of the QoI increases with decreasing variability
of the input random field.

To understand this phenomenon, the influence of the correlation length to the input ran-
dom field is further investigated in Section 6.1. Based on the observations made in there, the
mentioned interpolation approach is proposed in Section 6.2. In Section 6.3, the new approach
is studied intensively for one-dimensional (1D) problems regarding linear and non-linear prop-
agation in terms of both, the material behaviour and the stochastic response. Afterwards, the
approach is applied to propagate two-dimensional (2D) imprecise random fields through a non-
linear finite element (FE) problem in Section 6.4. The main results of the provided studies are
concluded in Section 6.5.

Model assumptions: With regard to propagating imprecise random fields through linear or
non-linear monotonic models, the following model assumptions are made.

• The hyper parameters µX and σX can be determined sufficiently exact by experiments
and are therefore considered as crisp scalar values.

• The correlation length is interval valued, a pure vertex analysis is sufficient, i.e. no
intermediate values L∗X ∈ LIX are required to be propagated.

• No localisation effects occur due to a locally varying truncation error if the mean trun-
cation error is chosen sufficiently small.

• There is a monotonic dependence of the output QoI stochastic moments on the correlation
length.
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• The output distribution can be of arbitrary family but this distribution family is inde-
pendent from the correlation length.

• No cyclic loading is applied.

Note that the approach has already been proposed and investigated using the single exponential
(SE) correlation kernel during this research project [Dannert et al., 2021b]. However, the
approach is applied to the modified exponential (ME) correlation function in the following,
which provides a much better convergence behaviour than the SE kernel.

6.1. Investigation on the correlation length

In this section, the impact of the correlation length towards the random field input is inves-
tigated more carefully. For a 1D standard normal distributed random field S(ω, z), an ME
correlation function is assumed and different effective correlation length ratios LS/l with re-
spect to the domain length l are studied, LS/l = 0.1, LS/l = 1.0 and LS/l = 10.0. As discussed
in Subsection 3.1.2, a small value LS < l implies a high variability within the field and vice
versa. Furthermore, increasing LS � l, i.e. LS/l → ∞, the random field converges towards
a random variable. Regarding the other extreme, LS/l → 0, the random field is completely
uncorrelated, i.e. it results in white noise.

Recapitulating the theory of Gaussian random fields, given a large number of realisations,
their values at a certain state SJ(ω) = S(ω, zJ) are Gaussian distributed as well, see Figure 2.3
in Subsection 2.1.2. For an increasing number of realisations sj(z) = S(ωj, z), the mean value
µ{sj(zJ)} and standard deviation σ{sj(zJ)} at a certain zJ are therefore expected to converge
towards the hyper parameters µS = 0 and σS = 1 of the standard normal distributed random
field S(ω, z). This behaviour is independent of the considered correlation length. However,
observing only the values at a certain position zJ of the random field neglects the fact that its
values are more or less correlated within the field. For this reason, the statistical behaviour of
the average values of the random field realisations is investigated more carefully in the following.
Given one realisation sj(z) = S(ωj, z), its average value over z is called its corresponding
individual mean value µ̂s,j.

In Figure 6.2, the correlation functions (on the left) and each three exemplary truncated
standard normal distributed random field realisations s̄j(z) = S̄(ωj, z), j = 1, 2, 3, (on the
right) are depicted for the five discussed correlation length ratios. For this purpose, the domain
D = [0, 1] is discretised by nel = 500 elements. For the sake of comparability, the same set of
standard normal distributed random variables ξj = (ξ1, . . . , ξT )j are used for each corresponding
ωj of the ratios LS/l. Note that in order to maintain a comparable mean variance error of
ε̄Γ̄ ≤ 0.015 % for the different correlation lengths, Eq. (3.9) and such the set ξj = (ξ1, . . . , ξ501)j

is truncated individually at T ≤ 501, depending on the correlation length ratio LS/l. In case
of white noise, the full sets ξj = (ξ1, . . . , ξ501)j are used for each j = 1, 2, 3 while for the three
random variables the sets are given by the first entry, i.e. (ξ1)j. For the sake of clarity, only
one white noise realisation is plotted in Figure 6.2a (grey line), although all three realisations
have been created as described above. Additionally to each realisation s̄j(z) = S̄(ωj, z), its
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(a) LS/l→ 0 (white noise)

(b) LS/l = 0.1, T = 102 (∗)

(c) LS/l = 1.0, T = 12 (∗)

(d) LS/l = 10.0, T = 3 (∗)

(e) LS/l→∞ (random variable)

Figure 6.2: Influence of the correlation length ratio on the modified exponential correlation
function in its closed form (left) and the resulting random fields (right).
(∗) Random fields discretised by Karhunen-Loève expansion truncated such that ε̄Γ̄ = 0.015 %.
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individual mean value µ̂s,j over the domain z is depicted in a dashed line of the corresponding
colour. For the state SJ(ω) = S(ω, zJ) of the random fields, each mean value µ{SJ} of the three
realisations is exemplified at z = 0.2 by a black cross1. Although only one realisation is plotted
for the white noise, also here three mean values µ̂s,j are depicted, the first obtained from the
grey realisation, the other two corresponding to the two created but not plotted realisations.
The same holds for the mean value of the three states at z = 0.2. Note that these individual
mean values are the main interest of the following discussion. For this reason the y-axes are
chosen in a smaller range (each the same one for comparability), although the random field
realisations are not depicted completely this way, in order to see the influence of the correlation
length to the individual mean value more clearly.

It can be observed from Figure 6.2a that the individual mean values µ̂s,j of the white noise
realisations lay very close to the hyper parameter µS = 0 of the standard normal distributed
white noise. This is plausible as the mean of a large number of pseudo-randomly sampled,
independent random variables should again result in the mean value used as the sampling input.
Regarding now a weakly correlated random field, e.g. LS/l = 0.1 as exemplified in Figure 6.2b,
the mean values of each individual realisation are slightly varying from the Karhunen-Loève
(KL) hyper parameter µS = 0, inserted to Eq. (3.9) to create the three realisations. Increasing
the correlation length ratio further towards LS/l = 1.0 or LS/l = 10.0, it can be seen that the
individual mean values µ̂s,j of the random field realisations sj(z) = S(ωj, z) spread more and
more. For an infinite correlation length ratio, µ̂s,j converge towards the same constant value as
sampled for the random variable sj = S(ωj), see Figure 6.2e.

(a) mean value µ{µ̂s,j} (b) standard deviation σ{µ̂s,j}

Figure 6.3: Convergence of the stochastic moments of the individual realisation mean values
µ̂s,j of j = 1, . . . , nMC standard normal distributed random field realisations s̄j(z) = S̄(ωj , z),
the legend given in (a) is valid for both plots.

To sum up, it can be observed that for a highly varying random field, each realisation results
in an average value close to the mean value used as input hyper parameter. On the contrary,
large correlation lengths lead to a higher variability of the individual realisation mean values
µ̂s,j, while each realisation itself becomes more and more constant with increasing LS/l. As

1However, note that three realisations are by far not enough to observe µ{SJ} to converge towards µS = 0.
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three realisations are lucid for visualisation but by far not enough to make a clear statement, the
statistical behaviour of the individual mean values µ̂s,j is studied regarding a large number of
realisations obtained by Monte Carlo (MC) sampling. For each investigated correlation length
ratio, the mean value µ{µ̂s,j} and the standard deviation σ{µ̂s,j} of the individual realisations
mean values are depicted as a function of the sample size nMC in Figure 6.3.

As can be seen in Figure 6.3a, for a high number of random field realisations, the mean
µ{µ̂s,j} of all individual realisation mean values µ̂s,j, j = 1, . . . , nMC, converges to the hyper
parameter mean value of the random field, i.e. µS = 0, independent of the correlation length
ratio. On the contrary, the corresponding standard deviation σ{µ̂s,j} converges towards differ-
ent values depending on the correlation length ratio, see Figure 6.3b. More precisely, σ{µ̂s,j}
converges towards smaller values in case of small and larger values in case of large correlation
length ratios. In the extremes, it converges towards zero in case of white noise2 and towards
σS = 1 in case of a random variable. This confirms the assumption which has been made
regarding the three exemplified random field realisations given in Figure 6.2 and the following
can be concluded:

• Small correlation length ratios LS/l lead to a high variation within each standard normal
distributed random field realisation sj(z) = S(ωj, z) but to a small variation of the
corresponding individual mean values µ̂s,j with respect to the underlying hyper parameter
µS = 0.

• Large correlation length ratios LS/l result in relatively constant random field realisations
sj(z) = S(ωj, z) but the corresponding individual mean values µ̂s,j vary much more from
the underlying hyper parameter µS = 0.

⇒ For this reason, the standard deviation σ{µ̂s,j} of the individual mean values µ̂s,j converges
to different values for different ratios LS/l, bounded by

σ{µ̂s,j} =

0 for LS/l→ 0

σS for LS/l→∞
, (6.1)

where σS = 1 is hyper parameter standard deviation of the standard normal distributed
random field, inserted to Eq. (3.9). The mean value µ{µ̂s,j} of the individual random field
mean values µ̂s,j however converges towards the hyper parameter mean value µS = 0.

Describing a general, d-dimensional Gaussian random field X(ω,z) ∼ N (µX , σX), z ∈ Dd

as a standard normal distributed random field S(ω,z) scaled by σX and shifted towards µX ,

X(ω,z) = µX + σX · S(ω,z), (6.2)

2Note that this is only the case for an infinite number of elements nel →∞, however, nel = 500, are sufficient
to achieve a small value, but not σ{µ̂s,j} → 0.
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it can be concluded that the mean value µ{µ̂x,j} of the individual mean values µ̂x,j converges
towards the hyper parameter µX of the random field and σ{µ̂x,j} is bounded by

σ{µ̂x,j} =

0 for LX/l→ 0

σX for LX/l→∞
, (6.3)

This finding regarding the statistical behaviour of the individual random field mean values
is used in the next section to provide a decoupled interpolation approach based on preliminary
knowledge about the input random field.

6.2. Decoupled interpolation approach

It has been found in Section 6.1 that the correlation length mainly affects the standard deviation
σ{µ̂x,j} of the individual realisations mean value µ̂x,j but rarely the mean value µ{µ̂x,j} of
the input random field. The same has been observed for the mean value µ{y} and standard
deviation σ{y} of the output QoI y in Subsection 5.2.1, where the maximum beam deflection
wmax has been investigated for different correlation length ratios, LE/l = 0.1, LE/l = 1.0

and LE/l = 10.0. The resulting standard deviations σ{wmax} versus the corresponding value
σ{µ̂E,j} of the Young’s modulus E considered as input random field are depicted in Figure 6.4.
Additionally, a linear regression obtained from the three pairs is depicted in a blue dashed line.

Figure 6.4: Dependence between the standard deviation σ{µ̂E,j} of the Young’s modulus
realisations individual mean values and the standard deviation σ{wmax} of the output quantity
of interest, resulting from the Monte Carlo simulations from Subsection 5.2.1.

Note that, although a linear-elastic material law has been applied in this example, the me-
chanical response to a varying Young’s modulus is non-linear as it is in the denominator when
solving the bending problem for the beam deflection. Still, the dependency between σ{µ̂E,j}
and σ{wmax} appears to be approximately linear. Therefore, for the decoupled interpolation ap-
proach developed in the following, a linear dependency is assumed. Afterwards, the assumption
is examined for different cases in Section 6.3 and Section 6.4.
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In the following subsection, the interpolation approach is introduced from a descriptive
point of view, considering one uncertain input parameter. Afterwards, the general algorithmic
treatment is provided, before defining different error measures in Subsection 6.2.3.

6.2.1. General idea

The concept of imprecise random fields considers a lack of knowledge regarding one or more
random field hyper parameters, e.g. described by intervals. In this context, assuming an interval
valued correlation length has shown to be the most challenging, both in terms of propagation
but also in terms of estimating the interval bounds at all, as the correlation structure is difficult
(if at all) to be measured. A first step is therefore to consider the concept of having absolutely
no idea on the correlation length, i.e. LX ∈ (0,∞). This means to assume the random field
to be anything between white noise (WN), LX → 0, and a random variable (RV), LX → ∞.
It is assumed (and later studied) that also the standard deviation of a QoI considering WN
converges towards zero, σ{y} → 0. Then, with the mean value µ{y} being independent from
the correlation length, an output QoI can be described by the p-box resulting from

F Y = min
{
FRV
Y (y), µRV{y}

}
, (6.4)

F Y = max
{
FRV
Y (y), µRV{y}

}
. (6.5)

As this p-box results from the correlation length to be any value, the resulting P∞0 = [F Y , F Y ]∞0

is called absolutely no idea probability box (ani-p-box). The benefit of simulating an ani-p-box
is mainly given by the stochastic dimension to be propagated, which is N = nRV, i.e. only
driven by the number of uncertain parameters considered in the input. On the contrary, when
also random fields are involved, the stochastic dimension is generally obtained by Eq. (5.2) and
therefore increases rapidly even for a low number nRF of random fields.

In a second step, the idea is to exploit the prior knowledge about the converged value σ{µ̂x,j}
of an input random field corresponding to a certain correlation length LX as well as a certain
(linear) dependence between input and output. Assuming the output distribution family to be
independent of the correlation length, this enables to interpolate the results from the ani-p-box
instead of propagating the random field through the model. As soon as the Fredholm integral
equation is solved, creating a high number of random field realisations xj(z) = X(ωj, z), and
then their individual mean values µ̂x,j and the resulting standard deviation σ{µ̂x,j} is very
cheap. The computational cost would occur from the propagation of the realisations through
the model. Furthermore, when the random field can be described in terms of a standard
normal distributed random field, X(ω,z) = µX + σX · S(ω, z), the standard deviation σ{µ̂s,j}
can be determined and stored once as a function of the correlation length ratio LX/l for a given
correlation kernel. The converged standard deviation of an arbitrary Gaussian random field
X(ω,z) ∼ N (µX , σX) corresponding to a certain correlation length ratio L = LX/l can then
be directly obtained from

σL{µ̂x,j} = σX · σL{µ̂s,j}. (6.6)
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The general idea of the interpolation approach based on an ani-p-box is visualised in Fig-
ure 6.5 considering one uncertain input parameter and assuming a linear dependence between
input and output.

INPUT

(imprecise) random field

X(𝜔,z)
quantity of interest

Y = (y1 ,… , yn)

high-dimensional (expensive)

MODEL OUTPUT

random variable

X(𝜔)

low-dimensional (cheaper)

input

output

1

INTERPOLATION APPROACH

ani-p-box

(X) : yj = M(xj ,z)

j = 1,…,ns

(X) : yj = M(xj )

j = 1,…,ns

𝜎RV 𝑦
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Figure 6.5: Interpolation approach based on an ani-p-box.

As described before, instead of an (imprecise) random field [X](ω,z) (red), a random vari-
able X(ω) (blue) with the same µX and σX is propagated through the model to determine the
ani-p-box. The linear connection is obtained from the points (0, 0) and (σX , σRV{y}), where
σRV{y}) is the standard deviation of the QoI obtained by propagating the random variable.
Then, determining the standard deviation σ{µ̂x,j} of the individual realisations mean values
corresponding to the correlation length ratio L = LX/l, the resulting standard deviation σL{y}
of an input random field can be estimated directly from the standard deviation σRV{y} obtained
by the random variable input,

σ̃L{y} =
σL{µ̂x,j}
σX︸ ︷︷ ︸

=σL{µ̂s,j}

· σRV{y}. (6.7)

The factor σL{µ̂x,j}/σX is determined from the linear connection and is equal to the standard
deviation σL{µ̂s,j} obtained from the individual mean values of the standard normal distributed
random field realisations. It can further be used to interpolate the cumulative distribution
function (CDF) F Y ,L(ỹ) by discretising the ani-p-box horizontally and interpolate the value
F i(ỹ) from the corresponding interval yIi = [y

i
, yi], i.e.

F Y ,L(ỹ) = σL{µ̂s,j} · F Y ,RV(y). (6.8)

The tilde symbol indicates that the corresponding value has been obtained by interpolation.
By this approach, the double loop of the probability bounds analysis described in Algorithm 1
is decoupled into two separate loops. The first one is the aleatory loop propagating a random
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variable input to obtain the ani-p-box of the QoI. If this is done, the epistemic uncertainties are
discretised in a second loop but the resulting scenarios are not propagated but only interpolated
within the ani-p-box.

