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Abstract

Gravitational waves from compact binary mergers are now routinely observed
by Earth-bound detectors. These observations enable exciting new science,
as they have opened a new window to the Universe. However, extracting
gravitational-wave signals from the noisy detector data is a challenging prob-
lem. The most sensitive search algorithms for compact binary mergers use
matched filtering, an algorithm that compares the data with a set of expected
template signals. As detectors are upgraded and more sophisticated signal
models become available, the number of required templates will increase,
which can make some sources computationally prohibitive to search for. The
computational cost is of particular concern when low-latency alerts should be
issued to maximize the time for electromagnetic follow-up observations. One
potential solution to reduce computational requirements that has started to
be explored in the last decade is machine learning. However, different pro-
posed deep learning searches target varying parameter spaces and use metrics
that are not always comparable to existing literature. Consequently, a clear
picture of the capabilities of machine learning searches has been sorely miss-
ing. In this thesis, we closely examine the sensitivity of various deep learning
gravitational-wave search algorithms and introduce new methods to detect
signals from binary black hole and binary neutron star mergers at previously
untested statistical confidence levels. By using the sensitive distance as our
core metric, we allow for a direct comparison of our algorithms to state-of-
the-art search pipelines. As part of this thesis, we organized a global mock
data challenge to create a benchmark for machine learning search algorithms
targeting compact binaries. This way, the tools developed in this thesis are
made available to the greater community by publishing them as open source
software. Our studies show that, depending on the parameter space, deep
learning gravitational-wave search algorithms are already competitive with
current production search pipelines. We also find that strategies developed
for traditional searches can be effectively adapted to their machine learning
counterparts. In regions where matched filtering becomes computationally
expensive, available deep learning algorithms are also limited in their capa-
bility. We find reduced sensitivity to long duration signals compared to the
excellent results for short-duration binary black hole signals.
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Chapter 1

Introduction

The Universe is a vast space holding many secrets. Each new observational
channel and instrument has brought with it new discoveries and peeled back
the curtain on fundamental physics further. With the advent of telescopes
humanity discovered more intricate details about the solar system [1]. Radio
telescopes led to the discovery of the cosmic microwave background [2]. In-
frared telescopes, like the recently launched James Webb Space Telescope [3],
allow us to study the distant past of the Universe. X-ray observations have
improved the understanding of stars and especially supernovae [4]. Gamma
ray observations unveiled a new type of signal known as gamma ray bursts [5],
the sources of which have been a mystery for a long time.

The newest tool in the pocket of astronomers are kilometer scale laser in-
terferometric gravitational-wave (GW) detectors [6–9]. They allow to probe
the Universe using gravity as a messenger medium, which opens up a com-
pletely new view into the cosmos. GWs were first hypothesized to exist by
Einstein as a direct consequence of his theory of general relativity (GR) [10]
but were believed to be too weak to ever be observed directly. Although
various attempts were made [11] and indirect evidence of their existence was
found in the 1980s [12], a direct detection took almost 100 years after their
initial theoretical description. On September 14th, 2015 the advanced laser
interferometer gravitational-wave observatory (LIGO) detectors picked up
the first confirmed direct detection of a GW [13]. The signal was emitted
from a merging system of two black holes (BHs).

In the 7 years following the first detection new observations have be-
come a common occurrence and almost 100 sources have been confirmed to
date [14, 15]. This plethora of signals has allowed for new tests of funda-
mental physics [16–21] and insights into the contents of the Universe [22,
23]. In 2017 the first binary neutron star (BNS) merger was observed [24].
It was accompanied by an electromagnetic counterpart [25–27], first picked
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CHAPTER 1. INTRODUCTION

up as a gamma ray burst, thus confirming that at least some gamma ray
bursts originate from BNS mergers. In 2019 two signals from binary systems
whose component masses are consistent with neutron star–black hole bina-
ries (NSBH)s were detected [28], completing the set of expected detectable
compact binaries.

To detect these signals, many technological breakthroughs both on the
instrumental and data analysis side were required [6, 29–32]. The 4 km long
arms of the interferometers change their length by ≈ 10−18 m [13, 33]. Con-
sequently, a lot of noise sources can have a stronger effect on the detector
readout than GWs [6]. These noise sources need to be supressed as much as
possible by the instrument design. However, some fundamental limits [34]
exist and, therefore, GW signals are not clearly visible in the detector out-
put. Extracting weak signals from the noise floor requires sophisticated data
analysis methods. While instrumental development is paramount to GW de-
tection, this thesis touches only briefly on challenges in this field and focuses
mainly on analyzing the resulting data.

Today the most sensitive data analysis methods to detect GWs from
compact binary mergers rely on a process known as matched filtering [30, 35].
Matched filtering is the optimal discriminator between stationary Gaussian
noise that contains a known signal and pure stationary Gaussian noise [30].
It compares the known signal with the data and checks how well the two
match. There also exist search methods that only loosely model the source
and are, therefore, more sensitive to signals of unknown shape and origin [36–
39].

Matched filtering assumes that the signal in the data is known exactly
which is not true in a realistic search scenario. As a consequence, one needs
to filter for a whole set of possible signals. This set is known as the tem-
plate bank and it discretizes the continuous parameter space of potential
sources. The computational cost of a matched filter search scales linearly
with the number of templates in the template bank, as the data has to be
filtered against each template individually. However, the size of the template
bank scales exponentially with the number of parameters used to describe
the sources. Therefore, current searches make some simplifying assumptions
that reduce the dimensionality of the parameter space but also limit the
modeled physics. The discrete nature of the template bank and the simpli-
fications used to construct it can cause some signals to be missed [40–44].
Additionally, the number of templates has to be increased as detector sensi-
tivity in the future is expected to improve at low frequencies relative to high
frequencies [8, 45–47]. With this relative increase in sensitivity, the early
part of the signal is weighted more strongly and discrepancies between signal
and template accumulate over time, thus requiring a denser coverage of the
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parameter space. To reduce the computational burden, include more physi-
cally relevant effects, or increase the parameter space which we are sensitive
to, more efficient search algorithms are desirable.

Machine learning (ML) methods are one possible avenue to reduce com-
putational costs that have started to be explored in the last decade [48].
Especially methods based on deep learning have recently gathered signifi-
cant interest. Deep learning is a field of computer science where artificial
neurons are connected to networks and collectively trained to solve a given
task. It has been successfully applied to numerous other problems and is
often computationally more efficient than alternative methods [49–51]. The
hope is that ML can generalize to unseen regions of parameter space and new
signals without increasing the computational burden too much. Furthermore,
they may be capable of improving on matched filtering based searches when
the detector noise is not stationary or Gaussian. They could also outperform
matched filter searches due to the discreteness of the template banks [52–54].

Today most of these goals are still out of reach for current algorithms and
works are often at a proof of principle level. Many studies target limited pa-
rameter spaces that are efficiently searched by existing search algorithms [54–
57]. ML search algorithms for long duration low mass BNS or NSBH signals,
where current searches are expensive to run, are still rarely explored due to
problems with processing large inputs. Furthermore, studies often use Gaus-
sian noise for training and evaluation. Consequently, it is difficult to judge
the real world applicability of these algorithms. This is further complicated
by the common usage of metrics which are inspired by deep learning literature
rather than existing metrics developed for traditional GW searches.

The work discussed in this thesis aims at pushing deep learning searches
beyond the proof of principle stage. All studies presented here estimate sen-
sitive distances, a metric commonly used for state-of-the-art GW detection
pipelines, at previously untested false-alarm rates (FARs). To enable these
tests, several new methods are developed which significantly improve the
performance over other machine learning search algorithms at astrophysi-
cally relevant FARs. This work allows for a clear comparison between ad-
vanced deep learning GW search algorithms and existing production search
pipelines. Such comparisons had previously been difficult, due to differing
metrics. From these, it is inferred that the presented solutions are already
competitive for some parameter regions. For other regions, where machine
learning searches are currently still outperformed by traditional algorithms,
our analyses reveal the main problems that need to be addressed to elevate
these novel algorithms to state-of-the-art performance.

More specifically, chapter 4 presents a new deep learning model designed
for BNS detection. It performs significantly better at low FARs than previ-
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CHAPTER 1. INTRODUCTION

ous deep learning searches but also finds a gap in performance compared to
PyCBC Live [58], a state-of-the-art low-latency production search pipeline.
Chapter 6 re-analyzes an existing deep learning algorithm and introduces a
modification to prevent a collapse of the sensitivity at low FARs. It also in-
vestigates the impact of different training strategies on the final performance
of the network. Chapter 7 adapts the coincidence analysis used in produc-
tion searches [38, 59, 60] to a deep learning search algorithm trained for a
single detector. This trivial extension of the deep learning search algorithm
reduces the FARs at which it can be tested by several orders of magnitude
at a negligible computational cost. Chapter 8 presents the results of a mock
data challenge led by myself that makes the tools and experiences gained in
previous studies available to the global community. It compares several con-
tributions from international groups to production level searches and assesses
the current state of the field.
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Chapter 2

Chapter Descriptions and
Authorship Clarifications

This thesis is based on a set of publications.

• Chapter 4 – a summary of [61] – contains a novel method to search for
BNS mergers using a deep neural network.

• Chapter 5 – a summary of [62] – evaluates the capability of a state-of-
the-art analysis for generating pre-merger alerts and sky-localizations
for GWs from BNS mergers.

• Chapter 6 – a reprint of [63] – contains a reanalysis of an existing deep
learning search for binary black hole (BBH) signals at low FARs, ex-
tends the method to work with even lower FARs, and tests the influence
of different training strategies on the detection performance.

• Chapter 7 – a reprint of [64] – tests the applicability of single detector
deep learning search algorithms in a coincidence multi-detector search.

• Chapter 8 – a reprint of [65] – contains the results of a global mock data
challenge that assesses the current capability of ML search algorithms
for BBH signals and compares them to state-of-the-art pipelines.