If only one input parameter is considered as (imprecise) random field, just one scenario
(this very parameter considered as a random variable) needs to be propagated, as depicted in
Figure 6.5. If several (imprecise) random fields are applied, multiple scenarios arise, occurring
from each combination of LX,i/l = (0,∞), i = 1, . . . , nRF. As white noise converges towards
the same mean value but to a standard deviation of zero, the parameter can be assumed to be
deterministic instead, assigning the mean value to it. By this, it is not necessary to propagate
any white noise, what can become computationally costly too, as a high mesh resolution is
required to capture the variability.

Regarding two imprecise random field parameters [X1](ω, z) and [X2](ω,z), this leads to
three scenarios to be propagated,

• both parameters as random variable: X1(ω), X2(ω),

• the first parameter as random variable, the second deterministic: X1(ω), X2 = µX2 ,

• the first parameter deterministic, the second as random variable: X1 = µX1 , X1(ω).

The stochastic dimension of each scenario is N ≤ nIRF = 2. The standard deviation σ{y} of the
QoI corresponding to the pair (LX1 , LX2) is then estimated from the bi-linear surface obtained
by the scenarios given above (and additionally the point zero for both parameters assumed to
be white noise) spanned over [0, σ{µ̂X1,j}] × [0, σ{µ̂X2,j}]. Applying three imprecise random
field parameters, seven scenarios occur with each a stochastic dimension of N ≤ nIRF = 3.
Note that, applying an appropriate sophisticated sampling technique, the propagation of these
scenarios is assumed to be much less expensive than propagating the imprecise random fields
directly, where due to high truncation orders often only a brute force MC simulation is possible.

6.2.2. Algorithmic treatment

The decoupled approach outlined above is described by Algorithm 2. Again, only non-intrusive
stochastic methods, i.e. sampling based approaches, are used and FE models will be applied
as black box model in later applications using Abaqus. The algorithm itself is implemented in
Matlab.

The first part is the aleatory propagation of the random variables. For that purpose, the RV
scenarios occurring from the IRF input parameters are determined. These arise from combining
each IRF parameter [X i](ω, z) considered (i) as a random variable X i(ω) with the same hyper
parameters µXi

and σXi
and (ii) as a deterministic value with X i = µXi

. Then, the ani-p-box
can be determined based on the chosen model and (sophisticated) sampling technique using
Algorithm 3.

After the ani-p-box is obtained, the (discretised) epistemic uncertainties are considered in
the second part of Algorithm 2. Note that also a purely aleatory random field propagation
could be replaced by this interpolation method if the ani-p-box exists. Then, only one scenario
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Algorithm 2 Decoupled approach to propagate imprecise random fields (IRFs) occurring from
interval valued correlation lengths LIX .

Require:
monotonic model (black box)
quantity of interest (QoI)
(sophisticated) sampling technique
number of samples ns

number of IRF parameters nIRF

hyper parameters µX = (µX1 , µX2 , . . . ), σX = (σX1 , σX2 , . . . ), LIX = (LIX1
, LIX2

, . . . )

% determine RV scenarios cRV

if nIRF = 1 then
% one scenario
cRV = X(ω) with µX and σX

else
% vertex analysis
cRV = [X i(ω), X i]

×, X i(ω) with µXi
and σXi

and X i = µXi
deterministic

end if

% propagate aleatory uncertainties
determine ani-p-box . Algorithm 3: model, sampling technique, ns, cRV

% determine random field (RF) scenarios cRF

if only RF input then
% one scenario
cRF = LXi

else
% vertex analysis
cRF = [LXi

, LXi
]×

end if

% interpolate epistemic uncertainties
determine p-box by interpolation . Algorithm 4: ani-p-box, cRF, nIRF

% finalise simulation
visualise p-box results for QoI
save p-box results
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occurs regarding directly the crisp correlation lengths LXi
assigned to each considered random

field X i(ω,z). For imprecise random fields, the different scenarios are obtained by combining
each of corresponding interval bounds [LXi

, LXi
]. This is only possible, when the influence of

intermediate values is negligible, as it has been shown to be for static problems in the context
of solid mechanics [Dannert et al., 2021a]. The CDF or p-box resulting from the random
field or imprecise random field, respectively, can then be interpolated from the ani-p-box using
Algorithm 4.

The two algorithms to determine the ani-p-box and the interpolated p-box are described in
more detail in the following two paragraphs.

Determine the ani-p-box: Based on the RV scenarios obtained in Algorithm 2 by the
random variables and deterministic values corresponding to the (imprecise) random fields, the
corresponding ani-p-box is obtained by Algorithm 3. Each scenario needs to be propagated
through the black box model according to the chosen (sophisticated) sampling technique. For
each generated sample, a deterministic model evaluation is performed. The computational cost
is therefore mainly depending on the chosen sampling technique, i.e. the required number of
samples ns. After the repetitive deterministic model evaluations, the stochastic response in
terms of the stochastic moments or the CDF is determined according to the chosen sampling
technique, e.g. by statistical evaluation (MC method) or the meta model provided by PC or
SC method.

The ani-p-box is obtained afterwards from the different scenarios. The mean value µRV{y}
is assumed to be crisp and equal to the deterministic solution y0 assuming X i = µX,i. Note
that for the later interpolation, the standard deviation σc{y} of each scenario needs to be
stored in σRV,c, not only the minimum and maximum bound. The bounds of the ani-p-box
are determined by minimising and maximising the CDFs obtained from the different scenarios
including the CDF corresponding to white noise, which is assumed to be a vertical line equal
to the mean value µRV{y}= y0 for an infinite number of elements, nel →∞.

Determine the p-box by interpolation: When the ani-p-box is available for a certain set
of random variable input parameters, any p-box resulting from one or more of these parameters
being an (imprecise) random field can be estimated directly from the ani-p-box according to
Algorithm 4. For each scenario c, the standard deviation σL{µ̂xi,j} of the individual mean value
µ̂xi,j corresponding to the random field X i(ω,z) with the correlation length ratio L = LX/l,
can be estimated by the unified results obtained by a standard normal distributed random field
as given in Eq. (6.6). Then, the standard deviation σ̃L,c{y} of the output QoI y corresponding
to the scenario c and the underlying correlation length ratio L = LX/l can be estimated by
linear interpolation from the RV scenarios. If only one (imprecise) random field is considered
as input parameter, this is equivalent to scaling the random field result by the unified standard
deviation of the individual standard normal distributed random field realisations mean values,
see Eq. (6.7). With this estimated standard deviation, the CDF corresponding to the scenario
c given L = LX/l is interpolated within the ani-p-box, see Eq. (6.8). For that purpose, the
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CDF is discretised into horizontal intervals, which are then scaled by σ̃L,s{y} and added to the
mean value µRV{y} = y0,

ỹL,c = µRV{y}+ σ̃L,c{y} · (yRV − µRV{y}) . (6.9)

From the CDFs of all scenarios, the p-box bounds are determined by minimisation and max-
imisation. The same is done for the interval valued standard deviation σ̃I{y}. The mean value
is again assumed to be crisp and equal to the mean value obtained from the random variable
scenarios.

Algorithm 3 Approach to determine a p-box based on having absolutely no idea (ani-p-box)
about the correlation length, i.e. LX ∈ (0,∞).

Require:
monotonic model (black box)
(sophisticated) sampling technique
number of samples ns

random variable (RV) scenarios cRV

% simulate scenarios
for each c ∈ cRV do

% propagate aleatory uncertainties
for j = ns do

generate random variable realisation j
propagate j through model . black box, e.g. FE solver by Abaqus
save realisation and model response

end for
determine µc{y}, σc{y} and F Y ,c(y) of QoI . according to sampling technique

end for

% determine statistical information corresponding to each IRF parameter X i

µRV{y} = y0 (deterministic solution assuming µXi
)

σRV,c = (σ1{y}, σ2{y}, . . . )

% determine ani-p-box
left bound FRV

Y = min {F Y ,c(y), µRV{y}}
right bound FRV

Y = max {F Y ,c(y), µRV{y}}

return ani-p-box: [FRV
Y , FRV

Y ]∞0 , µRV{y}, σRV,c
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Algorithm 4 Interpolate a cumulative distribution function or a probability box within the
corresponding ani-p-box.

Require:
absolutely no idea probability box (ani-p-box)
random field (RF) scenarios cRF

number of imprecise random field (IRF) parameters nIRF

% discretise epistemic uncertainties
for each c ∈ cRF do

% get input statistics of standard normal distributed RF
if σ{µ̂s,j} available then

load σL{µ̂s,j} of current correlation structure
else

determine converged σL{µ̂s,j} by KL expansion
save σL{µ̂s,j}

end if

% determine input information of each IRF parameter X i

σL{µ̂xi,j} = σXi
· σL{µ̂s,j}

% estimate output standard deviation of the random field scenario
if nIRF > 1 then

interpolate σ̃L,c{y} from σRV,c vs. σ{µ̂xi,j}
else

σ̃L,c{y} = (σ{µ̂x,j}/σX)σRF{y}
end if

% interpolate output y of current random field scenario (for each QoI)
ỹL,c = µRV{y}+ σ̃L,c{y} · (yRV − µRV{y})
determine CDF F Y (ỹL,c)

end for

% post-processing: determine p-box (for each QoI)
left bound F Ỹ = min

{
F Y (ỹL,c)

}
right bound F Ỹ = max

{
F Y (ỹL,c)

}
µ̃{y} ' µRV{y}
σ̃I{y} = [ min {σ̃L,c{y}} , max {σ̃L,c{y}} ]

return p-box: [F Ỹ , F Ỹ ], µ̃{y}, σ̃I{y}
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6.2.3. Error measures

The interpolated p-box results of the provided decoupled algorithm based on an ani-p-box
is validated with brute force MC simulations. The accuracy can then be quantified by error
measures relative to the MC results. For example, the distance between the interpolated and
the sampled results can be obtained and depicted similarly to the interval radii description of
a p-box introduced in Figure 2.5. This means in the horizontal case to discretise FY (y) into
i = 1, . . . , nF intervals of yI ,

∆̃yi = yMC
i − ỹi, (6.10)

and plot the distance vertically as a function of FY ,i(y). Additionally, the vertical distance is
obtained by discretising y into into i = 1, . . . , ny intervals of F I

Y (y),

∆̃F Y ,i = FMC
Y ,i (y)− F Y ,i(ỹ), (6.11)

and plotting the results horizontally as a function of yi.
Alternatively, Eq. (6.10) can be unified by determining the relative error given by

ε̃{yi} =
|yMC
i − ỹi|
|yMC
i |

. (6.12)

Note that a relative error obtained from the vertical distance in Eq. (6.11) is not an appropriate
error measure, as the denominator can become (too close to) zero for the left tail FMC

Y (y)→ 0

of the CDF. However, as the CDF is always defined on the unit range, F Y ∈ [0, 1], the distance
is naturally a relative measure and can be compared for different simulations directly.

6.3. Study on one-dimensional random fields

The decoupled interpolation approach proposed in Section 6.2 is studied carefully regarding
1D random fields in the following. For that purpose, two different scenarios are investigated.
In Subsection 6.3.1, the algorithm is applied to a problem considering linear-elastic material
behaviour. Afterwards, a non-linear problem is studied in Subsection 6.3.2 regarding elasto-
plastic material behaviour including linear hardening. Both problems are applied to a 1D
physical model such that the individual sample propagation is relatively cheap in terms of
computational cost. This way, for each simulation a MC sampling with a high sample number
nMC = 1× 105 is feasible to investigate the general applicability.

6.3.1. Bending beam with linear-elastic material behaviour

In this study, the interpolation algorithm is applied to the bending beam already introduced
in Figure 5.3 of Subsection 5.2.1. However, the beam of length l = 1 m is here discretised
by nel = 500 beam elements to represent white noise properly. As the QoI, the maximum
beam deflection wmax in the beam centre is investigated. The deterministic result considering
a Young’s modulus E = 210 GPa and a constant line load q0 = 50 kN m−1 is wmax = 0.37 mm.
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In the following, two input parameters are investigated as input random fields, the line load
q(ω, z) and the Young’s modulus E(ω, z). Afterwards, a study considering both parameters as
input random fields is provided. These three examples have already been studied intensively
by Dannert et al. [2021b] for the proposed interpolation approach regarding the SE correlation
kernel. Note that within the mentioned contribution, the correlation length has been discretised
by much more scenarios than the three scenarios used here. The assumption of a monotonic
dependence of the output QoI is supported by the results provided therein. In contrast, the ME
correlation function is used here, regarding three different correlation length ratios, LX/l = 0.1,
LX/l = 1.0 and LX/l = 10.0.

The response of the QoI wmax of both parameters is depicted in Figure 6.6 as a function of the
parameter range resulting from the corresponding mean value and a certain standard deviation.
For a Gaussian random variable, 99.73 % of the samples lay within the range µX ± 3σX . The
resulting ranges corresponding to different assumptions on the relative standard deviation,
σX = r · µX , are depicted in vertical lines. The dashed lines mark the range µX ± 3σ5%

X when
r = 0.05 is assumed, the dash-dotted lines correspond to r = 0.1 and the dotted lines to r = 0.2.

Figure 6.6: Maximal beam deflection wmax of the linear-elastic beam as a function of different
input parameters.

Regarding the line load, it can be seen that the response is depending linearly on its value,
independent from the assumed relative standard deviation. This is plausible as the line load
can be found in the numerator of the bending equation. On the contrary, the Young’s modulus
is located in the denominator, leading to a non-linear response. However, for small relative
standard deviations, e.g. r = 0.05, the response can still be considered to be almost linear.
In order to see the effect of a slightly non-linear response, a relative standard deviation of ten
percent is chosen in the following studies.

Investigations for a linear response

The line load q(ω, z) is considered as random field with a mean value µq = 50 kN m−1 and
a standard deviation σq = 0.1µq. First, the assumption of linear dependency between the
standard deviation of the individual input realisations mean values σ{µ̂q,j}, and the standard
deviation σ{wmax} of the QoI resulting from sampling is reviewed in Figure 6.7. For that pur-
pose, the result considering a random variable is given in a grey circle and the linear dependency
is depicted in a blue line from the point (0, 0) to the random variable result.



6.3. STUDY ON ONE-DIMENSIONAL RANDOM FIELDS 103

Figure 6.7: Almost linear dependence between the input standard deviation σ{µ̂q,j} of the indi-
vidual realisations mean value µ̂q,j and the standard deviation σ{wmax} of the output maximum
beam deflection wmax obtained by nel = 500 and nMC = 1× 105 for each scenario, considering
the line load q(ω, z) as random field input.

Figure 6.8: Cumulative distribution functions for two correlation length ratios, Lq/l = 0.1
(blue) and Lq/l = 1.0 (red), obtained by sampling with nMC = 1× 105 MC samples (solid lines)
as well as resulting from a linear interpolation within the ani-p-box (dashed lines), complemented
with the corresponding error measures ε̃{wmax} (bottom left) and ∆̃Fw (bottom right), when
considering the line load q(ω, z) as an input random field.
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Each pair (σ{µ̂q,j}, σ{wmax}) corresponding to the different values Lq/l is depicted as a red
cross. It can be seen that the results lay slightly above the blue line visualising the linear
dependency. For that reason, the interpolated standard deviation σ̃{wmax} slightly underesti-
mates the standard deviation obtained from sampling. This could be ascribed to approximation
errors, e.g. in terms of the chosen number of elements nel, truncation order T or sample size
nMC. All three parameters are therefore investigated in the further course for the correlation
length ratio Lq/l = 0.1, regarding the close up area as indicated with the grey dashed lined box.
The result corresponding to the correlation length ratio Lq/l = 10.0 lays already very close to
the one obtained by the random variable. Additionally, the result assuming white noise (with
regard to nel = 500) is depicted in a grey circle. It can be seen that it lays close to the origin
but is not zero for both, input and output standard deviation. However, with an increasing
element number, the result would converge towards zero.

The results obtained from the interpolation algorithm are depicted in Figure 6.8. In the
top figure, the ani-p-box is depicted in black, dashed lines. Furthermore, the CDF of the white
noise result is given in a grey line. It can be assumed that it converges towards the vertical
line of the ani-p-box for nel →∞. The CDFs gained by sampling and propagating the random
fields are depicted in solid lines, blue for Lq/l = 0.1 and red for Lq/l = 1.0. The corresponding
CDFs resulting from interpolation are depicted in dashed lines of the same colours. The results
of Lq/l = 10.0 are neglected in this figure as they are effectively similar with the ones obtained
from the random variable, i.e. the non-vertical bound of the ani-p-box.