The works [61], [63], and [64] are published in Physical Review D, the work
[62] is published in Astrophysical Journal Letters, and the work [65] is ac-
cepted by Physical Review D. Below I will give a more detailed summary
of each chapter in this thesis, including those not based on the works listed
above, and will clarify my contribution to each work. A full list of publica-
tions I was involved in can be found in appendix B.
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CHAPTER 2. CHAPTER DESCRIPTIONS AND AUTHORSHIP
CLARIFICATIONS

Chapter 3 gives an overview of the foundations required to understand the
content of this thesis. Section 3.1 discusses the theory of GW generation and
the resulting waveforms. It summarizes the treatment from the approxima-
tion of linearized gravity up to complex modern waveform models. Section
3.2 treats various aspects used in current day GW detection, touching on
the subjects of GW detectors and their noise characteristics, signal detection
algorithms, as well as the significance of detections. Section 3.3 provides an
introduction to deep learning. It discusses the mathematical foundations of
neural networks and how they can be trained. Section 3.4 gives an overview
of recent works relevant to the field of ML based GW data analysis. The
foundations discussed in chapter 3 are also touched upon to various degrees
of depth in chapters 4, 6, 7, and 8. However, chapter 3 provides more de-
tail and background, as well as tying the works into the greater context of
existing research. It was entirely written by myself with some help in proof
reading.

In chapter 4 I summarize the results of [61] and present the differences
to my master thesis [66], which the paper is based on. The study introduces
a procedure to reduce the amount of data that needs to be processed for
the detection of GW signals from BNS mergers. This procedure is then
utilized to build a novel multi-detector search algorithm that uses deep neural
networks. The resulting algorithm significantly improves on the performance
of a previous deep learning based algorithm for the most commonly expected
signal strengths and at low FARs. It also stresses the importance of testing
machine learning based algorithms at FARs≤ 1 per month for the application
in production analyses. The topic was suggested by my master supervisors
F. Ohme and A. H. Nitz, who proposed to use multiple sampling rates. My
contribution was to create training and testing data, optimize the neural
network architecture, define the process of sampling the data at multiple
rates, and write the implementation. The paper was written by myself with
close guidance from A. H. Nitz and F. Ohme.

Chapter 5 summarizes the work done in [62]. The paper investigates the
prospects of detecting GW signals from compact binary coalescences before
the merger for current and planned detector networks. It also discusses
how well these pre-merger detections can be localized on the sky, to allow
for prompt electromagnetic follow-up observations. It finds that future GW
observatories will be capable of providing several minutes of early warning
for sources localized to < 100deg2 in the sky. The research was led by A.
H. Nitz, who also suggested the topic. I provided the code to perform a
high-level analysis of the detectability of signals based on a network signal-
to-noise ratio threshold. The code calculates the network signal-to-noise
ratio for post-Newtonian waveforms truncated at different high-frequency
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cutoffs. This also allowed for the creation of a suitable template bank for a
full analysis on mock data. The draft of the paper was written by A. H. Nitz
and T. Dal Canton. I contributed to the body of the publication by proof
reading the draft.

Chapter 6 is a reprint of [63]. It reproduces the results of [56] and extends
them to lower FARs. From this baseline, the study investigates the influence
on the sensitivity of different training strategies for deep learning GW search
algorithms. It is found that the particular strategy has little influence, as
long as sufficiently difficult examples are used. Furthermore, a new output
statistic for the networks is presented which avoids numerical instabilities
that have made it previously impossible to test the network at production
level FARs. The idea for the study was developed by myself in collaboration
with O. Zelenka and in close correspondence with A. H. Nitz, F. Ohme, and B.
Brügmann. The paper draft was written by myself with some sections being
contributed by O. Zelenka. A. H. Nitz, F. Ohme, and B. Brügmann helped
with revisions of the draft and made comments to improve the evaluation.

Chapter 7 is a reprint of [64]. The study tests the applicability of deep
learning GW search algorithms trained on a single detector in a coincidence
analysis. It compares the results from a time-coincidence analysis of the
deep learning results with a state-of-the-art matched filter based production
search. We find that the application works seamlessly but falls short in sensi-
tivity compared to matched filtering due to the inability of comparing signal
parameters across multiple detectors. We also highlight the usefulness of our
approach in probing deep learning searches at FARs < 100 per year. The
paper, furthermore, presents a combined ranking statistic based on the single
detector network output presented in [63]. The study was entirely proposed
by myself, with some input on the details from A. H. Nitz. Accordingly, the
draft of the paper was written by myself with minor revisions by A. H. Nitz.

Chapter 8 is a reprint of [65]. It discusses the first machine learning
gravitational-wave search mock data challenge and its results. Several re-
search groups around the world were asked to submit GW search algorithms
which were subsequently evaluated on common data sets using common met-
rics. The goal of the challenge was the evaluation of different machine learn-
ing based algorithms to create a reference and objective comparison between
the different submissions, as well as to state-of-the-art production searches.
Due to the open source policy of the challenge, its resources are intended
to be a base of comparison also for future algorithms. Furthermore, the
most promising future research areas for machine learning search algorithms
were identified from the results. The project was suggested by A. H. Nitz.
The organization of the challenge, including meetings, communication, and
the development of the public codebase, was primarily in my responsibility.
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CLARIFICATIONS

O. Zelenka helped with PyTorch implementations and provided tutorials.
Details of the challenge, including the parameters of the data sets, were dis-
cussed with the organization team consisting of O. Zelenka, A. H. Nitz, B.
Brügmann, F. Ohme, and myself as well as the scientific advisers E. Cuoco,
E. A. Huerta, and C. Messenger. The initial paper draft was written by
myself, with revisions being made by all authors. An exception to this are
the descriptions of the submissions, which were written by the groups.

Chapter 9 is a summary of a voluntary internship I did at Bosch Hildesheim,
to gain insights into the non-academic development process of ML algorithms.
It is separate from the rest of the thesis, as it discussed self-supervised learn-
ing algorithms for object detection applications. For this reason, it includes
a short overview of the required foundations of object detection and self-
supervised learning in the context of computer vision. Afterward, my re-
search at Bosch is summarized, which tried to test an existing self-supervised
learning framework and develop a new one. Both approaches turned out to
yield negative results, as we could not demonstrate an improvement over ran-
domly initialized networks. The entire chapter was written by myself with
some help in proof reading.

Chapter 10 concludes this thesis and gives an outlook into possible further
research topics.
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CHAPTER 3. FOUNDATIONS

3.1 Gravitational Waves

Gravitational waves (GWs) are a form of radiation, which use spacetime itself
as a propagation medium. They are a direct consequence of Albert Einstein’s
general theory of relativity (GR) [67], as he found in 1916 [10]. Their effect
can be straight forwardly derived assuming only a small deviation from the
flat spacetime metric, as will be done in subsection 3.1.1. Sources of GWs are
accelerated masses, or more accurately masses with a non-vanishing second
time derivative of their mass-quadrupole moment.

The strength of GWs depend on the acceleration within the source and
the involved masses. The larger the mass and the higher the acceleration,
the bigger the amplitude of the resulting wave. For this reason, the sources
that can be most easily detected are very heavy objects that experience
extreme acceleration. These conditions are fulfilled, for instance, by two
very compact astronomical objects, like black holes (BHs) or neutron stars
(NS), that rapidly orbit each other.

Over time, a binary system of compact objects loses energy, due to the
emission of gravitational radiation. This causes the two bodies to slowly
come closer together until they merge. GW signals emitted by systems of
this kind are known as compact binary coalescence (CBC) signals and they are
usually classified into three categories; binary neutron stars (BNS), binary
black holes (BBHs), and NS-BH-systems (NSBH). At the time of writing
this thesis, all O(100) detected GWs are believed to belong to one of these
classes [14, 15].

CBC-signals are commonly described to be composed of three stages;
the inspiral, the merger, and the ringdown. During the initial phase, the
two bodies have a large separation and relativistic effects are small. The
resulting GWs can be well described by analytic approximations, an overview
of which is given in subsection 3.1.1 and subsection 3.1.2. This phase is known
as the inspiral, as the two objects are slowly spiraling towards each other,
due to the orbital energy carried away by the emitted GWs. During the
final few orbits relativistic effects have a non-negligible effect on the orbital
dynamics and the approximations made during the inspiral phase are not
valid anymore. Because the two bodies merge in this phase, it is called the
merger. For accurate descriptions of the GW during this phase one has to
resort to numerical relativity [68]. Their discussion goes beyond the scope
of a brief introduction and I refer the interested reader to section 14.3 of
[69] for an introduction to the topic and to [70–73] for deeper reviews. Once
the binary has merged, the resulting body is a perturbed compact object.
This perturbation will then be radiated off during the ringdown phase [74]
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3.1. GRAVITATIONAL WAVES

which for BHs can be described analytically and yields exponentially damped
sinusoids [74]. When the remnant is some kind of NS the ringdown is affected
by the mass distribution and can be a lot more complicated [75]. I will not
discuss the ringdown in this work, but will point the interested reader to [76].

Other kinds of GW sources are expected to exist but have not yet been
directly detected. The most promising candidates for future detection in-
clude continuous gravitational waves (CW) [77–79], supernovae (SN) [80],
and extreme mass ratio inspirals (EMRI)[69, 81]. CWs are emitted by a
rapidly spinning NS whose shape slightly deviates from that of a perfect
sphere. If the deformation is not rotationally symmetric around the rota-
tion axis of the star, it causes the second time derivative of the quadrupole
moment to be non-zero. Due to the extreme stability of the rotational fre-
quency of observed NS [82, 83] and the low amount of energy lost due to
emitted GWs, the signal is expected to have a very small amplitude, but be
extremely long lasting and almost monochromatic [84]. SN can emit GWs
due to the rapid evolution of their mass distribution and the scales of energy
which are released during their explosion. The exact mechanisms that lead to
the emission of gravitational radiation are manifold and can only be modeled
numerically [69]. EMRIs are binary systems, where one object is of stellar
mass, such as a NS, stellar mass BH, or white dwarf (WD), while the other
body is a supermassive black hole (SMBH). In this setup, the mass ratio
between the two bodies is on the order ≥ 105 and most established methods
to calculate the emitted GWs break down [69]. However, we do expect to
be able to detect EMRIs with future, space-born detectors [81]. While these
signals are expected to exist, this thesis will exclusively treat CBC signals.

Even the strongest GWs interact only very weakly with matter and other
forms of energy [68]. For this reason they travel almost unaffected through
the Universe. This is a major advantage over electromagnetic (EM) radiation,
which is shielded by matter, and is especially important when studying the
very early stages of the Universe, where it was opaque to EM radiation [85].
Additionally, the most common sources observed today are very compact
objects which usually do not emit a lot of EM radiation. Studying them
through GWs allows us to detect them nonetheless and make statements
about their population [22], constrain the percentage of dark matter that
can be explained by BHs [23], and test GR [16, 17].

Subsection 3.1.1 closely follows sections 2.1.1 of [66]. Subsection 3.1.2 is
oriented along chapter 5 of [68] and [86]. Throughout this section I will use
the Einstein summation convention, denote 4-dimensional spacetime indices
by Greek letters, and purely spatial indices by Latin letters. The convention
ηµν = diag(−,+,+,+) is used for the flat special relativistic Minkowski-
metric.
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CHAPTER 3. FOUNDATIONS

3.1.1 Linearized Gravity

In GR gravity is described as a property of spacetime. Instead of being a
force, gravity is the effect of following shortest paths in a curved spacetime.
The curvature is governed by the Einstein equation

Gµν =
8πG

c4
Tµν , (3.1)

where Gµν is the Einstein tensor, G is the gravitational constant, c is the
speed of light in vacuum, and Tµν is the energy-momentum tensor. Gµν
is constructed entirely from constants and a combination of the spacetime
metric gµν and its first and second derivatives. Overall, (3.1) specifies a set
of coupled, non-linear, second order, partial differential equations, where Tµν
acts as the source of the curvature. To find trajectories of test-particles in
this theory, one needs to specify the matter-, energy-, and stress-contents
of the universe in the energy-momentum tensor Tµν . Afterward, the set of
differential equations have to be solved to find the metric gµν . From the
metric one can then find (local) trajectories by solving the geodesic equation

ẍρ + Γρµν ẋ
µẋν = 0, (3.2)

where Γρµν are Christoffel-symbols and ẋµ is the derivative of xµ by the proper
time.

As stated earlier, GWs are waves that use spacetime as their medium.
In mathematical terms, we are looking for a wave-like solution gµν to the
Einstein equation (3.1). Their existence in GR should not be surprising, as
one of the core concepts of the theory is that nothing travels faster than light
in vacuum. As a result the curvature changes induced by moving masses will
also have to obey this speed limit. Analogously, in electrodynamics electric
charges act as a source of the electric field, which travels at the speed of
light. When they are accelerated, one finds wave-like solutions to the field
equations. Therefore, a waveform solution to the Einstein equation seems
plausible from a physical standpoint.

To find these solutions we assume small and slowly varying deviations
from a flat spacetime. In mathematical terms we are only considering metrics

gµν = ηµν + hµν , (3.3)

with ||hµν || � 1 and ||∂σ1 . . . ∂σnhµν || ∈ O(hµν) =: O(h). Inserting (3.3) into
(3.1) and keeping only terms linear in hµν and its derivatives, i.e. discarding
any terms of order O(h2) and above, yields the linearized Einstein equation

Gµν =
1

2
(∂αµh

α
ν + ∂αν hµα − ∂µνh−�hµν − ηµν∂σαhσα + ηµν�h) =

8πG

c4
Tµν ,

(3.4)
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where h := ηµνhµν and � := ηµν∂µν .
The linearized Einstein equation is invariant under coordinate transfor-

mations x′µ = xµ+ξµ(x), when ||∂µξν || ∈ O(h) [68]. We can use this property1

to choose a gauge condition that simplifies the equation. To simplify notation
we can define h̄µν := hµν − 1

2
ηµνh. We can then use the DeDonder gauge [68]

∂αh̄αµ = 0, (3.5)

by choosing �ξµ = ∂αh̄αµ, which is known to always have a solution [68]. In
this gauge equation (3.4) reduces to

�h̄µν = −16πG

c4
Tµν . (3.6)

This equation is a well known wave equation [88], which, again, is known
to always have a solution. However, the DeDonder gauge doesn’t fix the
coordinate system completely. It only used �ξµ = ∂αh̄αµ, which was set to
zero. Other transformations with �ξµ = 0 are still allowed. This freedom can
be used to further constrain the degrees of freedom of (3.6). It allows us to
set the trace of the metric perturbation h = 0. As a consequence h̄µν = hµν .
It also allows us to set the components h0µ = 0 = h3µ, by choosing the
coordinate system such that the wave-vector of the solution points in the
x3-direction [89]. In this gauge, solutions must be of the form

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 . (3.7)

By construction in this gauge the metric is traceless and transverse in nature,
i.e. kµhµν = 0 where ~k is the wave-vector [89]. For this reason it is known as
the transverse-traceless gauge (TT). The superscript TT specifies that the
metric is evaluated in the TT gauge.

A complete gauge, such as the TT gauge, selects one specific coordinate
system. It is usually chosen to simplify calculations, but may not be observ-
able. To understand the coordinate system chosen by the gauge conditions
underlying the TT gauge, we can check the trajectories of test particles which
are initially at rest (ẋi = 0) in this frame. In this case, the geodesic equation
(3.2) simplifies to [68]

ẍi = −Γi00

(
ẋi
)2

= −1

2
(2∂0h0i − ∂ih00)

(
ẋi
)2 TT

= 0. (3.8)

1See [87] for a more mathematical justification of this gauge freedom.
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Therefore, particles at rest remain at rest and are not accelerated by the
passing of a GW. This means that the reference frame selected by the TT
gauge changes with the GW.

However, the coordinate system of the TT gauge is not the frame we
observe. Instead, we observe from a central point and live in a locally flat
spacetime. Mathematically this can be expressed by constructing a local
inertial frame at a point chosen as the origin and describing everything in
terms of that frame [68]. To calculate the change in the distance of any point
from the origin, we can use the equation for the geodesic deviation, which
reduces to

ẍi = −Ri0j0x
j (3.9)

in linearized gravity and this frame of reference [89]. Rµνσρ is the Riemann
tensor, which is invariant under coordinate transformations in linearized
gravity [68]. We can, therefore, choose any gauge we like to calculate it.
In the TT gauge the required components are given by Ri0j0 = − 1

2c2
ḧTT
ij .

Inserting this expression into (3.9) one can directly integrate the equation to
get [89]

xi(τ) = xj(0)

(
δij +

1

2
hTT
ij (τ)

)
. (3.10)

In this frame we can then observe the effect of a passing GW on a ring of
freely falling test-masses in the x-y-plane. To obtain a solution to (3.6) we
assume to be in vacuum, i.e. Tµν = 0. One special solution to this equation
is the plane wave hTT

ij = Aij sin (ωτ). The effect of such a solution on the ring
of test-masses for the two individual polarizations as obtained from (3.10)
is depicted in Figure 3.1. The figure justifies the names “plus” and “cross”
given to the two polarizations h+ and h×, respectively.

While the observable effects of a GW can be studied by assuming vacuum
solutions, their production cannot. To do so, the general solution of equation
(3.6) has to be considered, which is given by

h̄µν(t, ~x) =
4G

c4

∫
d3x′

Tµν(t− ||~x− ~x′|| /c, ~x′)
||~x− ~x′|| . (3.11)

As the approximations underlying linearized gravity are only valid when there
are at most small deviations from flat spacetime, we consider (3.11) only far
from the source of radiation. At large distances to the source the scale
within the source is negligible and as such ||~x− ~x′|| ≈ ||~x|| =: r. Using this
approximation (3.11) simplifies to

h̄µν(t, ~x) =
4G

c4

1

r

∫
d3x′ Tµν(t− r/c, ~x′). (3.12)
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0 π
2 π 3π

2

h+

h×

Figure 3.1: The effect of a GW on a ring of freely falling test masses in
the plane perpendicular to the propagation direction of the GW. The two
rows show the effect of the “plus” and “cross” polarization, respectively. The
columns show different phases of the wave. The labels give the value of ωτ .

Projecting the equation into the TT gauge and using that the energy-momentum
tensor is divergence free, one finds [68]

hTT
ij (t, ~x) =

2G

c4

1

r
ÏTT
ij (t− r/c), (3.13)

where ÏTT
ij is the second time derivative of the projection into the TT gauge

of the second mass moment

Ï ij = c2∂2
0

∫
d3x′ x′ix′jT 00. (3.14)

The projection of this quantity is given by [68]

ÏTT =


(
Ï11 − Ï22

)
/2 Ï12 0

Ï21 −
(
Ï11 − Ï22

)
/2 0

0 0 0

 . (3.15)

The above equations can be used to approximate the gravitational radi-
ation emitted by any mass distribution. Because this work considers only
CBC sources, we are interested in the GWs sent out by two point particles
orbiting each other. Due to the initial assumptions of linearized gravity, we
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are restricted to a separation of the two objects where the curvature of the
background spacetime caused by the other object is small. In turn, however,
this means that the orbital dynamics are governed by Newtonian dynamics
and the problem reduces to the Kepler problem [68]. One solution to this
problem are circular orbits, which can be described using an effective one
body formalism with the reduced mass µ = m1m2

m1+m2
. From this setup the

second time derivative of the second mass moment is calculated to be

Ï ij = 2µR2ωs
2

cos (2ωst) sin (2ωst) 0
sin (2ωst) − cos (2ωst) 0

0 0 0

 , (3.16)

where R is the orbital separation of the two bodies and ωs is their orbital
frequency. In combination with (3.13) and (3.15) this can be used to find the
expressions for the polarizations of the GWs. Interestingly, the frequency of
GWs originating from a binary system in circular orbits is exactly twice the
orbital frequency. For eccentric orbits this property is lost [68].