The two figures in the bottom of Figure 6.8 depict the relative error ε̃{wmax} defined by
Eq. (6.12) on the left, while the distance ∆̃Fw is given as a function of wmax on the right3.
At the very tails, the error ε̃{wmax} can become very high due to the sparsity of the unlikely
events. However, regarding ∆̃Fw it can be seen that the distance converges towards zero in the
tails. Besides the tails, the error can be quantified to be ε̃{wmax} ≤ 2 % in case of Lq/l = 0.1

and ε̃{wmax} ≤ 1 % for Lq/l = 1.0.

As the largest error is obtained for the correlation length ratio Lq/l = 0.1, the influence of
different approximation errors is investigated in the following. For that purpose, each one of
the parameters, (i) the element number nel, (ii) the truncation order T and (iii) the sample size
nMC, is varied while the other two parameters stay fixed. For each of these adjustments, five
simulation packages with each new samples are performed, to ensure that observable effects are
not traced back to randomness. Note that for this extensive study, only nMC = 1× 104 samples
are used for each simulation package to reduce the computational effort.

Number of elements: At first, the effect of the number of elements is investigated regarding
the correlation length ratio Lq/l = 0.1. For that purpose, five simulations are performed, each
with nel = 10 (blue circles), nel = 50 (yellow circles), nel = 100 (violet circles) and nel = 500

(red crosses) element numbers. The results are depicted in Figure 6.9 in the closed up region
as marked in Figure 6.7.

3Note that the axes of the relative error, ε̃{wmax} = [0, 5], and the distance, ∆̃Fw = [−0.08, 0.08], are chosen
in this scale in order to be comparable with later results.



6.3. STUDY ON ONE-DIMENSIONAL RANDOM FIELDS 105

Figure 6.9: Influence of the number of FE elements nel on the dependency between input and
output standard deviation, applying the correlation length ratio Lq/l = 0.1, with T = 102 and
nMC = 1× 104 for each scenario.

It can be seen that the results corresponding to the same number of elements are still
varying slightly. This is due to the relatively small sample size nel = 1× 104. However, as nel

is always the same for each simulation, the results do not scatter more or less for the different
values of nel. Increasing the number of elements, the results get closer to the line symbolising
the linear dependence of the random variable results. The approximation error due to the
element number therefore has an effect on the dependency between σ{wmax} and σ{µ̂q,j}. Still,
the results are already converging for nel = 500 and it cannot be assumed that increasing
the element number further would achieve results matching with the linear dependence line.
Regarding the computational cost involved for high mesh precision, increasing nel further for
just a little effect seems not worth the effort.

Truncation order: In a next step, the influence of the truncation order T is studied. For
that purpose, T is chosen such that it reduces the truncation error by the factor ten for each
step. The truncation terms needed for an aimed mean truncation error, ε̄Γ̄ ≤ 15 %, ε̄Γ̄ ≤ 1.5 %,
ε̄Γ̄ ≤ 0.15 % and ε̄Γ̄ ≤ 0.015 %, are given in Table 6.1. For the sake of transparency, the actually
resulting mean truncation error is stated below, as a certain aimed error cannot necessarily be
achieved. However, for the purpose of studying the general influence of T , the given actual
errors are accepted.

Table 6.1: Truncation order T and resulting mean truncation error ε̄Γ̄, corresponding to dif-
ferent aimed truncation errors ε̄, assuming a correlation length ratio Lq/l = 0.1.

aimed mean truncation error ε̄Γ̄ ≤ 15 % ε̄Γ̄ ≤ 1.5 % ε̄Γ̄ ≤ 0.15 % ε̄Γ̄ ≤ 0.015 %

truncation order T [−] 8 21 46 102

resulting mean truncation error ε̄Γ̄ [%] 14.5700 1.3820 0.1409 0.0147
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The results of each five simulations for the different truncation orders T = 8, T = 21, T = 46

and T = 102 are depicted in Figure 6.10. Note that for the sake of comparability, the same
close up interval is chosen as before. It can be seen that the influence of the truncation order
is much smaller than the influence of the mesh size. Increasing T further would not lead to a
better approximation and therefore cannot show evidence for an actually linear dependency.

Figure 6.10: Influence of the truncation order T on the dependency between input and output
standard deviation, applying the correlation length ratio Lq/l = 0.1, with nel = 500 and nMC =
1× 104 for each scenario.

Number of samples: At last the effect of the sample size nMC is investigated. Here, also
nMC = 1× 105 is included, as this is the sample size used in the studies before. As the
convergence of the stochastic moments depends on the sample size, a high variation of the
results is expected for small sample sizes. This can indeed be observed in Figure 6.11. While
the results scatter relatively wide for nMC = 100 and nMC = 1000, they concentrate more for
nMC = 1× 104 and are almost not distinguishable for nMC = 1× 105. However, increasing the
sample size does not have the effect of resulting closer to the linear dependency line.

Summary: In Figure 6.7 it has been observed that the assumption of a linear dependency
between σ{wmax} and σ{µ̂q,j} is not perfectly correct. In order to investigate whether this is just
an issue of convergence, the influence of different parameters affecting the approximation error
has been studied in the last paragraphs. The element number nel has been the only parameter
for which an effect could be shown with respect to approaching the linear dependency line for
higher values. However, the results appeared to converge to a value which is still above the
linear dependency line. While, compared to the element number, the truncation order T did
not have a significant effect on the results, the sample size nMC has shown a huge influence,
but mainly on the scattering and rarely on the convergence of the results towards the linear
dependency line.
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Figure 6.11: Influence of the number of MC samples nMC on the dependency between input
and output standard deviation, applying the correlation length ratio Lq/l = 0.1, with nel = 500
and T = 102.

It can be concluded that the dependency is indeed not perfectly linear. In other words, a
true linear dependency cannot be achieved by more accurate simulations. Still, the assumption
of a linear dependency appears appropriate for an estimate, especially when the propagation of
imprecise random fields involves a much higher computational cost than determining the ani-
p-box for Lq/l = (0,∞). Furthermore, as the true correlation structure and correlation length
are unknown anyway and the whole simulation is based on imprecise model assumptions, the
inaccuracy resulting from the decoupled interpolation algorithm can be justified.

Investigations for a non-linear response

The study is repeated considering the Young’s modulus as input random field with µE =

210 GPa and σE = 0.1µE, leading to a moderately non-linear response. As can be seen in
Figure 6.12, this has an influence on the accuracy regarding a linear estimate of the output
standard deviation. Especially for the small correlation length ratio LE/l = 0.1 the standard
deviation obtained from sampling is significantly underestimated by the interpolated pendant
assuming linear dependence. It has been shown for the case of a random field line load that
increasing the precision of the - already relatively precise - simulations will not improve the
results to be more linearly dependent. For that reason, the convergence study is not repeated
for the Young’s modulus once more.

The resulting interpolated CDFs for the ratios LE/l = 0.1 and LE/l = 1.0 are investigated
in Figure 6.13. Here, the impact of underestimating the standard deviation can clearly be
seen. While the CDF corresponding to LE/l = 1.0 appears to be interpolated sufficiently (and
provide also a relative error of ε̃{wmax} ≤ 2 %), the difference between the interpolated and
the sampled CDF obtained by LE/l = 0.1 is already clearly noticeable in the CDF itself. The
error in the lower tail becomes about ε̃{wmax} = 4 %. Furthermore, a distinct difference of the
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Figure 6.12: Slightly non-linear dependence between the input standard deviation σ{µ̂E,j} of
the individual mean value µ̂E,j and the standard deviation σ{wmax} of the output maximum
beam deflection wmax obtained by nel = 500 and nMC = 1× 105 for each scenario, considering
the Young’s modulus E(ω, z) as random field input.

Figure 6.13: Cumulative distribution functions for two correlation length ratios, LE/l = 0.1
(blue) and LE/l = 1.0 (red), obtained by sampling with nMC = 1× 105 MC samples (solid lines)
as well as resulting from a linear interpolation within the ani-p-box (dashed lines), complemented
with the corresponding error measures ε̃{wmax} (bottom left) and ∆̃Fw (bottom right), when
considering the Young’s modulus E(ω, z) as an input random field.
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errors in the upper and lower tail is visible regarding both, the relative error and the distance
measure. This has not been observed (that pronounced) in the first study based on a random
field line load. This is attributed to the fact that, due to the non-linear response, the Gaussian
distribution of the input is not propagated towards a Gaussian distributed output anymore.
For this reason, the impact of the underestimated standard deviation varies along the CDF.
This suggests the idea to “correct” the linearly assumed dependency by incorporating higher
moments of the QoI, but this is part of future research.

Investigations for two random field input parameters

The interference of both parameters, the line load q(ω, z) and the Young’s modulus E(ω, z),
being a random field is studied in the following. The hyper parameters and correlation lengths
for both parameters are considered the same as before. The bi-linear dependency between the
QoI wmax and the corresponding input values σ{µ̂q,j} and σ{µ̂E,j} is symbolised with a blue
surface in Figure 6.14. The surface is obtained by the scenarios described by the combination of
deterministic and random variable simulations. The four scenarios resulting from each parame-
ter being assumed as a random variable or white noise are depicted as grey circles, to verify the
assumption of the white noise converging towards zero. The results obtained by sampling and
propagating the random fields according to the random field scenario (Lq/l, LE/l) are given
by red crosses. The corresponding interpolated result laying on the surface is depicted as a
black dot. Furthermore, to facilitate the view on the distance between the sampled and the
interpolated result, the red crosses and the corresponding black points are connected by a black
line. If the line is not or only barely visible, the both results coincide. This is the case for many
correlation length combinations.

Figure 6.14: Bi-linear dependence between the input standard deviations σ{µ̂q,j} and σ{µ̂E,j}
of the individual mean values µ̂q,j and µ̂E,j and the standard deviation σ{wmax} of the output
maximum beam deflection wmax obtained by nel = 500 and nMC = 1× 105 for each scenario,
considering the line load q(ω, z) and the Young’s modulus E(ω, z) as input random fields.
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The largest distance can be observed for (Lq/l→∞, LE/l = 0.1). For this (i) scenario and
two further examples, i.e. (ii) (Lq/l = 0.1, LE/l = 10.0) and (iii) (Lq/l = 1.0, LE/l = 1.0), the
resulting CDFs are investigated further in Figure 6.15. As to be expected, the difference between
the interpolated and the sampled results is most distinct for scenario (i), where both correlation
lengths are small. However, regarding the error in the left tails, with ε̃{wmax} ≤ 4 % scenario
(ii) results in a larger error than the first scenario (ε̃{wmax} ≤ 2.5 %). When both correlation
length ratios are moderate, as given in scenario (iii), the interpolation fits the sampled result
very well. Besides the effects of not being perfectly linear, which have already been observed
in the cases of one random field input, the interference of two random field input parameters
does not appear to diminish the applicability of the proposed interpolation approach.

Figure 6.15: Cumulative distribution functions for three correlation length combinations ob-
tained by sampling with nMC = 1× 105 MC samples (solid lines) as well as resulting from a
linear interpolation within the ani-p-box (dashed lines), complemented with the corresponding
error measures ε̃{wmax} (bottom left) and ∆̃Fw (bottom right), when considering both, the line
load q(ω, z) and the Young’s modulus E(ω, z) as input random fields.

6.3.2. Tensile bar with elasto-plastic material behaviour

In the following study, the interpolation algorithm is applied to a simple mechanical problem
providing a non-linear model, i.e. in terms of an elasto-plastic material behaviour including
linear kinematic hardening. A bar of length l = 1 m and cross section A = 0.01 m2 is clamped
at its one end and loaded by a single tensile force F = 3.2 MN, as depicted in Figure 6.16. The
QoI is the maximal deflection umax at the free end. The bar is discretised by nel = 500 rod
elements. Again, steel with a Young’s modulus E = 210 GPa is used. Furthermore, for the
deterministic case, a yield stress σy = 300 MPa and a hardening parameter H = 1.5 GPa are
assumed, leading to a deterministic deflection of umax = 14.86 mm.
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Figure 6.16: Elasto-plastic bar under axial loading F = 3.2 MN, resulting in a deterministic
maximal deflection: umax = 14.86 mm.

In Figure 6.17, the model response is depicted as a function of the different material pa-
rameters. Note that the response with respect to the Young’s modulus is still non-linear but
the influence of E is rather small compared to the yield stress σy. Furthermore, the response of
the latter is non-differentiable due to the fact that for large values of σy, the yield stress is not
reached regarding the given load. In the following, the interpolation approach is studied with
regard to the non-linear response resulting from the hardening parameter H, as it has a slightly
higher influence than E, and afterwards with regard to the non-differentiable response. Again,
ten percent standard deviation are assumed for each case and the three correlation length ratios
LX/l = 0.1, LX/l = 1.0 and LX/l = 10.0 are considered. Note that regarding the range of
possible samples, µσy ± 3σ10%

σy
, deflections of umax > 50 mm, i.e. larger than five percent are

not unlikely to be obtained. This violates the assumption of small strains. However, as this
example is just applied to test the proposed algorithm in general and is not used for a real
engineering design, this concern is secondary at this point. The most interesting part of the
simulation is expected in the area of non-differentiability, where the deflection is small.

Figure 6.17: Maximal bar deflection umax as a function of different input parameters consid-
ering an elasto-plastic material.

Investigations for a non-linear response

The elasto-plastic bar study is first performed with the hardening parameter H(ω, z) as an
input random field. The mean value is chosen as µH = 1.5 GPa, the standard deviation is
σH = 0.1µH . Furthermore, the same three correlation length scenarios are considered as before.
The dependency of the QoI standard deviation σ{umax} and the standard deviation σ{µ̂H,j} of
the individual input realisation mean values are depicted in Figure 6.18. Again, the assumed
linear dependence on the random variable is symbolised by a blue line connecting the origin
(i.e. converged white noise) and the random variable result. It can be seen that the assumption
of a linear dependence fits the sampled random field results very well.
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Figure 6.18: Linear dependence between the input standard deviation σ{µ̂H,j} of the individual
mean value µ̂H,j and the standard deviation σ{umax} of the output maximum bar deflection umax,
considering the hardening parameter H(ω, z) as random field input, obtained by nel = 500 and
nMC = 1× 105 for each scenario.

Figure 6.19: Cumulative distribution functions for two correlation length ratios, LH/l = 0.1
(blue) and LH/l = 1.0 (red), obtained by sampling with nMC = 1× 105 MC samples (solid lines)
as well as resulting from a linear interpolation within the ani-p-box (dashed lines), complemented
with the corresponding error measures ε̃{umax} (bottom left) and ∆̃F u (bottom right), when
considering the hardening parameter H(ω, z) as an input random field.
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As can be seen in Figure 6.19, this leads to a much better interpolation of the corresponding
CDFs as well, even for the correlation length ratio LH/l = 0.1. It can be concluded that the
accuracy of an interpolation within the ani-p-box seems not only to depend on the system
response towards a certain parameter but also on the model itself.

Investigation for a non-differentiable response

In a second study, the applicability of the decoupled interpolation algorithm towards a non-
differentiable response is investigated. Again, the non-linear elasto-plastic material model in-
cluding linear hardening is assumed. However, here the yield stress σy is considered as the
random field input parameter, following a mean value of µσy = 300 MPa and ten percent stan-
dard deviation, σσy = 0.1µσy . Although the QoI response umax shows a non-differentiability
within the range of possible outcomes µσy±3σσy , the standard deviation σ{umax} of the output
depends linearly on the input value of σ{µ̂σy,j}, as can be seen in Figure 6.20.

Figure 6.20: Linear dependence between the input standard deviation σ{µ̂σy,j} of the individ-
ual mean value µ̂σy,j and the standard deviation σ{umax} of the output maximum bar deflection
umax, considering the yield stress σy(ω, z) as random field input, obtained by nel = 500 and
nMC = 1× 105 for each scenario.

Nevertheless, the interpolation within the ani-p-box does not work properly in this case,
as can be observed in Figure 6.21. This is due to the non-differentiable behaviour of the
response in the region where the yield stress becomes too high for the bar starting to yield at
all, given the load F . Regarding a random variable, the value of the yield stress is constant
for each realisation. This means that the bar starts to yield everywhere at the same time
and with the same intensity or, if the yield stress realisation is too high, not at all. In the
latter case, the corresponding realisations are effectively deterministic, it does not matter what
exact value the yield stress realisation becomes if this stress is not reached given the applied
load. The vertical part of the CDF obtained by the random variable is therefore driven by
quasi deterministic realisations which are purely linear-elastic. As soon as yielding occurs, the
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deflection increases so quickly that a kink in the CDF occurs. This kink is interpolated one-
to-one for the correlation length scenarios. On the contrary to the random variable, however,
the random fields yield stress value is not constant over the whole domain. Therefore, yielding
might start in some elements already while others are still in the linear-elastic region. The
higher the variability of the random field is (i.e. the smaller the correlation length is), the
more unlikely it is to obtain quasi deterministic realisations in the linear-elastic region. For
this reason, the vertical part is much shorter for the correlation length ratio Lσy/l = 1.0 and
disappears completely for Lσy/l = 0.1. Consequently, a very large error can be obtained in
the left tail, where the interpolation entails the kink of the random variable while the sampled
CDF does show a smoother behaviour.

Figure 6.21: Cumulative distribution functions for two correlation length ratios, Lσy/l = 0.1
(blue) and Lσy/l = 1.0 (red), obtained by sampling with nMC = 1× 105 MC samples (solid lines)
as well as resulting from a linear interpolation within the ani-p-box (dashed lines), complemented
with the corresponding error measures ε̃{umax} (bottom left) and ∆̃F u (bottom right), when
considering the yield stress σy(ω, z) as an input random field.

On the other side, the errors of the right tails are relatively small, indicating a good interpo-
lation of the sampled results. As the right tail is usually of higher interest from the engineering
point of view, as it covers the case where plastic deformation happens, the interpolation ap-
proach might be useful for some applications nevertheless. However, using it should be carefully
pondered. With regard to engineering application, the rebalancing of stresses in 2D and three-
dimensional (3D) problems might become useful as well, in order to avoid hard kinks in case
of a random variable. For this reason, the influence of the yield stress is studied once more in
the next caption for a 2D example.
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6.4. Application to a two-dimensional random field

To investigate the ani-p-box approach for a non-linear model including a 2D random field, the
numerical example of Subsection 5.2.2 is slightly modified. The elasto-plastic material model
including linear hardening as well as the deterministic material parameters stay the same as
before. The yield stress is again considered as the random field input parameter, the hyper
parameters are chosen as µσy = 300 MPa and σσy = 0.05µσy . A ME correlation kernel is used
and different effective correlation length ratios are studied, i.e. Lσy/l = 0.4, Lσy/l = 0.6 and
Lσy/l = 0.8. The corresponding correlation lengths LME

σy
and truncation orders T to achieve a

mean truncation error of ε̄Γ̄ ≤ 1.0 % are given in Table 6.2.

Table 6.2: Truncation order T required to obtain a comparable mean correlation error of ε̄Γ̄ ≤
1.0 % considering different effective correlation length ratios Lσy/l assuming an ME correlation
function for a 2D random field.

Lσy/l [−] 0.4 0.6 0.8

LME
σy
/l [−] 0.1839 0.2699 0.3503
T [−] 47 24 16

ε̄Γ̄ [%] 0.9816 0.9997 0.9688

As depicted in Figure 6.22, the one square-meter sized plate is only pulled at its top along
its right half side by the constant line load q0 = 300 MPa. By this, the stress state is not
constant anymore and a rebalancing of the stresses is achieved. As can be seen in Figure 6.23,
this smoothens the QoI responses a bit, at least for some nodes, e.g. node 66. In this figure,
the model responses of the displacement u2 (left) and the equivalent plastic strain ε̄p (right)
are depicted for the FE nodes 61, 66 and 121 as a function of the yield stress σy. The black
dashed vertical lines represent the stochastic domain µσy ± 3σσy within which 99.73 % of the
samples are included.

z2

z1

l1 = 1 m

l 2
=

1
m

q0 = 300 MN m−1

deterministic material parameters

61

E = 210 GPa

ν = 0.3

σy = 300 MPa

H = 1.5 GPa

121

66

Figure 6.22: Elasto-plastic steel plate model pulled at its right side by a constant line load q0.
The quantities of interest are investigated at the nodes which marked by circles.

The maximum deflection u2 is now expected to be at node 121. Furthermore, it can be seen
for node 61 (which has been used as node of interest in Subsection 5.2.2) that ε̄p is zero within
the range of likely events (black dashed lines). For this reason, the equivalent plastic strain is
investigated at node 66 in this example.
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(a) displacement u2 (b) equivalent plastic strain ε̄p

Figure 6.23: Model response of the quantity of interest at different nodes as a function of the
yield stress σy.

In the following subsection, the convergence behaviour of the mean value and standard de-
viation for both QoI is studied. Afterwards, the ani-p-box resulting for the displacment at node
121 and the equivalent plastic strain at node 66 are depicted and discussed in Subsection 6.4.2.

6.4.1. Investigation on the convergence behaviour

The convergence of the stochastic moments with an increasing sample size nMC is depicted in
Figure 6.24, using a brute force MC simulation. In Figure 6.24a, the mean value µ{µ̂σy,j} (left)
and standard deviation σ{µ̂σy,j} (right) of the individual random field realisation mean values
µ̂σy,j of the input random field yield stress σy(ω, z) are depicted for the different correlation
length ratios in different colours. The convergence of the mean value and the standard deviation
of the random variable realisations (Lσy/l → ∞) is given in a black dashed line. The input
hyper parameters µσy = 300 MPa and σσy = 0.1µσy = 15 MPa are depicted in a black solid line.

As to be expected from the investigations in Section 6.1, µ{µ̂σy,j} converges towards µσy in-
dependently of the correlation length, while σ{µ̂σy,j} converges towards different values between
zero and σσy depending on Lσy/l. So far, a similar behaviour has been observed for the mean
value µ{Y } and standard deviation σ{Y } of the QoI Y (ω, z). As can be seen on the right side
of Figure 6.24b for the displacement Y (ω) = u2(ω, ẑ121) at node 121 and the equivalent plastic
strain Y (ω) = ε̄p(ω, ẑ66) at node 66, this still holds true for the standard deviation. However,
the convergence of the corresponding mean values, depicted on the left side of Figure 6.24b now
also appears to be dependent on the correlation length. As a first assumption the converged
mean value is expected to follow the same ratio depending on Lσy/l as the converged standard
deviation. However while the latter lays between zero and the random variable result, the mean
value lays between the deterministic result (depicted as a constant in a black solid line) and the
random variable result. Actually, defining the standard deviation of a deterministic solution to
be zero, the statement can be generally expressed as the assumption that the stochastic mo-
ments resulting from Lσy/l ∈ (0,∞) are bounded by the deterministic value and the random
variable results. This still holds for the results obtained before in Section 6.3, observing the
mean values to be close or almost equal to the deterministic result.
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(a) mean value µ{µ̂σy,j} (left) and standard deviation σ{µ̂σy,j} (right) of the individual random field realisation
mean values µ̂σy,j of the input random field yield stress σy(ω,z)

(b) mean value µ{Y } (left) and standard deviation σ{Y } (right) of the QoI, i.e. the displacement Y (ω) =
u2(ω, ẑ121) (top) and the equivalent plastic strain Y (ω) = ε̄p(ω, ẑ66) (bottom)

Figure 6.24: Convergence behaviour of the input realisations as well as the QoI obtained by
an elasto-plastic material model including linear hardening.
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To investigate the dependency between the converged mean value µ{Y } and standard de-
viation σ{Y } of the output QoI Y (ω) and the underlying mean and standard deviation of the
individual input realisation mean values, both moments are each plotted for both QoI against
µ{µ̂σy,j} and σ{µ̂σy,j} in Figure 6.25. The different colours represent the results obtained at
the different nodes to be investigated. The assumed linear dependency between the determin-
istic and the random variable results is visualised by a solid line. Its left end represents the
deterministic result, its right end the results of the random variable, both marked by a circle.
The results corresponding to the three different correlation length ratios Lσy/l are depicted as
crosses in the corresponding colour.

(a) displacement Y (ω) = u2(ω, ẑ121)

(b) equivalent plastic strain Y (ω) = ε̄p(ω, ẑ66)

Figure 6.25: Dependency between the converged mean value µ{Y } (left) and standard devi-
ation σ{Y } (right) of the QoI Y (ω) and the underlying mean and standard deviation of the
individual input realisation mean values, µ{µ̂σy,j} and σ{µ̂σy,j}.

Regarding the standard deviation depicted at the right side of Figure 6.25, it can be seen
that the assumption of a linear dependency again underestimates the true value. This may
become especially critical for large deformations as obtained e.g. at node 121. Furthermore, in
case of the equivalent plastic strain, the deviation becomes larger for smaller correlation length
ratios, see Figure 6.25b. As the mean values of the input is still converging towards the hyper
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parameter µσy independently of the correlation length, the mean values of the output line up on
a vertical line underneath the random variable results, see the left side of Figure 6.25. For the
following study, it is assumed that the ratio of the standard deviation can be mapped linearly
to this vertical dependency between the deterministic result y0 and the random variable mean
value µRV of the output, i.e.

µ̃L{y} = y0 +
σL{µ̂x,j}
σX︸ ︷︷ ︸

=σL{µ̂s,j}

· (µRV{y} − y0) . (6.13)

By this, Eq. (6.8) is generalised towards

F Y ,L(ỹ) = µ̃L{y}+ σL{µ̂s,j} · F Y ,RV(y). (6.14)

Validating this assumption in general as well as investigating also higher moments with regard
to their input output dependency remains a goal of future research.

6.4.2. Results obtained by the interpolation approach

The generalised interpolation approach is investigated for the given problem by propagating
each random field and random variable scenario by a brute force MC simulation using each
nMC = 1× 104 samples. The ani-p-box resulting for the propagated random field and its
assigned mean value regarding the displacement u2 at node 121 is depicted in a black dashed
line in Figure 6.26. Furthermore, the deterministic result is given as a vertical black solid
line. The CDFs resulting from propagating the random fields using different correlation length
ratios are depicted in solid lines. In dashed lines of corresponding colour, the results obtained
by interpolating within the ani-p-box are depicted. As before, the corresponding error measures
ε̃{u2} and ∆̃F u are depicted below the ani-p-box.

It can be noticed that there is no perfectly vertical part in the CDF of the random variable
as observed for the 1D example. This is due to the rebalancing of stresses in the domain.
However, the left tail corresponding to small displacements is still very steep. Furthermore,
the tails of the random field CDFs appear to converge to the same origin, while the correlation
length mainly affects the right tail, which corresponds to the realisations resulting in remarkable
plastic deformations. This cannot be incorporated by the interpolation of the CDFs, resulting
in a poor result of the left tails. Concerning the right tails, the interpolated results fit the
sampled ones much butter. Still, also here an increasing error is observed for a decreasing
correlation length.

On the contrary to the 1D examples where the resulting CDFs appeared (approximately)
Gaussian (despite the kink occurring under certain circumstances), the distribution family of
the displacement is clearly non Gaussian. This is properly the reason why the mean value
µ{u2} is much more affected by the correlation length than the mean of the QoI in Section 6.3.
This further suggests the assumption that studying the dependency of higher moments on the
correlation length could attain further knowledge to improve the interpolation approach.
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The results obtained by the interpolation approach to estimate the equivalent plastic strain
ε̄p at node 66 are depicted in Figure 6.27. Although the left tail is not as steep as for the
displacement, the error made by interpolation is even higher. Furthermore, the left tails of
the sampled CDFs corresponding to the three different random field scenarios even lay outside
the ani-p-box. This violates the model assumption of a monotonic dependency between the
QoI stochastic moments and the correlation length. Consequently, also the assumption of
intermediate values L∗σy

∈ LIσy
has to be questioned with regard to this example. On the

contrary to the assumptions made before, it can be concluded that stress rebalancing effects
do not improve the applicability of the interpolation approach regarding non-linear models.

Figure 6.26: Cumulative distribution functions of the deflection u2 at node 121, considering
three correlation length ratios, Lσy/l = 0.4 (blue), Lσy/l = 0.6 (red) and Lσy/l = 0.8 (yellow),
each scenario obtained by sampling with nMC = 1× 104 MC samples (solid lines) as well as
resulting from a linear interpolation within the ani-p-box (dashed lines), complemented with
the corresponding error measures ε̃{u2} (bottom left) and ∆̃F u (bottom right), considering the
yield stress σy(ω, z) as an input random field.

6.5. Summary and concluding remarks

In the studies provided in Chapter 5, global sparse SC as well as global sparse PC approaches
have been shown to be limited by the curse of dimensionality and especially in terms of non-
linear model propagation. Due to the amount of model assumptions and approximation errors
already made for the KL expansion considering imprecise random fields, more sophisticated SC
and PC approaches, e.g. in terms of an adaptive local refinement within the stochastic space,
have not been considered appropriate in order to guarantee the resulting p-box not being mainly
caused artificially by a combination of several errors.



6.5. SUMMARY AND CONCLUDING REMARKS 121

Figure 6.27: Cumulative distribution functions of the equivalent plastic strain ε̄p at node 66,
considering three correlation length ratios, Lσy/l = 0.4 (blue), Lσy/l = 0.6 (red) and Lσy/l = 0.8
(yellow), each scenario obtained by sampling with nMC = 1× 104 MC samples (solid lines) as
well as resulting from a linear interpolation within the ani-p-box (dashed lines), complemented
with the corresponding error measures ε̃{ε̄p} (bottom left) and ∆̃F ε (bottom right), considering
the yield stress σy(ω, z) as an input random field.

As a dependency on the correlation length between input and output has been observed in
the studies before, this dependency has been intensively studied for the mean value and the
standard deviation in this chapter. Based on these findings, the p-box of having absolutely no
idea (ani-p-box) about the correlation length, i.e. LX ∈ (0,∞), has been introduced to describe
the outest bounds possible regarding interval valued correlation lengths. Then, a decoupled
interpolation has been proposed to interpolate the results corresponding to a random field of
certain correlation length from the ani-p-box.

The approach has been studied for 1D and 2D random fields concerning linear and non-
linear material models. It has been shown that the CDF can be sufficiently estimated when
the output follows approximately a Gaussian distribution. However, if the model response is
non-differentiable, the part of the CDF corresponding to the non-differentiable region cannot be
represented satisfactory. If the results are described by a non Gaussian distribution family, the
interpolation approach fails. It remains to be studied in future research whether the convergence
behaviour of higher moments can be used to further improve the interpolation approach with
this respect.

In general, the approach is expected only to be applicable under certain model assumptions,
as stated in the beginning of this chapter. Especially regarding non-monotonic models, the use
of the interpolation approach has to be questioned. This includes also monotonic models
involving cyclic loading.
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A severe drawback is the fact that no internal error measure is available. So far, the results
have only been validated in terms of a reference error but a reference solution is usually not
available. Still, understanding also the impact of higher moments, this approach can be useful to
obtain estimates in engineering application, as the computational cost can be reduced drastically
by only propagating a random variable instead of several random fields. Concerning non-linear
problems, by the fact of propagating only one (low-dimensional) scenario per uncertain input
parameter, also more sophisticated sampling techniques than the studied global approaches
can become useful again. To draw more generic conclusions from the observation, the approach
should further be validated in terms of more complex geometries.



7. Conclusion and Perspectives

Uncertainties appear in different extends, kinds and situations during the engineering design
process. They can imply varying material properties, imperfect geometries or unpredictable
loading conditions and may change in time or space. While epistemic uncertainties can be
(theoretically) reduced by getting more data, knowledge or precision, aleatory uncertainties
depend on chance. Often a mixture of both uncertainties is required to model real conditions.

In this work, different concepts to quantify and propagate different kinds of uncertainties
have been described and examined. This included Gaussian random variables and fields to
describe aleatory uncertain scalar values or spatially varying values, respectively. To model
epistemic uncertainties, the focus has been on interval valued parameters. Consequently, mixed
uncertainties have been described by the combination of both theories, resulting in a probability
box (p-box). The double loop approach is an often applied and straightforward method to
propagate such imprecise probabilities. The interval valued parameters are discretised in an
outer loop while each resulting aleatory scenario can be propagated within the inner loop, e.g.
by Monte Carlo (MC) sampling. Finally, the quantity of interest (QoI) as the outcome of the
model propagation can again be described by a p-box.

The application focus of this thesis was on mixed uncertain material properties including
a spatial variation. For this purpose, imprecise random fields were introduced and intensively
investigated. While it has been assumed that mean value and standard deviation can be de-
termined sufficiently exact by experiments, the difficulty or even impossibility to measure the
correlation length has been acknowledged by an interval valued correlation length. The ran-
dom fields resulting for each correlation length scenario have been discretised by a truncated
Karhunen-Loève (KL) expansion. It has been shown that this may involve difficulties regarding
the truncation error corresponding to the correlation length scenarios to be comparable. Oth-
erwise, it cannot be estimated how much the resulting p-box is just a consequence of different
truncation errors. Furthermore, the computational cost in terms of the double loop propagation
as well as due to the physical discretisation has been addressed.