The expressions obtained from the system described by (3.16) are given
in the frame of reference used to solve the Kepler problem. This means that
we obtained the waves emitted in the x3 direction from the center of mass.
However, we are interested in the radiation emitted in all directions, as we
cannot a priori know the orientation of a source with respect to our detectors.
To resolve this issue, one needs to do one final projection which yields the
waveform functions [68]

h+ =
4

r

G

c4
µR2ωs

2

(
1 + cos2 (ι)

2

)
cos (2ωst+ 2Φ)

h× =
4

r

G

c4
µR2ωs

2 cos (ι) sin (2ωst+ 2Φ), (3.17)

where ι is the inclination of the system with respect to the line of sight and
Φ is the orbital phase of the two objects at t = 0.

Equation (3.10) showed that GWs can change the distance between par-
ticles. Therefore, the particles obtain kinetic energy from a passing GW and
stress can be induced in rigid bodies [68]. As a consequence, GWs must
carry energy in order to pass it on. However, according to (3.1), if GWs
carry energy, they must act as a source of curvature themselves and the as-
sumption (3.3) of GWs being a small perturbation in a flat background is
not sufficient anymore. Instead one needs to consider a more general metric
gµν = ĝµν + hµν .

To obtain the energy carried by a GW the background ĝµν must be sep-
arated from the GW hµν . To achieve this we impose the condition that the
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background curvature fluctuates at most slowly compared to the rapidly os-
cillating hµν . In a rather lengthy calculation one can expand the Ricci tensor
in terms of hµν to second order. Taking the time average over multiple cycles
of the GW will then filter out its contribution to the curvature and leaves
the background curvature behind. However, since terms quadratic in hµν
may have low frequency components, when the wave-vectors ~k1 and ~k2 are
of similar magnitude but opposite sign, one can find that the GW does have
an influence on the background curvature. Since the background changes
very slowly compared to the GW, we can again view it as locally flat. Under
these assumptions one can then write down an expression for the effective
energy-momentum tensor of a GW

tµν =
c4

32πG
〈∂µ
(
hTT

)σα
∂νh

TT
σα 〉. (3.18)

A more thorough discussion of this derivation can be found in 1.4.2 of [68],
where most of the above was paraphrased from, and 35.13 and 35.15 of [89].

Due to conservation of energy, the energy carried by the GW must be
taken away from the source. The main form of energy stored in the binary
system studied above is the orbital energy. In turn, this means that the
assumption of a constant circular orbit that led to the equations (3.17) cannot
hold. Instead one needs to consider the energy lost by gravitational radiation
to calculate the phase of the GW.

The total energy carried away from the system is known as the luminosity
and can be obtained by integrating the outwards pointing energy flux over
a sphere with infinite radius. If we consider a binary system with large
separation, where the orbital dynamics are well approximated by Newtonian
theory, one finds

LGW =
32

5

c5

G

(
GωsMc

c3

)10/3

(3.19)

for the luminosity LGW, where

Mc :=
(m1m2)3/5

(m1 +m2)1/5
(3.20)

is the chirp mass.
By setting the change in orbital energy equal to the luminosity and us-

ing Kepler’s third law one can obtain a differential equation of the orbital
frequency. This can be solved to get [68]

fGW(τ) =
1

π

(
5

256

1

τ

)3/8(
GMc

c3

)−5/8

, (3.21)
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Figure 3.2: The strain of the plus polarization of a GW as calculated by
(3.23). The parameters of the waveform are m1 = 35 M�, m2 = 30 M�, r =
1000 Mpc, and ι,Φ0, θ = 0.

where τ is the time until the system merges. Integration yields the orbital
phase

Φ(τ) = −2

(
5GMc

c3

)−5/8

τ 5/8 + Φ0, (3.22)

with Φ0 the phase at coalescence. To obtain the waveform, this expression
could be inserted into the second mass moment, replacing ωst. However, in
the approximations that were used to derive the waveforms (3.17) we assumed
an almost flat background. As a consequence, the dynamics cannot be highly
relativistic and the frequency will change slowly. Therefore, derivatives of the
separation R and the frequency ωs = πfGW can be ignored to first order and
we can approximate the waveforms by using Kepler’s third law to replace R

by 3

√
GM
ωs

2 , ωs in the prefactor of (3.17) by πfGW(τ), and 2ωst + 2Φ in the

argument of the cosine by Φ(τ). This yields

h+(τ) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4(
1 + cos2 (ι)

2

)
cos (Φ(τ))

h×(τ) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4

cos (ι) sin (Φ(τ)). (3.23)

In Figure 3.2 the h+ polarization from (3.23) is plotted for m1 =35 M�,
m2 =30 M�, r =1000 Mpc.
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3.1.2 Post-Newtonian Formalism

In the previous subsection the main approximation made to derive the grav-
itational radiation is the assumption of a flat background when describing
the source dynamics. In other terms, we assumed that the orbital dynam-
ics are governed by Newtonian dynamics and the background curvature is
independent of the speed at which the bodies are orbiting. However, in a
gravitationally bound system, the orbital velocity depends on the separa-
tion of the two bodies. More specifically, by the virial theorem one finds
(v/c)2 ∼ RS/r, where RS is the Schwarzschild radius and r is the separation
of the two objects [68]. Therefore, the core assumption does not hold.

To treat gravitationally bound systems, one needs to consider a generic
metric. However, solving the full Einstein equations is difficult and often im-
possible. One option to simplify problems are post-Newtonian (PN) approx-
imations [89], where the full equations are expanded in a small parameter ε.
For binary systems, we use ε ∼ (v/c) and demand |T ij| /T 00 = O(ε2), i.e. the
source is at most weakly stressed [68]. Requiring invariance of the equations
under time-reversal the expansion works out to

g00 = −1 + g
(2)
00 +g

(4)
00 +g

(6)
00 + . . .

g0j = g
(3)
0j +g

(5)
0j + . . . (3.24)

gij = δij +g
(2)
ij +g

(4)
ij + . . .,

where g(n) denotes terms ∼ εn [68]. To work consistently, when g00 is ex-
panded to order n, g0i must be expanded to order n − 1 and gij to order
n−2 [68]. Similarly, the energy-momentum tensor also needs to be expanded

T 00 = T (0)00
+ T (2)00

+ . . .

T 0j = T (1)0j
+ T (3)0j

+ . . . (3.25)

T ij = T (2)ij + T (4)ij + . . . .

To obtain approximations these expressions can be inserted into the Einstein
equation (3.1) and terms of the same order in ε can be equated. A solution is
known to be of n-th PN-order when terms up to order ε2n are kept. Therefore,
equations of x.5 PN-order exist.

To 1 PN order explicit solutions depending on the energy-momentum
tensor are given in section 5.1.4 of [68], under the usage of the DeDonder
gauge which in the full theory is given by

∂µ
(√−ggµν) = 0, (3.26)
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where g is the determinant of gµν . For the computation one also needs to
consider that for v/c � 1 the time derivatives are smaller than the spatial
derivatives by a factorO(ε) and hence the flat spacetime d’Alembert operator
is given by

� = − 1

c2

∂2

∂t2
+∇2 =

(
1 +O

(
ε2
))
∇2, (3.27)

where ∇2 = δij∂i∂j. From this it is immediately clear that these solutions
can only be valid close to the source, as they have to be instantaneous po-
tentials [68].

For further computations it is beneficial to cast the Einstein equations
into their relaxed form

�kµν =
16πG

c4
τµν , (3.28)

where � is the flat spacetime d’Alembert operator,

kµν =
√−ggµν − ηµν , (3.29)

and

τµν = −gT µν +
c4

16πG
Λµν . (3.30)

The tensor Λµν captures the curvature contributions of the deviation from
flat spacetime to the energy-momentum tensor [86] and an explicit expression
is given in (5.74) and (5.75) of [68]. For (3.28) to be an exact equivalent to
the Einstein equations (3.1), one also needs to enforce the DeDonder gauge
which is given by ∂νk

µν = 0 in this formulation.

To obtain a PN expansion, we can then write the metric kµν in a formal
expansion of v/c ≈ 1/c

kµν =
∞∑
n=2

1

cn
kµνn , (3.31)

where v/c is the small parameter and only written for bookkeeping. As be-
fore, the right hand side of (3.28) must be expanded in the same manner [68]

τµν =
∞∑

n=−2

1

cn
τµνn . (3.32)

Inserting these expressions into the relaxed Einstein equation, using (3.27),
and equating terms of the same order in 1/c we obtain the recursive equation

∇2kµνn = 16πGτµνn−4 + ∂2
t k

µν
n−2. (3.33)
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When solutions k0 and k1 are known, the right hand side of the above equa-
tion is fully determined and one needs to invert the Laplace operator ∇2 to
obtain higher order PN solutions.

This inversion, however, is not trivial, as the usual Poisson-integral di-
verges for high PN-orders [68]. Instead, one can find a particular solution
for some finite PN-order by multiplying the right hand side by rB, for B
negative and large enough in magnitude. One can then consider the result
in the complex plane and study the pole for B ↑ 0, which is well defined and
omits a solution. For the general solution the homogeneous solution has to
be added. See 5.3.2 of [68] and 5.2 of [86] for more detail. Importantly, these
solutions depend on the energy-momentum tensor of the source, but are only
valid close to the source.

To get the radiation of the far field, we can consider the Post-Minkowskian
(PM) expansion. Since we are considering the region outside of the source,
we are looking for vacuum solutions, i.e. T µν = 0. In this case, the relaxed
Einstein equation (3.28) simplifies to

�kµν = Λµν . (3.34)

Outside the source the curvature will be small and we can expand in Rs/r ∼
G/r. In a slight abuse of notation we write

kµν =
∞∑
n=1

Gnkµνn (3.35)

Λµν = Nµν [k, k] +Mµν [k, k, k] + . . . , (3.36)

where Nµν and Mµν are tensors of quadratic and cubic order in G, respec-
tively. Equating terms of the same order in G leads to

�kµνn = Λµν
n [k1, . . . , kn−1] , (3.37)

where Λµν
n is the sum of all tensors Nµν , Mµν , . . . of order n in G.