To reduce the computation time, two alternative sampling techniques than MC method have
been investigated, the sparse stochastic collocation (SC) method as well as a sparse polynomial
chaos (PC) expansion. Both methods aim at reducing the number of samples to be propagated
and have shown high efficiency for linear and smooth models. While sparse SC method suf-
fers from the curse of dimensionality regarding large truncation terms, sparse PC expansion
outperformed both, SC and MC method also for high stochastic dimensions. However, concern-
ing the propagation through a non-linear material law, only the robust MC method achieved
satisfactory results.
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In the studies during this research project, it has been observed that the correlation length
mainly affects the standard deviation of the QoI but rarely the mean value. In any case,
both parameters appeared to decrease monotonically (though not linearly) with an increasing
correlation length. Consequently, it has been assumed and shown in a first study that the results
were bounded by the infinite bounds of the correlation length, i.e. assuming white noise (the
correlation length converges towards zero) on the one side and a random variable (convergence
towards infinity) on the other side. Based on this study, a decoupled interpolation approach
has been proposed. The basic idea is to interpolate the result of an arbitrary correlation length
scenario within the so-called absolutely no idea probability box (ani-p-box). As the propagation
of white noise converges towards the deterministic result, the ani-p-box can be obtained by a
deterministic and a random variable propagation. Ideally, the simulation of the latter is much
cheaper than for a random field, as the stochastic dimension is usually much smaller and
sophisticated sampling techniques can be applied. The interpolation factor is determined by
the ratio of the standard deviation of the individual input realisation mean values corresponding
to the applied correlation length and the standard deviation of the QoI obtained by the random
variable. The first is estimated by sampling (but not propagating) a large number of random
field realisations, taking the mean of each realisation and evaluating the standard deviation of
these realisation mean values statistically.

The proposed decoupled interpolation approach has been investigated for one-dimensional
(1D) and two-dimensional (2D) random field problems regarding linear and non-linear material
models. The approach yields a good approximation if the stochastic response is sufficiently
smooth. However, the error turned out to be higher if the correlation length is small. Addition-
ally, assuming a linear dependency between the input and output standard deviations, the true
standard deviation of the QoI has been slightly underestimated in some cases. If the stochastic
response is locally changing significantly or even is non-differentiable, the interpolated results
include a high error at the probabilities assigned to this region in the response. In case of the
provided studies, this has been the case when the elastic region transits to the plastic region.
Therefore, further investigations on the input output dependency of higher moments are sug-
gested for future research, aiming to improve the interpolation by this knowledge. Additionally,
an internal error estimate to quantify the quality of the results without a reference solution
must be developed to achieve applicability in engineering practise.

For these cases where the interpolation approach is beneficial, it is of high benefit in terms
of computational cost. First, the double loop approach is decoupled and only the scenarios
corresponding to the uncertain parameters modelled by random variables need to be propa-
gated. This is less than the according random field scenarios, even if only a vertex analysis
was applied for the latter case. Second and consequently, no random field propagation is re-
quired, solving the challenge regarding different truncation orders and corresponding stochastic
dimensions. Third, the physical mesh discretisation must only be chosen as fine as necessary to
gain convergence for constant material data and not according to the variability of the random
field, which reduced the simulation cost of an individual realisation. At last, due to the usually
moderate stochastic dimensions in terms of random variables, sophisticated sampling methods
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can be used which would suffer from the curse of dimensionality in case of high-dimensional
random fields. Furthermore, as the change of stochastic dimensions due to different required
truncation orders is avoided, also anisotropic and/or adaptive multi-element approaches can be
considered to propagate random variables through non-smooth models, without risking multiple
approximation errors to interfere and resulting in an artificial error induced p-box.



126 CHAPTER 7. CONCLUSION AND PERSPECTIVES



Bibliography

M. Abramowitz and I.A. Stegun. Handbook of mathematical functions with formulas, graphs
and mathematical tables. Department of commerce, National Bureau of Standards, 10 edition,
1964.

H. Altenbach. Kontinuumsmechanik - Einführung in die materialunabhängigen und material-
abhängigen Gleichungen. Springer Vieweg, 3 edition, 2015.

K. Atkinson and W. Han. Numerical Solution of Fredholm Integral Equations of the Second
Kind, pages 473–549. Springer New York, New York, NY, 2009. doi: 10.1007/978-1-4419-
0458-4_12.

J. Bäck, F. Nobile, L. Tamellini, and R. Tempone. Stochastic spectral Galerkin and collocation
methods for PDEs with random coefficients: a numerical comparison. In J.S. Hesthaven and
E.M. Ronquist, editors, Spectral and High Order Methods for Partial Differential Equations,
volume 76 of Lecture Notes in Computational Science and Engineering, pages 43–62. Springer,
2011. Selected papers from the ICOSAHOM ‘09 conference, June 22-26, Trondheim, Norway.

A.A. Basmaji, M.M. Dannert, and U. Nackenhorst. Implementation of Karhunen-Loève ex-
pansion using discontinuous Legendre polynomial based Galerkin approach. Probabilistic
Engineering Mechanics, 67:103176, 2022a. doi: 10.1016/j.probengmech.2021.103176.

A.A. Basmaji, A. Fau, J.H. Urrea-Quintero, M.M. Dannert, E. Voelsen, and U. Nacken-
horst. Anisotropic multi-element polynomial chaos expansion for high-dimensional non-
linear structural problems. Probabilistic Engineering Mechanics, 70:103366, 2022b. doi:
10.1016/j.probengmech.2022.103366.

K.-J. Bathe. Finite Element Procedures. Prentice-Hall Inc., 1996.

M. Beer, S. Ferson, and V. Kreinovich. Imprecise probabilities in engineering analyses. Me-
chanical Systems and Signal Processing, 37(1):4–29, 2013. doi: 10.1016/j.ymssp.2013.01.024.

W. Betz, I. Papaioannou, and D. Straub. Numerical methods for the discretization of random
fields by means of the Karhunen-Loève expansion. Computer Methods in Applied Mechanics
and Engineering, 271:109–129, 2014.

G. Blatman and B. Sudret. Sparse polynomial chaos expansions and adaptive stochastic finite
elements using a regression approach. Comptes Rendus Mecanique, 336(6):518–523, 2008.
doi: 10.1016/j.crme.2008.02.013.

http://dx.doi.org/10.1007/978-1-4419-0458-4_12
http://dx.doi.org/10.1007/978-1-4419-0458-4_12
http://dx.doi.org/10.1016/j.probengmech.2021.103176
http://dx.doi.org/10.1016/j.probengmech.2022.103366
http://dx.doi.org/10.1016/j.probengmech.2022.103366
http://dx.doi.org/10.1016/j.ymssp.2013.01.024
http://dx.doi.org/10.1016/j.crme.2008.02.013


128 BIBLIOGRAPHY

G. Blatman and B. Sudret. Adaptive sparse polynomial chaos expansion based on least
angle regression. Journal of Computational Physics, 230(6):2345–2367, 2011. doi:
10.1016/j.jcp.2010.12.021.

P. Bressolette, M. Fogli, and C. Chauvière. A stochastic collocation method for large classes
of mechanical problems with uncertain parameters. Probabilistic Engineering Mechanics, 25
(2):255–270, 2010. doi: 10.1016/j.probengmech.2010.01.002.

H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004. doi:
10.1017/S0962492904000182.

J. Ching and K.-K. Phoon. Impact of autocorrelation function model on the probability of
failure. Journal of Engineering Mechanics, 145(1):04018123, 2019.

M.M. Dannert, A. Fau, R.M.N. Fleury, M. Broggi, U. Nackenhorst, and M. Beer. A probability-
box approach on uncertain correlation lengths by stochastic finite element method. PAMM,
18(1):e201800114, 2018. doi: 10.1002/pamm.201800114.

M.M. Dannert, R.M.N. Fleury, A. Fau, and U. Nackenhorst. Non-linear finite element analysis
under mixed epistemic and aleatory uncertain random field input. In M. Beer and E. Zio,
editors, Proceedings of the 29th European Safety and Reliability Conference, pages 2693–2698,
2019. doi: 10.3850/978-981-11-2724-3_0286-cd.

M.M. Dannert, M.G.R. Faes, R.M.N. Fleury, A. Fau, U. Nackenhorst, and D. Moens. Imprecise
random field analysis for non-linear concrete damage analysis. Mechanical Systems and Signal
Processing, 150:107343, 2021a. doi: 10.1016/j.ymssp.2020.107343.

M.M. Dannert, J.L. Häufler, and U. Nackenhorst. Limit representations of imprecise random
fields. In M. Papadrakakis, V. Papadopoulos, and G. Stefanou, editors, 4th ECCOMAS The-
matic Conference on Uncertainty Quantification in Computational Sciences and Engineering
(UNCECOMP), pages 82–99, 2021b. doi: 10.7712/120221.8024.19110.

M.M. Dannert, F. Bensel, A. Fau, R.M.N. Fleury, and U. Nackenhorst. Investigations
on the restrictions of stochastic collocation methods for high dimensional and nonlin-
ear engineering applications. Probabilistic Engineering Mechanics, 69:103299, 2022. doi:
10.1016/j.probengmech.2022.103299.

E.A. de Souza Neto, D. Perić, and D.R.J. Owen. Computational Methods for Plasticity: Theory
and Applications. John Wiley & Sons, 1 edition, 2008.

A.P. Dempster. Upper and lower probability inferences based on a sample from a finite uni-
variate population. Biometrika, 54(3,4):515–528, 1967.

A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter? Structural Safety,
31(2):105–112, 2009.

http://dx.doi.org/10.1016/j.jcp.2010.12.021
http://dx.doi.org/10.1016/j.jcp.2010.12.021
http://dx.doi.org/10.1016/j.probengmech.2010.01.002
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1002/pamm.201800114
http://dx.doi.org/10.3850/978-981-11-2724-3_0286-cd
http://dx.doi.org/10.1016/j.ymssp.2020.107343
http://dx.doi.org/10.7712/120221.8024.19110
http://dx.doi.org/10.1016/j.probengmech.2022.103299
http://dx.doi.org/10.1016/j.probengmech.2022.103299


BIBLIOGRAPHY 129

A. Der Kiureghian, H.-Z. Lin, and S.-J. Hwang. Second-order reliability approximations. Jour-
nal of Engineering Mechanics, ASCE, 113(8):1208–1225, 1987. doi: 10.1061/(ASCE)0733-
9399(1987)113:8(1208).

I. Elishakoff and F. Elettro. Interval, ellipsoidal, and super-ellipsoidal calculi for experimental
and theoretical treatment of uncertainty: Which one ought to be preferred? International
Journal of Solids and Structures, 51(7):1576–1586, 2014. doi: 10.1016/j.ijsolstr.2014.01.010.

M. Faes. Interval methods for the identification and quantification of inhomogeneous uncertainty
in finite element models. PhD thesis, KU Leuven, 2017.

M. Faes and D. Moens. Multivariate dependent interval finite element analysis via convex hull
pair constructions and the extended transformation method. Computer Methods in Applied
Mechanics and Engineering, 347:85–102, 2019a. doi: 10.1016/j.cma.2018.12.021.

M. Faes and D. Moens. Imprecise random field analysis with parametrized ker-
nel functions. Mechanical Systems and Signal Processing, 134:106334, 2019b. doi:
10.1016/j.ymssp.2019.106334.

M. Faes and D. Moens. On auto- and cross-interdependence in interval field finite element
analysis. International Journal for Numerical Methods in Engineering, 121(9):2033–2050,
2020a. doi: 10.1002/nme.6297.

M. Faes and D. Moens. Recent trends in the modeling and quantification of non-probabilistic
uncertainty. Archives of Computational Methods in Engineering, 27:633–671, 2020b. doi:
10.1007/s11831-019-09327-x.

M. Faes and D. Moens. On auto- and cross-interdependence in interval field finite element
analysis. International Journal for Numerical Methods in Engineering, 121(9):2033–2050,
2020c. doi: 10.1002/nme.6297.

M. Faes, M. Broggi, E. Patelli, Y. Govers, J. Mottershead, M. Beer, and D. Moens.
A multivariate interval approach for inverse uncertainty quantification with limited ex-
perimental data. Mechanical Systems and Signal Processing, 118:534–548, 2019. doi:
10.1016/j.ymssp.2018.08.050.

M.G.R. Faes, M. Daub, S. Marelli, E. Patelli, and M. Beer. Engineering analysis with proba-
bility boxes: A review on computational methods. Structural Safety, 93:102092, 2021. doi:
10.1016/j.strusafe.2021.102092.

M.G.R. Faes, M. Broggi, P.D. Spanos, and M. Beer. Elucidating appealing features of differen-
tiable auto-correlation functions: a study on the modified exponential kernel. Probabilistic
Engineering Mechanics, 69:103269, 2022. doi: 10.1016/j.probengmech.2022.103269.

S. Ferson and W. Troy Tucker. Sensitivity analysis using probability bounding. Reliability
Engineering & System Safety, 91(10):1435–1442, 2006. doi: 10.1016/j.ress.2005.11.052.

http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:8(1208)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:8(1208)
http://dx.doi.org/10.1016/j.ijsolstr.2014.01.010
http://dx.doi.org/10.1016/j.cma.2018.12.021
http://dx.doi.org/10.1016/j.ymssp.2019.106334
http://dx.doi.org/10.1016/j.ymssp.2019.106334
http://dx.doi.org/10.1002/nme.6297
http://dx.doi.org/10.1007/s11831-019-09327-x
http://dx.doi.org/10.1007/s11831-019-09327-x
http://dx.doi.org/10.1002/nme.6297
http://dx.doi.org/10.1016/j.ymssp.2018.08.050
http://dx.doi.org/10.1016/j.ymssp.2018.08.050
http://dx.doi.org/10.1016/j.strusafe.2021.102092
http://dx.doi.org/10.1016/j.strusafe.2021.102092
http://dx.doi.org/10.1016/j.probengmech.2022.103269
http://dx.doi.org/10.1016/j.ress.2005.11.052


130 BIBLIOGRAPHY

S. Ferson, V. Kreinovich, L. Ginzburg, D.S. Myers, and K. Sentz. Constructing probability
boxes and dempster-shafer structures. Technical report, Sandia National Laboratories, 2003.
Sand Report - SAND2002-4015.

M. Fina. Polymorphe Unschärfemodellierung in der nichtlinearen Strukturmechanik - Stabilität
von Schalentragwerken, räumliche Variabilität und Metamodellierung. PhD thesis, Karlsruher
Institut für Technologie, 2020.

M. Fina, P. Weber, and W. Wagner. Polymorphic uncertainty modeling for the simulation of
geometric imperfections in probabilistic design of cylindrical shells. Structural Safety, 82:
101894, 2020. doi: 10.1016/j.strusafe.2019.101894.

G. Fishman. Monte Carlo: concepts, algorithms and applications. Springer-Verlag, 1996.

K. Gao, D.M. Do, S. Chu, G. Wu, H.A. Kim, and C.A. Featherston. Robust topology opti-
mization of structures under uncertain propagation of imprecise stochastic-based uncertain
field. Thin-Walled Structures, 175:109238, 2022. doi: 10.1016/j.tws.2022.109238.

A. Genz and B.D. Keister. Fully symmetric interpolatory rules for multiple integrals over
infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics,
71:229–309, 1996.

H.-O. Georgii. Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Walter
de Gruyter, 2 edition, 2004.

R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-
Verlag New York Inc., 9 edition, 1991.

M.A. Gil, M. López-Díaz, and D.A. Ralescu. Overview on the development of fuzzy random
variables. Fuzzy Sets and Systems, 157(19):2546–2557, 2006. doi: 10.1016/j.fss.2006.05.002.

M.B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328, 2015.

M. Götz. Numerische Entwurfsmethoden unter Berücksichtigung Polymorpher Unschärfe - As-
pekte zeitlicher und räumlicher Abhängigkeiten. PhD thesis, Technische Universität Dresden,
2017.

M. Grigoriu. Stochastic Calculus: Applications in Science and Engineering. Birkhäuser Boston,
1 edition, 2002.

M. Hanss. Applied fuzzy arithmetic: an introduction with engineering applications. Springer,
2005.

J.C. Helton and F.J. Davis. Latin hypercube sampling and the propagation of uncertainty in
analyses of complex systems. Reliability Engineering and System Safety, 81(1):23–69, 2003.
doi: 10.1016/S0951-8320(03)00058-9.

http://dx.doi.org/10.1016/j.strusafe.2019.101894
http://dx.doi.org/10.1016/j.tws.2022.109238
http://dx.doi.org/10.1016/j.fss.2006.05.002
http://dx.doi.org/10.1016/S0951-8320(03)00058-9


BIBLIOGRAPHY 131

G.A. Holzapfel. Nonlinear Solid Mechanics - A Continuum Approach for Engineering. John
Wiley & Sons Ltd, 3 edition, 2000.

S.P. Huang, S.T. Quek, and K.-K. Phoon. Convergence study of the truncated Karhunen–Loève
expansion for simulation of stochastic process. International Journal for Numerical Methods
in Engineering, 52:1029–1043, 2001. doi: 10.1002/nme.255.

M. Imholz, D. Vandepitte, and D. Moens. Derivation of an input interval field decomposi-
tion based on expert knowledge using locally defined basis functions. In M. Papadrakakis,
V. Papadopoulos, and G. Stefanou, editors, 1st International Conference on Uncertainty
Quantification in Computational Sciences and Engineering (UNCECOMP 2015), pages 529–
547, 2015. doi: 10.7712/120215.4290.583.

P.-P. Jablonski. Numerische Simulation probabilistischer Schädigungsmodelle mit der
Stochastischen Finite Elemente Methode. PhD thesis, Gottfried Wilhelm Leibniz Univer-
sität, 2014.

J.D. Jakeman, M.S. Eldred, and K. Sargsyan. Enhancing l1-minimization estimates of polyno-
mial chaos expansions using basis selection. Journal of Computational Physics, 289:18–34,
2015. doi: 10.1016/j.jcp.2015.02.025.

M. Kaliske and W. Graf. Special Issue: Polymorphic uncertainty modelling for numerical
design of structures - Part I & II. GAMM-Mitteilungen, 42(1,2), 2019. URL https://

onlinelibrary.wiley.com/toc/15222608/2019/42/1.

G.J. Klir and M.J. Wierman. Uncertainty-Based Information - Elements of Generalized Infor-
mation Theory. Springer-Verlag, 2 edition, 1999.

F.Y. Kuo, C. Schwab, and I.H. Sloan. Quasi-Monte Carlo finite element methods for a class of
elliptic partial differential equations with random coefficients. SIAM Journal on Numerical
Analysis, 50(6):3351–3374, 2012. doi: 10.1137/110845537.

H. Kwakernaak. Fuzzy random variables - i. definitions and theorems. Information Sciences,
15:1–29, 1978.

H. Kwakernaak. Fuzzy random variables - ii. algorithms and examples for the discrete case.
Information Sciences, 17:253–278, 1979.

O.P. Le Maître and O.M. Knio. Spectral Methods for Uncertainty Quantification. Springer
Science+Business Media B.V., 2010.

C.F. Li, Y.T. Feng, D.R.J. Owen, D.F. Li, and I.M. Davis. A Fourier-Karhunen-Loève dis-
cretization scheme for stationary random material properties in SFEM. International Journal
for Numerical Methods in Engineering, 73(13):1942–1965, 2008. doi: 10.1002/nme.2160.

J. Li and P. Stinis. A unified framework for mesh refinement in random and physical space.
Journal of Computational Physics, 323:243–264, 2016. doi: 10.1016/j.jcp.2016.07.027.

http://dx.doi.org/10.1002/nme.255
http://dx.doi.org/10.7712/120215.4290.583
http://dx.doi.org/10.1016/j.jcp.2015.02.025
https://onlinelibrary.wiley.com/toc/15222608/2019/42/1
https://onlinelibrary.wiley.com/toc/15222608/2019/42/1
http://dx.doi.org/10.1137/110845537
http://dx.doi.org/10.1002/nme.2160
http://dx.doi.org/10.1016/j.jcp.2016.07.027


132 BIBLIOGRAPHY

Q. Liu and X. Zhang. A Chebyshev polynomial-based Galerkin method for the discretiza-
tion of spatially varying random properties. Acta Mechanica, 228:2063–2081, 2017. doi:
10.1007/s00707-017-1819-2.

G. Manson. Calculating frequency response functions for uncertain systems using com-
plex affine analysis. Journal of Sound and Vibration, 288(3):487–521, 2005. doi:
10.1016/j.jsv.2005.07.004.

S. Marelli and B. Sudret. UQLab: A framework for uncertainty quantification in Matlab. In Vul-
nerability, Uncertainty and Risk, pages 2554–2563, 2014. doi: 10.1061/9780784413609.257.

S. Marelli, N. Lüthen, and B. Sudret. UQLab user manual – Polynomial chaos expansions. Tech-
nical report, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland,
2022. Report UQLab-V2.0-104.

M.L. Mika, T.J.R. Hughes, D. Schillinger, P. Wriggers, and R.R. Hiemstra. A matrix-free iso-
geometric Galerkin method for Karhunen-Loève approximation of random fields using tensor
product splines, tensor contraction and interpolation based quadrature. Computer Methods
in Applied Mechanics and Engineering, 379:113730, 2021. doi: 10.1016/j.cma.2021.113730.

D. Moens and M. Hanss. Non-probabilistic finite element analysis for parametric uncertainty
treatment in applied mechanics: Recent advances. Finite Elements in Analysis and Design,
47(1):4–16, 2011. doi: 10.1016/j.finel.2010.07.010.

D. Moens and D. Vandepitte. A survey of non-probabilistic uncertainty treatment in finite
element analysis. Computer Methods in Applied Mechanics and Engineering, 194(12):1527–
1555, 2005. doi: 10.1016/j.cma.2004.03.019.

D. Moens and D. Vandepitte. Recent advances in non-probabilistic approaches for non-
deterministic dynamic finite element analysis. Archives of Computational Methods in En-
gineering, 13:389–464, 2006. doi: 10.1007/BF02736398.

D. Moens, M. De Munck, W. Desmet, and D. Vandepitte. Numerical dynamic analysis of
uncertain mechanical structures based on interval fields. In A.K. Belyaev and R.S. Langley,
editors, IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, pages
71–83. Springer Science+Business Media B.V., 2011. doi: 10.1007/978-94-007-0289-9_6.

R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction to interval analysis. Society for
Industrial and applied Mathematics, 10 edition, 2009.

R.L. Muhanna and R.L. Mullen. Uncertainty in mechanics problems - interval based ap-
proach. Journal of Engineering Mechanics, 127(6):557–566, 2001. doi: 10.1061/(ASCE)0733-
9399(2001)127:6(557).

B. Möller. Fuzzy randomness – a contribution to imprecise probability. ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
84(10-11):754–764, 2004. doi: 10.1002/zamm.200410153.

http://dx.doi.org/10.1007/s00707-017-1819-2
http://dx.doi.org/10.1007/s00707-017-1819-2
http://dx.doi.org/10.1016/j.jsv.2005.07.004
http://dx.doi.org/10.1016/j.jsv.2005.07.004
http://dx.doi.org/10.1061/9780784413609.257
http://dx.doi.org/10.1016/j.cma.2021.113730
http://dx.doi.org/10.1016/j.finel.2010.07.010
http://dx.doi.org/10.1016/j.cma.2004.03.019
http://dx.doi.org/10.1007/BF02736398
http://dx.doi.org/10.1007/978-94-007-0289-9_6
http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:6(557)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:6(557)
http://dx.doi.org/10.1002/zamm.200410153


BIBLIOGRAPHY 133

B. Möller, W. Graf, and M. Beer. Fuzzy structural analysis using α-level optimization. Com-
putational Mechanics, 26:547–565, 2000. doi: 10.1007/s004660000204.

A. Narayan and J.D. Jakeman. Adaptive Leja sparse grid constructions for stochastic collocation
and high-dimensional approximation. Siam Journal on Scientific Computing, 36(6):A2952–
A2983, 2014.

F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM Journal on Numer-
ical Analysis, 46(5):2411–2442, 2008. doi: 10.1137/070680540.

I. Papaioannou. Non-intrusive finite element reliability analysis methods. Dissertation, Tech-
nische Universität München, Munich, 2012.

B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods in uncer-
tainty propagation, inference, and optimization. SIAM Review, 60(3):550–591, 2018. doi:
10.1137/16M1082469.

D. Pflüger. Spatially adaptive sparse grids for high-dimensional problems. PhD thesis, Fakultät
für Informatik, Technische Universität München, 2010.

K.-K. Phoon, S. Huang, and S.T. Quek. Implementation of Karhunen-Loève expansion for
simulation using a wavelet-Galerkin scheme. Probabilistic Engineering Mechanics, 17:293–
303, 07 2002. doi: 10.1016/S0266-8920(02)00013-9.

Z. Qiu, D. Yang, and I. Elishakoff. Probabilistic interval reliability of structural sys-
tems. International Journal of Solids and Structures, 45(10):2850–2860, 2008. doi:
10.1016/j.ijsolstr.2008.01.005.

S. Rahman. A Galerkin isogeometric method for Karhunen-Loève approximation of ran-
dom fields. Computer Methods in Applied Mechanics and Engineering, 338, 2018. doi:
10.1016/j.cma.2018.04.026.

F.N. Schietzold, A. Schmidt, M.M. Dannert, A. Fau, R.M.N. Fleury, W. Graf, M. Kaliske,
C. Könke, T. Lahmer, and U. Nackenhorst. Development of fuzzy probability based random
fields for the numerical structural design. GAMM-Mitteilungen, 42(1):e201900004, 2019. doi:
10.1002/gamm.201900004.

F.N. Schietzold, W. Graf, and M. Kaliske. Multi-objective optimization of tree trunk axes
in glulam beam design considering fuzzy probability-based random fields. ASCE-ASME
Journal of Risk and Uncertainty in Engineering Systems - Part B: Mechanical Engineering,
7(2):020913, 2021. doi: 10.1115/1.4050370.

A. Schmidt, C. Henning, S. Herbrandt, C. Könke, K. Ickstadt, T. Ricken, and T. Lahmer. Nu-
merical studies of earth structure assessment via the theory of porous media using fuzzy prob-
ability based random field material descriptions. GAMM-Mitteilungen, 42(1):e201900007,
2019. doi: 10.1002/gamm.201900007.

http://dx.doi.org/10.1007/s004660000204
http://dx.doi.org/10.1137/070680540
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/10.1016/S0266-8920(02)00013-9
http://dx.doi.org/10.1016/j.ijsolstr.2008.01.005
http://dx.doi.org/10.1016/j.ijsolstr.2008.01.005
http://dx.doi.org/10.1016/j.cma.2018.04.026
http://dx.doi.org/10.1016/j.cma.2018.04.026
http://dx.doi.org/10.1002/gamm.201900004
http://dx.doi.org/10.1002/gamm.201900004
http://dx.doi.org/10.1115/1.4050370
http://dx.doi.org/10.1002/gamm.201900007


134 BIBLIOGRAPHY

R. Schöbi. Surrogate models for uncertainty quantification in the context of imprecise probability
modelling. PhD thesis, ETH Zürich, 2019.

R. Schöbi and B. Sudret. Uncertainty propagation of p-boxes using sparse polyno-
mial chaos expansions. Journal of Computational Physics, 339:307–327, 2017. doi:
10.1016/j.jcp.2017.03.021.

G. Shafer. A mathematical theory of evidence. Princeton University Press, 1 edition, 1976.

A. Sofi and E. Romeo. A novel interval finite element method based on the improved interval
analysis. Computer Methods in Applied Mechanics and Engineering, 311:671–697, 2016. doi:
10.1016/j.cma.2016.09.009.

A. Sofi, E. Romeo, O. Barrera, and A. Cocks. An interval finite element method for the analysis
of structures with spatially varying uncertainties. Advances in Engineering Software, 128:
1–19, 2019. doi: 10.1016/j.advengsoft.2018.11.001.

P.D. Spanos, M. Beer, and J. Red-Horse. Karhunen-loève expansion of stochastic processes
with a modified exponential covariance kernel. Journal of Engineering Mechanics, 133(7):
773–779, 2007.

G. Stefanou. The stochastic finite element method: Past, present and future. Com-
puter Methods in Applied Mechanics and Engineering, 198(9):1031–1051, 2009. doi:
10.1016/j.cma.2008.11.007.

B. Sudret. Polynomial chaos expansions and stochatic finite element methods. In K.-K. Phoon
and J. Ching, editors, Risk and Reliability in Geotechnical Engineering, pages 265–300. CRC
Press, 2015.

B. Sudret and A. Der Kiureghian. Stochastic finite element methods and reliability - a state-
of-the-art report. Technical report, Department of Civil & Environmental Engineering, Uni-
versity of California, Berkeley, 2000. Report No. UCB/SEMM-2000/08.

L.M.M. van den Bos, B. Koren, and R.P. Dwight. Non-intrusive uncertainty quantification
using reduced cubature rules. Journal of Computational Physics, 332:418–445, 2017. doi:
10.1016/j.jcp.2016.12.011.

E. Vanmarcke. Random Fields: Analysis and Synthesis - revised and expanded new edition.
World Scientific Publishing Co. Pte. Ltd., 2010.

W. Verhaeghe, W. Desmet, D. Vandepitte, and D. Moens. Interval fields to represent uncer-
tainty on the output side of a static FE analysis. Computer Methods in Applied Mechanics
and Engineering, 260:50–62, 2013. doi: 10.1016/j.cma.2013.03.021.

E. Voelsen, M.M. Dannert, A.A. Basmaji, F. Bensel, and U. Nackenhorst. Sparse poly-
nomial chaos expansion for nonlinear finite element simulations with random material
properties. Proceedings in Applied Mathematics and Mechanics, accepted, 2023. doi:
10.1002/pamm.202200131.

http://dx.doi.org/10.1016/j.jcp.2017.03.021
http://dx.doi.org/10.1016/j.jcp.2017.03.021
http://dx.doi.org/10.1016/j.cma.2016.09.009
http://dx.doi.org/10.1016/j.cma.2016.09.009
http://dx.doi.org/10.1016/j.advengsoft.2018.11.001
http://dx.doi.org/10.1016/j.cma.2008.11.007
http://dx.doi.org/10.1016/j.cma.2008.11.007
http://dx.doi.org/10.1016/j.jcp.2016.12.011
http://dx.doi.org/10.1016/j.jcp.2016.12.011
http://dx.doi.org/10.1016/j.cma.2013.03.021
http://dx.doi.org/10.1002/pamm.202200131
http://dx.doi.org/10.1002/pamm.202200131


BIBLIOGRAPHY 135

M. Vořechovský. Simulation of simply cross correlated random fields by series expansion meth-
ods. Structural Safety, 30(4):337–363, 2008. doi: 10.1016/j.strusafe.2007.05.002.

X. Wan and G.E. Karniadakis. An adaptive multi-element generalized polynomial chaos method
for stochastic differential equations. Journal of Computational Physics, 209(2):617–642, 2005.
doi: 10.1016/j.jcp.2005.03.023.

K. Weichselberger. The theory of interval-probability as a unifying concept for uncertainty.
International Journal of Approximate Reasoning, 24(2):149–170, 2000. doi: 10.1016/S0888-
613X(00)00032-3.

N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936, 1938.

D. Xiu. Fast numerical methods for stochastic computations: A review. Communications in
Computational Physics, 5(2-4):242–272, 2009.

D. Xiu and J.S. Hesthaven. High-order collocation methods for differential equations with
random inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005. doi:
10.1137/040615201.

D. Xiu and G.E. Karniadakis. The wiener–askey polynomial chaos for stochastic differ-
ential equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2002. doi:
10.1137/S1064827501387826.

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 3(28):
3–28, 1978.

L.A. Zadeh. Fuzzy probabilities. Information Processing & Management, 20(3):363–372, 1984.

H. Zhang, R.L. Mullen, and R.L. Muhanna. Finite element structural analysis using imprecise
probabilities based on p-box representation. Professional Activities Centre, National Univer-
sity of Singapore, 2010. doi: 10.3850/978-981-08-5118-7_013. 4th International Workshop
on Reliable Engineering Computing (REC 2010).

H. Ziegler. A modification of prager’s hardening rule. Quarterly of Applied Mathematics, 17:
55–65, 1959.

T.T. Zygiridis. A reduced-basis polynomial-chaos approach with a multi-parametric trunca-
tion scheme for problems with uncertainties. In T.M. Rassias, editor, Approximation The-
ory and Analytic Inequalities, pages 529–546. Springer International Publishing, 2021. doi:
10.1007/978-3-030-60622-0_26.

http://dx.doi.org/10.1016/j.strusafe.2007.05.002
http://dx.doi.org/10.1016/j.jcp.2005.03.023
http://dx.doi.org/10.1016/S0888-613X(00)00032-3
http://dx.doi.org/10.1016/S0888-613X(00)00032-3
http://dx.doi.org/10.1137/040615201
http://dx.doi.org/10.1137/040615201
http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.3850/978-981-08-5118-7_013
http://dx.doi.org/10.1007/978-3-030-60622-0_26
http://dx.doi.org/10.1007/978-3-030-60622-0_26


136 BIBLIOGRAPHY



Curriculum Vitae

Born in 1990, September 29, Freiburg im Breisgau, Germany

Education

2015 Peter the Great St. Petersburg Polytechnic University, Russia
Research semester abroad as part of the Master studies programme

2014 - 2016 Leibniz University Hannover, Germany
Master studies in Computational Engineering,
graduating 2016, September 30th, with degree Master of Science (M.Sc.)