In (3.37) we find another recursive relation, where higher order terms
are determined from lower order ones. So once a solution kµν1 is known, in
principle all higher order solutions can be determined.

To find a solution to kµν we observe that Λ1 = 0 and write kµν1 in a
multipole expansion. Once the gauge condition is enforced, one can obtain
solutions that depend on six families of multipole moments. See (5.95) to
(5.101) in [68] for explicit expressions. However, these multipole moments
are still arbitrary functions, as they know nothing about the source of the
radiation yet.
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Iterating k1 to find higher order solutions is again not trivial. In princi-
ple the right hand side of (3.37) is determined by all lower order solutions
k1, · · · , kn−1. So the task is in inverting the d’Alembert operator �. Notice
that since the expansion is not in terms of v/c anymore the d’Alembert op-
erator must be inverted, rather than the Laplace operator. The solution to
the problem is very similar to the solution used for the PN-expansion. We
find a particular solution by truncating the multipole expansion of kµν1 at the
desired order and multiply Λµν

n by rB, with B now positive and sufficiently
large to cancel all factors 1/r in the multipole expansion. We then use the
analytic continuation again and add the homogeneous solution to obtain the
most general one. See 5.3.1 of [68] or 4.1 of [86] for more detail.

To determine the multipole moments of the PM solutions, one observes
that the PN and PM solutions have an overlapping region of validity [86].
Therefore, one uses the PN solutions, which are determined by the energy-
momentum tensor of the source, to fix the multipole moments of the PM
solutions. To do so, the PN potentials are written as a multipole expansion
and the PM solitions are re-rexpanded in terms of powers of 1/c. Finally,
terms of the same order are equated. The explicit expressions are given in
(85) - (90) of [86].

With this, the metric in the far region has in principle been determined.
To find the actual waveform emitted by some physical system, one can fol-
low a very similar approach to the one used in subsection 3.1.1. A binary
system is well approximated by a sum of two delta functions2 in the energy-
momentum tensor. Using this energy-momentum tensor, one can find the
metric in the near region of the source to determine the orbital energy E.
On the other hand, it can be used to determine the metric in the far re-
gion, which can in turn be integrated to obtain the luminosity LGW of the
source. Under the assumption that the system loses energy only through
gravitational radiation, we can use the equation

− dE

dt
= LGW (3.38)

to obtain the orbital phase of the binary system.
For the case of linearized gravity discussed in subsection 3.1.1 the orbital

energy was known from Newtonian dynamics. In the PN approximation it
needs to be calculated. To do so, one inserts the PN metric into the geodesic
equation (3.2) to obtain the equations of motion of the two orbiting bodies.
From this one can find the orbital energy. Explicit expressions can be found

2Using delta functions will actually lead to divergencies at high PN-order. For this
reason some regularization has to be applied. See section 8 of [86] for details.
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in [86], equation (115) gives the generic metric to 3 PN-order, (168) gives the
equation of motion of a binary system to 3.5 PN-order, (170) gives the orbital
energy to 3 PN-order, and (194) gives the energy to 3 PN-order assuming
circular orbits.

The luminosity can be directly computed from the metric by integration.
See section 3.5 of [68] or section 6 and section 10.2 of [86] for details. Explicit
expressions at 3.5 PN-order are given in (5.257) of [68] and (231) of [86]. The
resulting phase to 3.5 PN-order is given in (235) of [86].

To obtain the waveform, one can project the metric gij − δij into the
TT-frame. The metric gij is the desired PN-approximation, the derivation
of which was discussed above. The polarizations can be read of. Explicit
expressions were derived in [90, 91] and can be found in (237) - (241) of [86].
To get the actual waveform, the time dependent phase to highest known
PN-order should be inserted.

The discussion above is meant as a high-level overview of how PN-waveforms
can be obtained. A more detailed overview, including mathematical details,
is given in [86]. Notably, this discussion excluded spin effects of the binary
system and its constituents. Discussions including spin can be found for
instance in [92–96].

3.1.3 Waveform Models

The waveforms discussed in subsections 3.1.1 and 3.1.2 are, by construction,
only valid during the inspiral, even though high order PN waveforms remain
accurate until a few cycles before the merger of the two objects [86, 97].
However, the emitted energy scales to high power with the orbital frequency
of the two merging objects, as can be seen from (3.19) to linear order and
from (231) of [86] to 3.5 PN-order. Therefore, the evolution of the waveform
close to merger can be of high importance for detection.

This subsection gives an overview of the three most prominently used
waveform-model families and their variants. All of them model the entire
orbital evolution from inspiral, over merger, to ringdown (IMR), in the pa-
rameter regions where they are valid. To be able to represent the merger
phase, all of them rely on numerical relativity (NR) simulations, which solve
the Einstein equations numerically. These simulations are the most accurate
tools available to solve the highly non-linear interactions but running them
requires enormous amounts of computational power. Generating a waveform
encompassing the final few orbits and the merger for a single binary system
using NR can take days or even weeks, depending on the initial conditions
and type of binary system [71]. Therefore, it is often not viable to use the
resulting waveforms in data analysis methods discussed in section 3.2 di-
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rectly. The waveform models below are constructed to overcome this issue
by combining the accurate NR waveforms with analytical approximations.

Instead of writing the GW polarizations as individual functions, one can
also define a single complex strain

H := h+ + ih×, (3.39)

which can be decomposed using spherical harmonics [44, 98]

H =
∑
l≥2

l∑
m=−l

Y −2
lm (ι,Φ0)hlm(τ, r, κ), (3.40)

where
hlm(τ, r, κ) = Alm(τ, r, κ)e−iΦlm(τ,κ). (3.41)

κ represent all parameters that describe the source itself and which do not de-
pend on the location at which one observes the radiation. Waveform models
usually describe the amplitude evolution Alm and the phase evolution Φlm. If
a waveform model is capable of modeling these quantities for (l,m) 6= (2,±2),
one speaks of a model that is capable of simulating higher order modes (HM).

Effective One-Body Waveform-Family

Effective one body (EOB) waveforms were one of the first GW approxi-
mants that could model not only the inspiral but also the merger and ring-
down. The formalism was introduced in [99] and maps the two body prob-
lem of a BBH system onto that of a test particle moving in an effective
external metric. To that end, a Hamiltonian is constructed which is sup-
plemented with a radiation-reaction force. It takes the PN approximation
as a starting-point to express the Hamiltonian and then expresses it as well
as the radiation-reaction force in a resummed form, where the functions are
non-polynomial [100]. An introduction to the resummation is given in 14.1
of [69]. This resummation can then be extended by adding free parameters
that model non-perturbative effects [92, 101, 102]. The EOB formalism mod-
els the inspiral and merger by fitting the free parameters to NR and then
attaches an analytical model for the ringdown.

The first full IMR waveform from the EOB family was derived in [31].
Initially it modeled only non-spinning BBHs but was later extended to the
spinning case in [103, 104]. The early models were solely based on analytic
calculations. However, with the breakthrough in NR in 2005 [69, 105–107]
accurate ground-truths became available, which could be used to constrain
the free parameters that extend the EOB models [100, 108]. These models
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were incrementally improved [109, 110] and extended to include higher order
modes, aligned spins, and precession [111–114]. To keep track of the capa-
bility of these models, a naming scheme was introduced. Waveforms of this
family carry an “EOB” in their name, which is usually followed by “NR” to
signify that the model coefficients were tuned to NR simulations. A leading
“S” informs the user about the capability of the model to represent (anti-
)aligned spins. Afterwards a version number is tagged onto the string. The
first model named this way is known as “SEOBNRv1” and was introduced
in [115], “SEOBNRv2” is the model described in [116, 117], “SEOBNRv3”
the one described in [114, 117], and “SEOBNRv4” in [118]. At the time
of writing, the EOB model that encompasses the most orbital dynamics is
“SEOBNRv4PHM”, which can account for higher order modes and preces-
sion at the same time [119]. The EOB models are formulated as a set of
differential equations, that need to be solved for given parameters, which
can be prohibitively slow depending on the application [117]. They are also
formulated in the time domain, wheras data analysis usually requires the
waveform in the frequency domain. For these reasons, EOB models are often
sped up by building reduced order models in the frequency domain [120, 121].

Phenom Waveform-Family

The phenomelogical – short Phenom – waveform-family was introduced in
[32]. At the core, their method matches the analytic PN-waveform that
describes the inspiral with the more accurate NR-waveform during merger
to produce a finite amount of hybrid waveforms. Afterward, the hybrid
waveforms are fit to a phenomenological parametrized model which can in
turn be mapped to the physical parameters of the binary system [97]. The
resulting model is fast to evaluate, highly accurate, and usually native to the
frequency domain.

Since the initial paper, which focused on non-spinning BBHs in a mass
range of 30 M� to 130 M�, many different versions of the waveform model
have been released. The work of [122] introduced a Phenom-waveform model
that is capable of modeling BBHs, the spins of which are (anti-)aligned with
the orbital angular momentum. Through [123, 124] waveform models that
can take precession effects of the emitting binary into account were intro-
duced and dubbed PhenomP, where the “P” signifies the ability to represent
precessing systems. The PhenomP model was used during data analysis of
the first detected GW [13, 117, 125]. The authors of [126] introduced a model
that can account for higher multipoles (“PhenomHM”), which was combined
with an updated version of the precessing waveform model [127] to obtain
a waveform model that can represent both effects [128] (“PhenomPv3HM”).
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The underlying model was also revised multiple times over the years. The
evolving non-precessing approximants were called “PhenomB” [122], “Phe-
nomC” [97], and “PhenomD” [129, 130]. The most recent version, skipping
many letters in between, is the “PhenomX” waveform model [131], which
has a version that allows for the computation of higher order multipoles
called “IMRPhenomXHM” [132], and a version that includes both higher or-
der multipoles and precession effects, known as “IMRPhenomXPHM” [133].
The prefix “IMR” signifies that the waveform models the full inspiral-merger-
ringdown. The postfix “HM” signifies that higher order multipoles can be
computed.