2010 - 2014 Leibniz University Hannover, Germany
Bachelor studies in Civil and Environmental Engineering,
graduating 2014, April 23rd, with degree Bachelor of Science (B.Sc.)

2001 - 2010 Zinzendorfschulen Königsfeld, Germany
High school, graduating June 28th with Abitur

Scientific career

2016 - 2023 Leibniz University Hannover, Germany
Research and teaching assistant at the Institute of Mechanics and Com-
putational Mechanics (IBNM)

2017 - 2020 German Research Foundation (DFG)
Research activity within the priority program SPP 1886 “Polymorphic
uncertainty modelling for the numerical design of structures” as a part
of the research activities at IBNM



II CURRICULUM VITAE

Volunteering and committee work

2019 - 2023 Faculty Council of the Faculty of Civil Engineering and Geodetic Science
Elected substitute representative of the scientific coworkers for four years
(two legislative periods)

2014 - 2015 Faculty Council of the Faculty of Civil Engineering and Geodetic Science
Elected student representative for one year (one legislative period)

2013 & 2011 International Building Organisation (IBO)
Volunteer in a three week period project to refurbish a sanatorium for
children suffering from bone tuberculosis, Bobrova, Alupka, Ukraine

2012 - 2016 Student Council of the Faculty of Civil Engineering and Geodetic Science
Elected representative from 04/2013 onwards, before associated member

Awards and scholarships

10/2017 Victor Rizkallah Foundation
Advancement Award for outstanding scientific achievements at Leibniz
University Hannover within the Master Thesis

01/2017 Victor Rizkallah Foundation
Award in acknowledgement of extraordinary achievements within the
Master’s degree course Computational Engineering

01/2017 Ingenieurkammer Niedersachsen
Award to acknowledge extraordinary dedication within the student rep-
resetation during their studies

2015 DAAD scholarship
“Strategic Partnership: Leibniz University Hannover and Peter the Great
St. Petersburg Polytechnic University”



III

Journal publications

∗) within this PhD project
∗∗) supervised student works

2022 ∗∗) A.A. Basmaji, A. Fau, J.H. Urrea-Quintero, M.M. Dannert, E. Voelsen
and U. Nackenhorst, Anisotropic multi-element polynomial chaos expansion
for high-dimensional non-linear structural problems, Probabilistic Engineering
Mechanics 70, 103366, doi: 10.1016/j.probengmech.2022.103366

2022 ∗) M.M. Dannert, F. Bensel, A. Fau, R.M.N. Fleury and U. Nackenhorst, Inves-
tigations on the restrictions of stochastic collocation methods for high dimen-
sional and nonlinear engineering applications, Probabilistic Engineering Me-
chanics 69, 103299, doi: 10.1016/j.probengmech.2022.103299

2022 ∗∗) A.A. Basmaji, M.M. Dannert and U. Nackenhorst, Implementation of
Karhunen-Loève expansion using discontinuous Legendre polynomial based
Galerking approach, Probabilistic Engineering Mechanics 67, 103176, doi:
10.1016/j.probengmech.2021.103176

2021 ∗) M.M. Dannert, M.G.R. Faes, R.M.N. Fleury, A. Fau, U. Nackenhorst
and D. Moens, Imprecise random field analysis for non-linear concrete dam-
age analysis, Mechanical Systems and Signal Processing 150, 107343, doi:
10.1016/j.ymssp.2020.107343

2019 ∗) F.N. Schietzold, A. Schmidt,M.M. Dannert, A. Fau, R.M.N. Fleury, W.Graf,
M. Kaliske, C. Könke, T. Lahmer and U. Nackenhorst, Developement of fuzzy
probability based random fields for the numerical strucutral design, GAMM-
Mitteilungen 42, e201900004, doi: 10.1002/gamm.201900004

2016 A. Meurer, B. Kriegesmann, M.M. Dannert and R. Rolfes, Probabilistic per-
turbation load approach for designing axially compressed cylindrical shells,
Thin-Walled Structures 107, 648–656, doi: 10.1016/j.tws.2016.07.021

2016 V. Kuzkin and M.M. Dannert, Buckling of a column under a constant speed
compression: a dynamic correction to the Euler formula, Acta Mechanica 227,
1645–1652, doi: 10.1007/s00707-016-1586-5

http://dx.doi.org/10.1016/j.probengmech.2022.103366
http://dx.doi.org/10.1016/j.probengmech.2022.103299
http://dx.doi.org/10.1016/j.probengmech.2021.103176
http://dx.doi.org/10.1016/j.probengmech.2021.103176
http://dx.doi.org/10.1016/j.ymssp.2020.107343
http://dx.doi.org/10.1016/j.ymssp.2020.107343
http://dx.doi.org/10.1002/gamm.201900004
http://dx.doi.org/10.1016/j.tws.2016.07.021
http://dx.doi.org/10.1007/s00707-016-1586-5


IV CURRICULUM VITAE

Conference contributions

2021 4th International Conference on Uncertainty Quantification in Computational Sci-
ences and Engineering (UNCECOMP), Athens, Greece (virtual)
M.M. Dannert, J.L. Häufler and U. Nackenhorst, Limit representations of impre-
cise random fields, in: M. Papadrakakis, V. Papadopoulos and G, Stefanou (Eds.),
Proceedings of the 4th International Conference on Uncertainty Quantification in
Computational Sciences and Engineering, 82–99, doi: 10.7712/120221.8024.19110

2021 14th World Congress on Computational Mechanics (WCCM) & European
Congress on Compuational Methods in Applied Sciences and Engineering (EC-
COMAS) Congress, Paris, France (virtual)
M.M. Dannert, E. Voelsen, R.M.N. Fleury, A. Fau and U. Nackenhorst, Efficient
random field sampling using sparse polynomial chaos expansion

2019 29th European Safety and Reliability Conference (ESREL), Hanover, Germany
M.M. Dannert, R.M.N. Fleury, A. Fau and U. Nackenhorst, Non-linear Finite
Element Analysis under Mixed Epistemic and Aleatory Uncertain Random Field
Input. In: M. Beer and E. Zio (Eds.) Proceedings of the 29th European Safety
and Reliability Conference, 2693–2698, doi: 10.3850/978-981-11-2724-3_0286-cd

2019 13th International Conference on Application of Statistics and Probability in Civil
Engineering (ICASP13), Seoul, South Korea
M.M. Dannert, A. Fau, R.M.N. Fleury, M. Broggi, U. Nackenhorst and M. Beer,
A collocation scheme for deep uncertainty treatment, doi: 10.22725/ICASP13.179

2018 89th Annual Meeting of the International Association of Applied Mathematics and
Mechanics (GAMM), Munich, Germany
M.M. Dannert, A. Fau, R.M.N. Fleury, M. Broggi, U. Nackenhorst, M. Beer,
A probability-box approach on uncertain correlation lengths by stochastic fi-
nite element method, Proceedings in Applied Mathematics and Mechanics 18(1),
e201800114, doi: 10.1002/pamm.201800114

2017 12th International Conference on Structural Safety and Reliability (ICOSSAR),
Vienna, Austria
M.M. Dannert, A. Fau, M. Broggi, U. Nackenhorst and M. Beer, A nested colloca-
tion algorithm for mixed aleatory and epistemic uncertainties using a probability-
box approach, in: C. Bucher, B.R. Ellingwood, D.M. Frangopol (Eds.), Safety,
Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure,
Proceedings of the 12th International Conference on Structural Safety and Relia-
bility, 820–829

http://dx.doi.org/10.7712/120221.8024.19110
http://dx.doi.org/10.3850/978-981-11-2724-3_0286-cd
http://dx.doi.org/10.22725/ICASP13.179
http://dx.doi.org/10.1002/pamm.201800114


Research and Seminar Reports

Institut für Baumechanik und Numerische Mechanik
Gottfried Wilhelm Leibniz Universität Hannover

Reports that have been published so far:

S 73/1 Seminar über Thermodynamik und Kontinuumsmechanik, Hannover 1973.

F 75/1 “Die Spannungsberechnung im Rahmen der Finite-Element-Methode”, R. Ahmad, Dis-
sertation, April 1975.

F 76/1 “Zur Theorie und Anwendung der Stoffgleichungen elastisch-plastisch- viskoser Werk-
stoffe”, H. Mentlein, Dissertation, April 1976.

F 77/1 Seminar über lineare und geometrisch nichtlineare Schalentheorie einschließlich Stabil-
itätstheorie, Hannover 1978.

F 77/2 “Beitrag zur Berechnung von Gründungsplatten mit Hilfe der Finite- Element-Methode”,
H. Meyer, Dissertation, Juli 1977.

F 77/3 “Zur Berechnung der Eigenfrequenzen und Eigenschwingungsformen räumlich vorge-
krümmter und vorverwundener Stäbe” J. Möhlenkamp, Dissertation, Dezember 1977.

F 77/4 “Zur Theorie und Berechnung geometrisch und physikalisch nichtlinearer Kontinua mit
Anwendung der Methode der finiten Elemente”, J. Paulun, Dissertation, Dezember 1977.

F 78/1 2. Seminar über Thermodynamik und Kontinuumsmechanik, Hannover 1978.

F 79/1 “Theoretische und numerische Behandlung geometrisch nichtlinearer viskoplastischer
Kontinua”, K.-D. Klee, Dissertation, Februar 1979.

F 79/2 “Zur Konstruierbarkeit von Variationsfunktionalen für nichtlineare Probleme der Kon-
tinuumsmechanik”, J. Siefer, Dissertation, Oktober 1979.

F 80/1 “Theoretische und numerische Behandlung gerader Stäbe mit endlichen Drehungen”,
M. Kessel, Dissertation, Februar 1980.

F 81/1 “Zur Berechnung von Kontakt- und Stoßproblemen elastischer Körper mit Hilfe der
Finite-Element-Methode”, P. Wriggers, Dissertation, Januar 1981.95



VI RESEARCH AND SEMINAR REPORTS

F 81/2 “Stoffgleichungen für Steinsalze unter mechanischer und thermischer Beanspruchung”, J.
Olschewski, E. Stein, W. Wagner, D. Wetjen, geänderte Fassung eines Zwischenberichtes
zum BMFT-Forschungsvorhaben KWA 1608/5.

F 82/1 “Konvergenz und Fehlerabschätzung bei der Methode der Finiten Elemente”, R. Rohrbach,
E. Stein, Abschlußbericht eines VW- Forschungsvorhabens, Februar 1982.

F 82/2 “Alternative Spannungsberechnung in Finite-Element- Verschiebungsmodellen”, C. Klöhn,
Dissertation, November 1982

F 83/1 Seminar über nichtlineare Stabtheorie, Hannover 1983.

F 83/2 “Beiträge zur nichtlinearen Theorie und inkrementellen Finite- Element-Berechnung
dünner elastischer Schalen”, A. Berg, Dissertation, Juli 1983.

F 83/3 “Elastoplastische Plattenbiegung bei kleinen Verzerrungen und großen Drehungen”, J.
Paulun, Habilitation, September 1983.

F 83/4 “Geometrisch nichtlineare FE-Berechnung von Faltwerken mit plastisch / viskoplastis-
chem Deformationsverhalten”, M. Krog, Dissertation, Dezember 1983.

F 85/1 Verleihung der Ehrendoktorwürde des Fachbereichs Bauingenieur- und Vermessungswe-
sen der Universität Hannover an die Herren Prof. Dr. Drs. h.c. J.H. Argyris, Dr.-Ing.
H. Wittmeyer.

F 85/2 “Eine geometrisch nichtlineare Theorie schubelastischer Schalen mit Anwendung auf
Finite-Element-Berechnungen von Durchschlag- und Kontaktproblemen”, W. Wagner,
Dissertation, März 1985.

F 85/3 “Geometrisch/physikalisch nichtlineare Probleme - Struktur und Algorithmen”, GAMM-
Seminar im Februar 1985 in Hannover.

F 87/1 “Finite-Elemente-Berechnungen ebener Stabtragwerke mit Fließgelenken und großen
Verschiebungen”, R. Kahn, Dissertation, Oktober 1987.

F 88/1 “Theorie und Numerik schubelastischer Schalen mit endlichen Drehungen unter Ver-
wendung der Biot-Spannungen”, F. Gruttmann, Dissertation, Juni 1988.

F 88/2 “Optimale Formgebung von Stabtragwerken mit Nichtlinearitäten in der Zielfunktion
und in den Restriktionen unter Verwendung der Finite-Element-Methode”, V. Berkhahn,
Dissertation, Oktober 1988.

F 88/3 “Beiträge zur Theorie und Numerik großer plastischer und kleiner elastischer Deforma-
tionen mit Schädigungseinfluß”, R. Lammering, Dissertation, November 1988.

F 88/4 “Konsistente Linearisierungen in der Kontinuumsmechanik und ihrer Anwendung auf
die Finite-Elemente-Methode”, P. Wriggers, Habilitation, November 1988.96



VII

F 88/5 “Mathematische Formulierung und numerische Methoden für Kontaktprobleme auf der
Grundlage von Extremalprinzipien”, D. Bischoff, Habilitation, Dezember 1988.

F 88/6 “Zur numerischen Behandlung thermomechanischer Prozesse”, C. Miehe, Dissertation,
Dezember 1988.

F 89/1 “Zur Stabilität und Konvergenz gemischter finiter Elemente in der linearen Elastizität-
stheorie”, R. Rolfes, Dissertation, Juni 1989.

F 89/2 “Traglastberechnungen von Faltwerken mit elastoplastischen Deformationen”, K.-H.
Lambertz, Dissertation, November 1989.

F 89/3 “Transientes Kriechen und Kriechbruch im Steinsalz”, U. Heemann, Dissertation, Novem-
ber 1989.

F 89/4 “Materialgesetze zum Verhalten von Betonkonstruktionen bei harten Stößen”, E. Stein,
P. Wriggers, T. Vu Van & T. Wedemeier, Dezember 1989.

F 89/5 “Lineare Konstruktion und Anwendungen von Begleitmatrizen”, C. Carstensen, Disser-
tation, Dezember 1989.

F 90/1 “Zur Berechnung prismatischer Stahlbetonbalken mit verschiedenen Querschnittformen
für allgemeine Beanspruchungen”, H.N. Lucero-Cimas, Dissertation, April 1990.

F 90/2 “Zur Behandlung von Stoß- Kontaktproblemen mit Reibung unter Verwendung der
Finite-Element-Methode”, T. Vu Van, Dissertation, Juni 1990.

F 90/3 “Netzadaption und Mehrgitterverfahren für die numerische Behandlung von Faltwerken”,
L. Plank, Dissertation, September 1990.

F 90/4 “Beiträge zur Theorie und Numerik finiter inelastischer Deformationen”, N. Müller-
Hoeppe, Dissertation, Oktober 1990.

F 90/5 “Beiträge zur Theorie und Numerik von Materialien mit innerer Reibung am Beispiel
des Werkstoffes Beton”, T. Wedemeier, Dissertation, Oktober 1990.

F 91/1 “Zur Behandlung von Stabilitätsproblemen der Elastostatik mit der Methode der Finiten
Elemente”, W. Wagner, Habilitation, April 1991.

F 91/2 “Mehrgitterverfahren und Netzadaption für lineare und nichtlineare statische Finite-
Elemente-Berechnungen von Flächentragwerken”, W. Rust, Dissertation, Oktober 1991.

F 91/3 “Finite Elemente Formulierung im Trefftzschen Sinne für dreidimensionale anisotrop-
elastische Faserverbundstrukturen”, K. Peters, Dissertation, Dezember 1991.

F 92/1 “Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plas-
tischem bzw. kinematisch verfestigendem Material”, G. Zhang, Dissertation, Februar
1992.97



VIII RESEARCH AND SEMINAR REPORTS

F 92/2 “Strukturoptimierung stabilitätsgefährdeter Systeme mittels analytischer Gradienten-
ermittlung”, A. Becker, Dissertation, April 1992.

F 92/3 “Duale Methoden für nichtlineare Optimierungsprobleme in der Strukturmechanik”, R.
Mahnken, Dissertation, April 1992.

F 93/1 “Kanonische Modelle multiplikativer Elasto-Plastizität. Thermodynamische Formulie-
rung und numerische Implementation”, C. Miehe, Habilitation, Dezember 1993.