Numerical Relativity Surrogate Waveform-Family

By now hundreds of NR simulations are available that span large parts of
the expected parameter space for BBH mergers [134, 135]. The resulting
waveforms are the most accurate predictions of the emitted radiation of a
merging binary system that are available to us. NR surrogate models leverage
the existing catalogs of NR simulations to interpolate between them. They
are typically more accurate than the approximate methods described above
but are only valid in the limited parameter regions that are covered by the
underlying simulations [136].

The first surrogate model was introduced in [137] and used non-spinning
waveforms produced by the Spectral Einstein Code [138, 139]. The model
was later extended to include precession [140] and more parameters [141,
142]. Currently the model named “NRSur7dq4” [143] is used in state-of-
the-art analyses [14], where “7dq4” signifies that the model is valid for a 7
dimensional parameter space (6 spins + mass ratio) up to a mass ratio q of
4.

3.2 Data Analysis for Compact Binary Coa-

lescence Signals

The observable changes that GWs induce in detectors are very small, as we
will see in section 3.2.1. Consequently, detecting them directly is a difficult
problem that stood unsolved for nearly a century.

The first indirect detection of GWs was made in 1982 when Joseph H.
Taylor and Joel M. Weisberg closely studied the pulsar PSR 1913+16 [12].
Said pulsar was discovered in 1974 and was the first one that was part of
a binary system [144]. It became known as the Hulse-Taylor pulsar, named
after the researchers who discovered it. A pulsar is a rotating NS that emits
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a beam of radiation. If the beam continuously sweeps across a detector, it
appears as a periodic signal. The frequency of these pulses is known to be ex-
tremely stable [82, 83] and, consequently, allows to trace the orbit of pulsars
in binaries very accurately. As was discussed in section 3.1, a binary of com-
pact objects emits considerable amounts of energy as gravitational radiation
and subsequently slowly spirals together. The change in orbit for the Hulse-
Taylor pulsar due to energy lost in GWs was calculated and then checked
against measurements [12, 145]. The observed change in the orbital period
matches the theoretical predictions from GR to an astonishing accuracy.

Although this indirect detection was strong evidence for the existence of
GWs, it was no direct detection. It could not be ruled out that some other
unaccounted-for effect caused the change in the orbital period. To confirm
the observation, a direct detection of the physical effects of GWs was sought.

Initial efforts toward a direct detection were made by Joseph Weber in
the 1960s [11, 68]. He tried to measure resonances in an aluminum bar
induced by the gravitational radiation. In 1969 he claimed to have detected
a GW [146, 147] but his findings were not reproducible and subsequently
dismissed [148]. For details on resonant bar detectors and their response to
GWs see chapter 8 of [68].

The first confident detection of a GW was made by the LIGO-Virgo
collaboration (LVC) on September 14, 2015 [13]. Since then, O(100) obser-
vations were reported by several groups analyzing the public data [149] that
has been recorded in three observation periods [14, 15, 150–152]. The data
was recorded by three earth bound detectors LIGO Livingston, LIGO Han-
ford [6], and Virgo [7]. Toward the end of the last observing period, a fourth
detector – KAGRA [8] – joined the network. All of them are kilometer scale
laser interferometers, of which a brief introduction will be given in subsection
3.2.1.

A lot of new insights into the Universe can be drawn from these observa-
tions. One of the most prominent studies are tests of GR [16, 17, 153, 154].
So far, no evidence for a deviation from GR has been found. Other insights
that can be obtained from GW observations include constraints on the equa-
tion of state of NS [18, 19], the Hubble-constant [20, 21], the population of
BHs [22], and the fraction of dark matter explainable by BHs [23, 155, 156].
They can also help explain how BHs and other systems form [157]. The list
of possible applications goes on and keeps growing as our understanding of
the Universe improves.

Nonetheless, to make any of these claims, GWs must first be identified
and characterized in the detector data. In subsection 3.2.1, we will see that
noise dominates the raw output data of the detectors. Sophisticated data
analysis methods were developed to extract the weak signals from the raw
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data. The LIGO-Virgo-KAGRA collaboration (LVK) deploys a suite of dif-
ferent algorithms to detect potential signals in the data [14], which can be
classified into two categories based on their underlying search strategy. Gst-
LAL [59, 158–160], MBTA [161, 162], and PyCBC [30, 58, 60, 163, 164] are
search pipelines that filter the data against a set of pre-computed waveforms.
They are often called modeled searches and I will describe their core concept
“matched filtering” in subsection 3.2.2. Coherent wave burst (cWB) [38, 165–
167] is a loosely modeled search pipeline that makes minimal assumptions
about the source and looks for coherent excess power in multiple detectors
to detect transient events.

When accurate models of the signal exist, modeled searches are more
sensitive than loosely modeled searches. However, modeled searches can
only target a fixed range of parameters of binary systems, which has to be
chosen before the data is searched. Since the computational cost of these
searches scales with the searched parameter space, one has to make com-
promises between search space and runtime. As a consequence, signals from
sources with unexpected or unlikely parameters may be missed. The modeled
searches that are used in the studies that have identified all known signals
to date [14, 15, 151, 152] assume circular orbits, aligned spins, and only
search the mass range from 1 M� to 758 M�. They also put constraints on
the mass ratio and assume that higher order modes have a negligible effect
on the observed waveform. Several specialized searches targeting eccentric
systems [168], large higher order mode contributions [43], or sub-solar mass
systems [169–173] have been carried out, none of which have found any new
signals. Most importantly to this thesis, machine learning search algorithms
are starting to be explored to reduce computational costs and widen the pa-
rameter space that can be searched [48, 55, 57, 61, 65]. A more detailed
discussion of these approaches is given in section 3.4 and chapters 4, 6, 7,
and 8.

3.2.1 Noisy Detector Data

At the time of writing, five laser interferometer GW detectors are operational.
These include the LIGO detectors [6] in Livingston (Louisiana, USA) and
Hanford (Washington, USA), the Virgo detector [7] in Cascina (Italy), the
KAGRA detector [8] in Kamioka (Gifu, Japan), and the GEO 600 detector [9,
174, 175] in Sarstedt (Germany).

The LIGO and Virgo detectors are already sensitive enough to regularly
detect GWs during operation [14]. KAGRA was only taken into service
recently and has not yet reached a level of sensitivity where detections are
likely [176]. It is expected to reach its sensitivity targets during the fourth
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observing run (O4) [8]. GEO 600 is unlikely to ever reach a sensitivity where
it can regularly detect GWs, due to the size of the detector. It is, therefore,
used as a testbed for new technologies that transition to the other detectors
once they have proven to yield improvements [177].

At their core all of these instruments are highly advanced Michelson in-
terferometers, which split a laser beam into two orthogonal beams. Each
beam travels along the arm of the interferometer until it is reflected back by
a mirror at the end of the arm. When the beams recombine at the beam-
splitter, they interfere and the output power depends on the difference of the
distance the light has traveled in both arms. Due to the short wavelengths
of light, this allows to measure very small changes in the differential arm
lengths [178].

As discussed in section 3.1, GWs cause a physical displacement of test
masses with respect to some reference point. In the GW detectors, the
mirrors at the end of the arms act as test masses and the beamsplitter as
the point of reference. Therefore, the Michelson interferometer is sensitive
to GWs. Under the assumption that the arm length L of the interferometer
is small compared to the wavelength of the GW, from equation (3.10) one
finds to first order that the change in arm length ∆L is given by

L+ ∆L = L

(
1 +

h+

2

)
, (3.42)

when only the + polarization is considered and the source is optimally lo-
cated. Therefore, in order to amplify the effect of a GW on the detector,
one can increase the arm length L. Another option to increase the measured
signal is to increase the power that circulates in the arms or install a Fabry-
Perot cavity [68]. For these reasons, the LIGO and Virgo detectors have arm
lengths of 4 km and 3 km, respectively, and circulate several hundred kW
of laser power in the Fabry-Perot cavities of their arms. KAGRA also has
an arm length of 3 km but is built underground and cryogenically cools its
mirrors. GEO 600 has an arm length of 600 m. Figure 3.3 shows a high level
overview of current detectors.

To obtain the length deviation, one can in principle use equation (3.10) as
discussed above. However, that equation is in a frame of reference in which
the effect of GWs on test masses can be easily described and where the x3

direction points from the source to the detector. The frame of reference of
the detector, on the other hand, defines the x- and y-axis as the arms of the
detector and the z-axis such that it is orthogonal to the x-y-plane pointing
away from the center of the earth. To translate the motion in one frame
to the motion in the other frame, one can use a transformation based on
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Figure 3.3: The figure shows a simplified diagram of the interferometric GW
detectors. The diagram is not to scale and only highlights the beam path.
Any operations for stabilization, mode cleaning, and so on are not shown.
The laser beam travels from the laser through the power recycling mirror
(PRM) to the beam splitter, where it is split into equal parts to the two
arms. In each arm, the beam passes an input test mass, which is a mirror,
travels 4 km, and is reflected at the end test mass. On its way back, a large
portion of the light is again reflected by the input test mass to increase the
light travel time in the arms. Together the two test masses essentially create
a large Fabry-Perot cavity. Once the light passes the input test mass, it
recombines and interferes with the light from the other arm. A photodiode
captures the beam at the output port (south) to produce the readout. The
part going back to the laser is reflected at the power recycling mirror to
increase the laser power in the interferometer. This figure was adapted from
Figure 1 in [6].
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Euler-rotations. Carrying out these calculations leads to [179]

h = F+(θ, ϕ)(cos (2ψ)h+ − sin (2ψ)h×)

+ F×(θ, ϕ)(sin (2ψ)h+ + cos (2ψ)h×), (3.43)

where θ, ϕ, and ψ are the Euler-angles known as declination, right ascension,
and polarization angle, respectively, and

F+(θ, ϕ) =
1

4
(3 + cos (2θ)) sin (2ϕ)

=
1

2

(
1 + cos2 (θ)

)
sin (2ϕ),

F×(θ, ϕ) = cos (θ) cos (2ϕ). (3.44)

In total, the GWs the detectors measure depend on 15 parameters for
BBH signals and 17 for BNS systems. An overview of these parameters is
given in Figure 3.5. They affect the measured signal in different ways:

m1,m2 The component masses of the two objects. Usually it is defined that
m1 ≥ m2. To leading order they are the only parameters that influence
the frequency evolution of the signal and they act mainly through the
mass combination known as the chirp mass. The larger the total mass
of the system, the lower the frequency at which the two objects merge.

~χ1, ~χ2 The three-dimensional spin vectors of the individual objects. They
often are only measured in a mass-weighted form known as the effective
spin χe [123] and the effective precession spin χp [180]. As long as the
spins are (anti-)aligned with the orbital angular momentum, they affect
the time scale at which the objects merge. The more aligned the spin,
the longer the time scale. If they are not aligned with the orbital
angular momentum they cause precession effects, that become visible
as a beating in the signal.

Λ1,Λ2 Tidal deformabilities of the two objects. They quantify the amount
of matter distortion due to the gravitational gradient in the close prox-
imity to a highly compact object. Subsequently they are 0 for BHs
and are only considered for BNS and NSBH mergers. The larger the
tidal deformability, the stiffer the NS, and the longer the duration of
the inspiral. However, the influence of matter effects are expected to
be very small and they have not been measured yet [14].

r The distance from the source to the detector. It is inversely proportional
to the amplitude of the waveform measured in the detector.
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θ,ϕ The declination θ and the right ascension ϕ in the reference frame of
the detector. They affect the amplitude of the measured signal through
(3.43) to the point where the detectors can be blind to specific polar-
izations from given locations in the sky. Figure 3.4a shows the average
influence of the sky position on the strength of the detected signal.

Ψ The polarization angle. It is the angle by which the frame of the GW
has to be rotated around the propagation axis to line up with the
frame of the detector. For a single detector it can be absorbed into a
redefinition of the two polarizations of the wave and cannot be resolved.
See Figure 3.5 for a visualization of this angle.

ι The inclination of the orbital plane of the source with respect to the line of
sight of the detector. It influences the radiated power and, therefore,
the amplitude of the signal. A plot of the power distribution is shown
in Figure 3.4b.

Φ0 The coalescence phase, i.e. the orbital position of the two objects at
merger. It introduces an overall phase-shift in the measured signal.

t0 The time of coalescence, which is often defined as the time at which the
merger signal arrives at the center of the earth. Controls the time at
which the system merges and time shifts the waveform in the detector
data.

Equation (3.43) describes the signal the detector would pick up in an ideal
environment. However, as we all know the world around us is not an ideal
environment, as it is noisy. To get a sense of scale at which noise sources
have to be considered, one can estimate the length change induced by a GW
on an interferometric detector with arms at a right angle and 4 km length.
Using (3.23) for a non-spinning, face-on system (ι = 0) at a distance r of
1 Gpc with masses similar to those of the first observed GW directly overhead
the detector yields a length deviation of ≈ 10−18 m. At these length scales
almost any noise source is non-negligible. The most important noise sources
are the following [6, 7, 148]:

Seismic noise Seismic noise consists of small vibrations of the earth, caused
by anything from passing cars to earthquakes. It is most notable at
small frequencies. Along with the gravity gradient noise (see below)
and control noise [182, 183] it is the main reason why earth bound
detectors are not sensitive to sub-Hertz GWs (compare Figure 3.6a).
To isolate the detector from most of the seismic noise, the mirrors are
suspended in a triple pendulum setup and vertically damped by springs.
A combination of active and passive isolation is deployed.
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Figure 3.4: (a) Sky location: The influence of the sky-position on the GW
intensity observed by the detector averaged over all source orientations. It is
known as the antenna power function and we observe that there are favorable
and unfavorable sky-locations for the detectors. This figure was inspired by
Figure 2 of [179]. (b) Inclination: The multiplicative factor of the radiated
power of a GW. The angle to the x-axis is the inclination of the system, the
distance to the origin gives the factor by which the radiated power from the
source intrinsic parameters has to be multiplied. This shows that face-on
systems (ι = π/2 or ι = 3π/2) are seen with the highest intensity, while
edge-on systems (ι = 0 or ι = π) are observed with the lowest intensity.
However, it also shows that there is no dead-spot and some power is radiated
in all directions. This figure was adapted from Figure 3.7 of [68]
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Figure 3.5: A diagram showing the parameters the measured signal of a
BBH merger depends on. The three differently colored planes indicate the
three different coordinate systems used in the calculation of the GW effect.
The white plane belongs to the source. It is aligned with the orbital plane.
The yellow frame shows the preferred frame of reference for a GW, where
its propagation direction is aligned with the x3-axis. The deformed ellipsoid
on the plane indicates the movement of a ring of test masses in this frame
(compare Figure 3.1). The green plane shows the frame of the detector, where
the x- and y-axes are aligned with the detector arms and z points away from
the center of the earth, which is depicted as the gray sphere. The angles
show the transformations that are associated with them. The distance r is
highlighted by the dashed gray line connecting the detector and the source.
Not shown are the time of coalescence t0 and the coalescence phase Φ0. ~L
shows the orbital angular momentum. The figure is not to scale and only
meant to show the meaning of the different parameters. It was inspired by
Figure 9.2 of [181].

34



3.2. DATA ANALYSIS FOR COMPACT BINARY COALESCENCE
SIGNALS

Thermal noise Thermal noise has many sources. Any part that has a fi-
nite temperature vibrates and adds noise into the system. The most
important sources are the Brownian motion of the mirror coatings and
the thermal noise in the suspension used to isolate the mirrors from
seismic noise. Additionally, due to the high laser-power required in the
detectors, the mirrors have a temperature gradient that adds additional
noise. The coating Brownian noise has a non-negligible impact in the
most sensitive regions of the detector (compare Figure 3.6a), while the
other thermal noise sources usually enter at low frequencies. To reduce
thermal noise, KAGRA operates at cryogenic temperatures [8].

Quantum noise Quantum noise has two origins. First, there is shot noise.
This is the noise in the measured output power, due to the discrete na-
ture of individual photons in the laser beam. Second, there is radiation
pressure noise. It is caused by the laser beam exerting a pressure on the
mirror. Due to the discrete nature of the photons, this pressure fluctu-
ates. Combined, quantum noise is the limiting factor for the sensitivity
in the most sensitive frequency range as well as at high frequencies.
To reduce shot noise, one can increase the laser-power. However, with
greater laser power, the radiation pressure noise increases and thermal
effects become more prominent. Another option to reduce shot noise
is the usage of squeezed light [184–186]. Squeezing can be used to shift
noise from phase to amplitude, thus reducing shot noise, or vice versa to
reduce radiation pressure noise by utilizing the Heisenberg uncertainty
principle [34].

Gravity gradient noise Gravity gradient noise is caused by seismic waves
that induce density fluctuations in the earth. These density fluctuations
causes the gravitational field to change over time and influence the
detector. Because these shifts in density are relatively slow processes,
this type of noise is large at low frequencies and is a limiting factor.
Since the gravitational field cannot be shielded, the only way to reduce
gravity gradient noise is to select locations for the detectors where
density fluctuations are small. One can also monitor the changes in
the gravitational field and subtract their influence afterward.

To characterize the strength of the noise, one can calculate the power
spectral density (PSD). The PSD gives the power present in the detector due
to noise as a function of the frequency. On a finite stretch of pure noise data
n(t) with duration T the one-sided PSD Sn(f) can be calculated as [68]

Sn(f) =
2

T
〈|ñ(f)|2〉, (3.45)
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(a) The noise budget of the advanced LIGO
detectors.

(b) Power spectrum mea-
sured during O3.

Figure 3.6: The theoretical noise budget of the detector (a) and the measured
amplitude spectrum (b) of advanced LIGO. The left figure shows the contri-
bution of the different noise sources to the overall noise of the detector. It
was taken from [6]. The right figure shows measured ASDs for the three main
detectors during O3. The curves are representative of the detector sensitivity
during the observational period and the figure was taken from [14].

where ñ(f) is the Fourier transform of n(t) and the average 〈·〉 is performed
over different realizations of the noise. Its frequency resolution ∆f is given
by 1/T and, by matching the units, one can infer that the PSD is given in
units of 1/Hz. In practice, the data is often chopped into many overlapping
shorter pieces, a window is applied to each piece to reduce the impact of
required periodicity of the Fourier transform, and the resulting PSDs are
averaged. This algorithm is known as Welch’s method [187].

Figure 3.6b shows an estimate of the amplitude spectral density (ASD)
during the third observing run (O3) for the three detectors that collected the
majority of the data. The ASD is the square root of the PSD. Comparing it
to the theoretical limit from Figure 3.6a one finds that the measured noise
contains high spikes at certain frequencies. Most of these originate from
known sources, such as the power grid frequency or violin modes of the
mirror suspensions [125]. However, due to their narrow frequency range the
effect on the detectability of GWs from CBC sources is marginal.