F 93/2 “Theorie und Numerik zur Berechnung und Optimierung von Strukturen aus isotropen,
hyperelastischen Materialien”, F.-J. Barthold, Dissertation, Dezember 1993.

F 94/1 “Adaptive Verfeinerung von Finite-Element-Netzen für Stabilitätsprobleme von Flächen-
tragwerken”, E. Stein, B. Seifert, W. Rust, Forschungsbericht, Oktober 1994.

F 95/1 “Adaptive Verfahren für die Formoptimierung von Flächentragwerken unter Berück-
sichtigung der CAD-FEM-Kopplung”, A. Falk, Dissertation, Juni 1995.

F 96/1 “Theorie und Numerik dünnwandiger Faserverbundstrukturen”, F. Gruttmann, Habili-
tation, Januar 1996.

F 96/2 “Zur Theorie und Numerik finiter elastoplastischer Deformationen von Schalenstruk-
turen”, B. Seifert, Dissertation, März 1996.

F 96/3 “Theoretische und algorithmische Konzepte zur phänomenologischen Beschreibung an-
isotropen Materialverhaltens”, J. Schröder, Dissertation, März 1996.

F 96/4 “Statische und dynamische Berechnungen von Schalen endlicher elastischer Deforma-
tionen mit gemischten finiten Elementen”, P. Betsch, Dissertation, März 1996.

F 96/5 “Kopplung von Finiten Elementen und Randelementen für ebene Elastoplastizität mit
Impelementierung auf Parallelrechnern”, M. Kreienmeyer, Dissertation, März 1996.

F 96/6 “Theorie und Numerik dimensions- und modeladaptiver Finite- Elemente-Methoden
von Fläschentragwerken”, S. Ohnimus, Dissertation, Juni 1996.

F 96/7 “Adaptive Finite Elemente Methoden für MIMD-Parallelrechner zur Behandlung von
Strukturproblemen mit Anwendung auf Stabilitätsprobleme”, O. Klaas, Dissertation, Juli
1996.

F 96/8 “Institutsbericht 1971-1996 aus Anlaß des 25-jährigen Dienstjubiläums von Prof. Dr.-
Ing. Dr.-Ing. E.h. Dr. h.c. mult. Erwin Stein”, Dezember 1996.

F 97/1 “Modellierung und Numerik duktiler kristalliner Werkstoffe”, P. Steinmann, Habilita-
tion, August 1997.

F 97/2 “Formoptimierung in der Strukturdynamik”, L. Meyer, Dissertation, September 1997



IX

F 97/3 “Modellbildung und Numerik für Versagensprozesse in Gründungen von Caisonwellen-
brechern”, M. Lengnick, Dissertation, November 1997.

F 98/1 “Adaptive gemischte finite Elemente in der nichtlinearen Elastostatik und deren Kop-
plung mit Randelementen”, U. Brink, Dissertation, Februar 1998.

F 98/2 “Theoretische und numerische Aspekte zur Parameteridentifikation und Modellierung
bei metallischen Werkstoffen”, R. Mahnken, Habilitation, Juli 1998.

F 98/3 “Lokalisierung und Stabilität der Deformation wassergesättigter bindiger und granularer
Böden”, J.M. Panesso, Dissertation, August 1998.

F 98/4 “Theoretische und numerische Methoden in der angewandten Mechanik mit Praxis-
beispielen”, R. Mahnken (Hrsg.), Festschrift anlässlich der Emeritierung von Prof. Dr.-
Ing. Dr.-Ing. E.h. h.c. mult. Erwin Stein, November 1998.

F 99/1 “Eine h-adaptive Finite-Element-Methode für elasto-plastische Schalenproblem in uni-
lateralem Kontakt”, C.-S. Han, Dissertation, Juli 1999.

F 00/1 “Ein diskontinuierliches Finite-Element-Modell für Lokalisierungsversagen in metallis-
chen und granularen Materialien”, C. Leppin, Dissertation, März 2000.

F 00/2 “Untersuchungen von Strömungen in zeitlich veränderlichen Gebieten mit der Methode
der Finiten Elementen”, H. Braess, Dissertation, März 2000.

F 00/3 “Theoretische und algorithmische Beiträge zur Berechnung von Faserverbundschalen”,
J. Tessmer, Dissertation, März 2000.

F 00/4 “Theorie und Finite-Element-Methode für die Schädigungsbeschreibung in Beton und
Stahlbeton”, D. Tikhomirov, Dissertation, August 2000.

F 01/1 “A C1 - continuous formulation for finite deformation contact”, L. Krstulovic-Opara,
Dissertation, Januar 2001.

F 01/2 “Strain Localisation Analysis for Fully and Partially Saturated Geomaterials”, H. Zhang,
Dissertation, Januar 2001.

F 01/3 “Meso-makromechanische Modellierung von Faserverbundwerkstoffen mit Schädigung”,
C. Döbert, Dissertation, April 2001.

F 01/4 “Thermomechanische Modellierung gummiartiger Polymerstrukturen”, S. Reese, Habil-
itation, April 2001.

F 01/5 “Thermomechanisches Verhalten von Gummimaterialien während der Vulkanisation -
Theorie und Numerik”, M. Andre, Dissertation, April 2001.

F 01/6 “Adaptive FEM für elastoplastische Deformationen - Algorithmen und Visualisierung”,
M. Schmidt, Dissertation, Juni 2001.



X RESEARCH AND SEMINAR REPORTS

F 01/7 “Verteilte Algorithmen für h-, p- und d-adaptive Berechnungen in der nichtlinearen
Strukturmechanik”, R. Niekamp, Dissertation, Juni 2001.99

F 01/8 “Theorie und Numerik zur Berechnung und Optimierung von Strukturen mit elasto-
plastischen Deformationen”, K. Wiechmann, Dissertation, Juli 2001.

F 01/9 “Direct Computation of Instability Points with Inequality using the Finite Element
Method”, H. Tschöpe, Dissertation, September 2001.

F 01/10 “Theorie und Numerik residualer Fehlerschätzer für die Finite- Elemente-Methode
unter Verwendung äquilibrierter Randspannungen”, S. Ohnimus, Habilitation, September
2001.

F 02/1 “Adaptive Algorithmen für thermo-mechanisch gekoppelte Kontaktprobleme”, A. Rieger,
Dissertation, August 2002.

F 02/2 “Consistent coupling of shell- and beam-models for thermo-elastic problems”, K. Cha-
van, Dissertation, September 2002.

F 03/1 “Error-controlled adaptive finite element methods in large strain hyperelasticity and
fracture mechanics”, M. Rüter, Dissertation, Mai 2003.

F 03/2 “Formulierung und Simulation der Kontaktvorgänge in der Baugrund- Tragwerks- In-
teraktion”, A. Haraldsson, Dissertation, Juni 2003.

F 03/3 “Concepts for Nonlinear Orthotropic Material Modeling with Applications to Membrane
Structures”, T. Raible, Dissertation, Juni 2003.

F 04/1 “On Single- and Multi-Material arbitrary Lagrangian-Eulerian Approaches with Appli-
cation to Micromechanical Problems at Finite Deformations”, D. Freßmann, Dissertation,
Oktober 2004.

F 04/2 “Computational Homogenization of Microheterogeneous Materials at Finite Strains In-
cluding Damage”, S. Löhnert, Dissertation, Oktober 2004.

F 05/1 “Numerical Micro-Meso Modeling of Mechanosensation driven Osteonal Remodeling in
Cortical Bone”, C. Lenz, Dissertation, Juli 2005.

F 05/2 “Mortar Type Methods Applied to Nonlinear Contact Mechanics”, K.A. Fischer, Dis-
sertation, Juli 2005.

F 05/3 “Models, Algorithms and Software Concepts for Contact and Fragmentation in Com-
putational Solid Mechanics”, C. Hahn, Dissertation, November 2005.

F 06/1 “Computational Homogenization of Concrete”, S. Moftah, Dissertation, Januar 2006.

F 06/2 “Reduction Methods in Finite Element Analysis of Nonlinear Structural Dynamics”, H.
Spiess, Dissertation, Februar 2006.



XI

F 06/3 “Theoretische und algorithmische Konzepte zur Beschreibung des beanspruchungsadap-
tiven Knochenwachstums”, B. Ebbecke, Dissertation, März 2006.100

F 06/4 “Experimentelle Untersuchungen an elastomeren Werkstoffen”, M. Dämgen, Disserta-
tion, Dezember 2006.

F 07/1 “Numerische Konzepte zur Behandlung inelastischer Effekte beim reibungsbehafteten
Rollkontakt”, M. Ziefle, Dissertation, Februar 2007.

F 07/2 “Begleitbuch zur Leibniz-Ausstellung”, Hrsg: E. Stein, P. Wriggers, 2007.

F 07/3 “Modellierung und Simulation der hochfrequenten Dynamik rollender Reifen”, M. Brink-
meier, Dissertation, Juni 2007.

F 07/4 “Computational Homogenization of micro-structural Damage due to Frost in Hardened
Cement Paste”, M. Hain, Dissertation, Juli 2007.

F 07/5 “Elektromechanisch gekoppelte Kontaktmodellierung auf Mikroebene”, T. Helmich, Dis-
sertation, August 2007.

F 07/6 “Dreidimensionales Diskretes Elemente Modell für Superellipsoide”, C. Lillie, Disserta-
tion, Oktober 2007.

F 07/7 “Adaptive Methods for Continuous and Discontinuous Damage Modeling in Fracturing
Solids”, S.H. Reese, Dissertation, Oktober 2007.

F 08/1 “Student Projects of Micromechanics”, Hrsg: U. Nackenhorst, August 2008.

F 09/1 “Theory and Computation of Mono- and Poly- crystalline Cyclic Martensitic Phase
Transformations”, G. Sagar, Dissertation, August 2009.

F 09/2 “Student projects of Micromechanics”, D. Balzani and U. Nackenhorst, Course Volume,
Oktober 2009.

F 09/3 “Multiscale Coupling based on the Quasicontinuum Framework, with Application to
Contact Problems”, W. Shan, Dissertation, November 2009.

F 10/1 “A Multiscale Computational Approach for Microcrack Evolution in Cortical Bone and
Related Mechanical Stimulation of Bone Cells”, D. Kardas, Dissertation, September 2010.

F 11/1 “Ein Integrales Modellierungskonzept zur numerischen Simulation der Osseointegration
und Langzeitstabilität von Endoprothesen”, A. Lutz, Dissertation, Oktober 2011.

F 12/1 “Ein physikalisch motiviertes Reifen-Fahrbahnmodell für die Gesamtfahrzeugsimula-
tion”, R. Chiarello, Dissertation, Februar 2012.

F 13/1 “Thermomechanical Analysis of Tire Rubber Compounds in Rolling Contact”, A. Suwan-
nachit, Dissertation, September 2012.



XII RESEARCH AND SEMINAR REPORTS

F 13/2 “Towards a Finite Element Model for Fluid Flow in the Human Hip Joint”, K. Fietz,
Dissertation, September 2013.101

F 14/1 “Micro-Mechanically Based Damage Analysis of Ultra High Performance Fibre Rein-
forced Concrete Structures with Uncertainties”, A. Hürkamp, Dissertation, Dezember
2013.

F 14/2 “Numerical Solution of High-Dimensional Fokker-Planck Equations with Discontinuous
Galerkin Methods”, F. Loerke, Dissertation, Dezember 2013.

F 14/3 “Numerische Simulation probabilistischer Schädigungsmodelle mit der Stochastischen
Finite Elemente Methode”, P.-P. Jablonski, Dissertation, September 2014.

F 15/1 “On a Finite Element Approach for the Solution of a Mechanically Stimulated Bio-
chemical Fracture Healing Model”, A. Sapotnick, Dissertation, November 2015.

F 15/2 “Simulation of Elastic-Plastic Material Behaviour with Uncertain Material Parameters.
A Spectral Stochastic Finite Element Method Approach”, S. Fink, Dissertation, November
2015.

F 15/3 “A Fully Micro-mechanically Motivated Material Law for Filled Elastomer”, O. Stegen,
Dissertation, Februar 2016.

F 16/1 “A modified adaptive harmony search algorithm approach on structural identification
and damage detection”, M. Jahjouh, Dissertation, Januar 2016,

F17/1 “Computation Simulation of Piezo-electrically Stimulated Bone Adaption Surrounding
Activated Teeth Implants”, A. Shirazibeheshtiha, Dissertation, Januar 2017.

F 17/2 “A Constitutive Contact Model for Homogenized Tread-Road Interaction in Rolling
Resistance Computations”, R. Bayer, Dissertation, Februar 2017.

F 17/3 “A Posteriori Error Estimates for Advanced Galerkin Methods”, M.O. Rüter, Habilita-
tion, November 2017.

F 17/4 “Probabilistische Finite Element Modellierung des mechanischem Materialverhaltens
von Salzgestein”, M. Grehn, Dissertation, Dezember 2017.

F 18/1 “Modelling and numerical simulation for the prediction of the fatigue strength of air-
springs”, N.K. Jha, Dissertation, März 2018.

F 18/2 “A model reduction approach in space and time for fatigue damage simulation”, M.
Bhattacharya, Dissertation, Mai 2018.

F 18/3 “Numerical investigation on hydrogen embrittlement of metallic pipeline structures”,
M. Möhle, Dissertation, Mai 2018.

F 18/4 “Institute Seminar 2018”, U. Nackenhorst, Holle, August 2018.



XIII

F 18/5 “A stochastic fatigue model for casted aluminium structures”, G. Narayanan, Disserta-
tion, August 2018.

F 20/01 “A Micro-mechanically Motivated Approach for Modelling the Oxidative Aging Pro-
cess of Elastomers”, D. Beurle, Dissertation, December 2019.

F 20/02 “A Semi-incremental Model Order Reduction Approach for Fatigue Damage Compu-
tations”, S. Alameddin, Dissertation, January 2020.

F 20/03 “A Coupled ALE Lagrangian Approach for the Simulation of Treaded Tires”, T.A.
Palanichamy, Dissertation, August 2020.

F 21/01 “A parametric modeling concept for predicting biomechanical compatibility in total
hip arthroplasty”, M. Bittens, Dissertation, July 2021.

F 21/02 “Stochastic Modelling and Numerical Simulation of Fatigue Damage”, W. Zhang, Dis-
sertation, July 2021.

F 22/01 “Support Vektor Regression für Anwendungen im Bereich der Elasto-Plastizität”, S.
Funk, Dissertation, April 2022.

F 22/02 “Anisotropic Damage Modelling of Concrete at Meso-scale”, M. Hammad, Dissertation,
October 2022.


	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Abbreviations
	Introduction
	Uncertainty quantification
	Aleatory uncertainty
	Epistemic uncertainty
	Mixed uncertainty

	Uncertainty propagation
	Probabilistic approaches
	Possibilistic approaches
	Hybrid approaches

	Outline

	Describing Uncertain Parameters
	Probability theory for aleatory uncertain parameters
	Random variables
	Random fields

	Interval theory for epistemic uncertain parameters
	Interval variables
	Interval fields

	Probability box theory for mixed uncertainties
	Imprecise random variables
	Imprecise random fields


	Propagating Imprecise Random Fields
	Karhunen-Loève expansion to discretise random fields
	Truncation error of the Karhunen-Loève expansion
	Correlation structures
	Solution of the Fredhold integral equation

	Interval analysis to consider interval variables
	Vertex propagation
	Global optimisation

	Probability bounds analysis for imprecise random fields
	Computational cost
	Influence of the truncation error
	Influence of the spatial discretisation


	Solid Mechanics
	Continuum mechanical framework
	Balance equations
	Constitutive theory

	Material descriptions in terms of small strains
	Linear-elasticity
	Elasto-plasticity

	Non-linear finite element method

	Sampling Based Stochastic Finite Element Methods
	Sampling approaches
	Monte Carlo simulation
	Stochastic collocation method
	Polynomial chaos expansion

	Comparison in terms of solid mechanical applications
	1D example including high stochastic dimensions
	2D example including a non-linear model

	Summary and concluding remarks

	Limit Representation of Imprecise Random Fields
	Investigation on the correlation length
	Decoupled interpolation approach
	General idea
	Algorithmic treatment
	Error measures

	Study on one-dimensional random fields
	Bending beam with linear-elastic material behaviour
	Tensile bar with elasto-plastic material behaviour

	Application to a two-dimensional random field
	Investigation on the convergence behaviour
	Results obtained by the interpolation approach

	Summary and concluding remarks

	Conclusion and Perspectives
	Bibliography
	Curriculum Vitae
	Research and Seminar Reports