One noise characteristic that is not evident in the PSDs are short dura-
tion non-Gaussian noise transients known as glitches. They can mimic the
frequency evolution of real GW events and a lot of effort is being invested
to reject them [188–191]. These glitches are by no means rare with an aver-
age glitch rate of 0.29 min−1 to 1.17 min−1 [14]. The cause for some of these
glitches is known and can be traced back for instance to light scattering or
computer glitches; others have yet uncharacterized origins [190].
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Several upgrades and extensions to the current network of ground based
GW detectors are planned. To extend the network in the short term future,
it is planned to construct a third observatory of the advanced LIGO speci-
fications in India [192, 193]. It is scheduled to start operations around the
year 2024 [194]. The next major upgrades to the LIGO detectors are known
as “A+”. They are supposed to be incremental enhancements involving bet-
ter light squeezing technology, bigger test masses, and improved materials,
among other adjustments [45]. Beyond 2025 upgrades are still being planned
but may include substantially increased laser power, a change of the laser
frequency, and cryogenic operation [45]. One such proposal is named LIGO
Voyager. Currently two new ground based detectors are being considered
for constructions and are planned to become operational in the mid 2030s.
These are the Einstein Telescope (ET) in Europe [46] and Cosmic Explorer
(CE) in the United States [47]. ET is planned to be a triangular interfero-
metric detector built underground. Its special shape allows to eliminate any
signal from the data and be left with a pure noise channel. CE plans to use
an arm length of 40 km.

To eliminate the low frequency limitations of earth bound observatories,
two projects are developing space based detectors. The European Space
Agency (ESA), the National Aeronautics and Space Administration (NASA),
and the LISA Consortium are working on the Laser Interferometer Space An-
tenna (LISA) [81, 195, 196]. LISA will be a constellation of three satellites
on a heliocentric orbit following the earth. It will use time delay interfer-
ometry with an arm length of 2.5 Gm and is expected to detect GWs in the
sub-Hertz regime [81]. After a widely successful test of the technology known
as LISA Pathfinder [197–199], the LISA mission is now scheduled to launch
in 2034 [195]. A second proposed space based observatory is the TianQin
detector [200]. It, too, will consist of three satellites but its arm length is
reduced to 105 m and it will orbit the earth.

The final detection scheme I will briefly discuss are Pulsar Timing Arrays
(PTA)s [201, 202]. PTAs use the extreme timing accuracy of millisecond
pulsars to measure large scale deviations of their arrival times over long
periods. A GW in the nHz regime will cause these deviations to be correlated
and be recoverable. They potentially allow to detect for instance the GW
background or other low frequency GW sources. So far no signal consistent
with expected GWs has been recovered with high confidence [203, 204].

3.2.2 Matched Filtering

As discussed in the previous subsection 3.2.1, the output of the detectors is
contaminated with large amounts of noise. To achieve optimal sensitivity,
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sophisticated data analysis techniques have to be used. This subsection will
discuss a technique known as matched filtering, that uses a model of the
expected signal to maximize the amount of information that can be extracted
from the data.

The output of the detector is a time series d(t) that is the sum of the
noise n(t) and potentially an additive signal h(t)

d(t) = n(t) + h(t). (3.46)

In the following discussion we will assume that the noise n(t) is stationary and
Gaussian with zero mean. For real data this is only an approximation, as the
noise characteristics slowly drift over time and glitches are short duration,
non-Gaussian noise transients. However, the time scale of the noise drift
is slow compared to the usual duration that CBC signals are observable
for [205].

If one knows the signal that is hidden in the data, one can compare the
data to the signal. To do so, one can convolve the expected signal, which is
called the template, with the data

(h ∗ d)(t) =

∫ ∞
−∞

dτ h(τ)d(t− τ)

=

∫ ∞
−∞

dτ h(τ)h(t− τ) +

∫ ∞
−∞

dτ h(τ)n(t− τ). (3.47)

In this calculation, the first integral in the second line is positive definite when
the template and the signal are aligned correctly, i.e. when t = 0. Therefore,
equation (3.47) will yield larger values in the presence of the signal h than
in its absence. This is the core concept behind matched filtering.

Figure 3.7 shows a short time slice of data collected during LIGOs first
observing run (O1) and the ASD calculated from the detector data d on
a 32 s interval around the shown slice. The ASD shows that the detector
noise is dominated by low frequencies, which becomes evident by the slow
oscillations with large amplitudes in the left panel of Figure 3.7. However,
this also tells us that signals at low frequencies are much more likely to be
overshadowed by noise. Therefore, one can downweigh frequencies where the
detector is particularly noisy.

In practice this process is called whitening, as it attempts to scale the
power at each frequency to be 1. Noise which has a flat PSD is known as
white noise. This can be achieved by dividing the Fourier transformed data
d̃(f) by the ASD

d̂(t) =

∫
df

d̃(f)√
Sn(f)

ei2πft. (3.48)
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Figure 3.7: A small slice of raw detector data from the Gravitational Wave
Open Science Center (GWOSC) (left) and the corresponding ASD (right).
The ASD was calculated from 32 s around the shown data slice using Welch’s
method with a window duration of 1 s and a step size of 0.5 s between the
windows [149].

This operation in the time domain is a convolution of the data d with a

filter F−1
(

1/
√
Sn(f)

)
, where the function F−1 represents the inverse Fourier

transform. Due to high peaks in the ASD at some frequencies, the filter has
non-negligible power even at times far away from zero. Since the Fourier
transform assumes the data to be periodic, the long duration of the filter
correlates independent data points and corrupts the data. To avoid this
corruption the filter is truncated in the time domain to a finite duration, by
applying a window that tapers to zero. The corruption is, thereby, limited
to half the truncated duration of the filter in the beginning and end of the
whitened data. The corrupted parts of the data are subsequently cropped.
By truncating the whitening filter in the time domain, the sharp frequency
lines of the ASD are broadened which is usually not a problem for CBC signal
detection.

Figure 3.8 shows the same data as Figure 3.7 but with whitening applied
to it. The ASD is now almost flat and has a value of ≈ 1 at each frequency.
Looking closely, one can start to make out a waveform around 0.4 s from the
start of the data. Cropping to remove edge effects was applied outside of the
shown window.

Using the whitened data and an accordingly whitened template in (3.47)
maximizes the difference between the value obtained when filtering pure noise
and noise with the template added into it [68]. It is mathematically proven
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Figure 3.8: The data shown in Figure 3.7 whitened by the associated PSD
(left) and the ASD calculated on the whitened data (right). The entire 32 s
of data were whitened. Therefore, edge effects are clipped from the shown
data slice.

to be the optimal filter for stationary Gaussian noise [30]. Since the data and
template are transformed to the Fourier domain to whiten them and since
the convolution operation can be expressed by a multiplication in the Fourier
domain, the matched filter is given by [60, 68]

ρ(t) =
〈h|d〉√
〈h|h〉

, (3.49)

where

〈a|b〉(t) = 4Re

[∫ ∞
0

df
ã∗(f)b̃(f)

Sn(f)
ei2πft

]
. (3.50)

The factor
√
〈h|h〉 is used for normalization and the factor 4 comes from using

the one-sided PSD as well as taking the integral of the symmetric argument
from 0 instead of −∞. The function Re [·] extracts the real part of a complex
number. The function ρ(t) is the signal-to-noise ratio (SNR). When the SNR
exceeds a threshold, which is determined by search configurations, the search
has potentially identified the signal.

So far it was assumed that the signal in the data is known. In reality
this assumption does not hold, as we do not even know if a signal is present
and if one is present, what kind of system emitted it. However, matched
filtering is highly sensitive to the phase of the signal. This means that when
the phases of the template and the actual signal deviate by even a moderate
amount, the SNR drops significantly. For this reason, one usually constructs
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a template bank, that covers a specified region of possible parameters. It is
constructed by requiring that the match between two neighboring templates
does not fall below a given limit. The match is the inner product (3.50) of the
two signals, maximized over the phase and coalescence time, and normalized
by the norm induced by the inner product (3.50) of both templates. Usually
matches ≥ 0.95 are required [14, 206].

The data has to be filtered against every template in the bank. There-
fore, the computational cost scales linearly with the number of templates.
However, the number of templates scales exponentially with the number of
degrees of freedom in the system. For this reason, it is desirable to reduce the
dimensions of the parameter space as much as possible. To do so, searches
make a series of assumptions and optimizations. First, search template banks
are usually constructed using only the dominant 22-mode. This means that
equation (3.40) essentially reduces to

H = h+ + ih× = A(τ, r, ι,Φ0, κ)e−iΦ(τ,κ). (3.51)

Second, by using

h+ =
H +H∗

2
, h× =

H −H∗
2i

(3.52)

in (3.43) one finds that the measured strain in the detector is of the form [30]

h = Re

[
A(τ, κ)

Deff(r, θ, φ, ψ, ι)
exp (−i(2∆Φ(θ, φ, ψ, ι,Φ0) + 2Φ(τ, κ)))

]
. (3.53)

Deff is known as the effective distance and quotes the distance at which the
same source could be seen with the same amplitude, assuming an optimal
orientation and a location directly overhead the detector. An explicit expres-
sion for Deff can be found in [30]. κ represents all source internal parameters,
i.e. the masses, spins, and tidal deformabilities. From (3.53) we find that the
source location and orientation with respect to the detector introduce a time
independent phase shift and scale the amplitude. The amplitude scaling can
be combined with the distance r to form a single parameter; the effective dis-
tance. Observing a source in one location has the same amplitude evolution
as observing the same source at the optimal location and orientation, just
at a farther distance. The phase shift on the other hand can be combined
with the coalescence phase, to form a second effective parameter. So instead
of being concerned with the 4 parameters θ, φ, ψ, and ι, all of them can
be absorbed into the distance r and coalescence phase Φ0. The distance, on
the other hand, sets a normalized scale for the SNR and, therefore, does not
need to be included in the template bank [30]. The coalescence phase can
also be eliminated from the template bank, by maximizing the SNR over it.
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If the projection onto the real axis in (3.50) is removed, the SNR time series
becomes complex. An overall phase shift in the template rotates the SNR-
vector in the complex plane, but does not change its length. So by taking
the absolute value of the SNR time series, one maximizes its value over the
coalescence phase, irrespective of the phase value. This is equivalent to using
the total SNR by combining the SNR of filtering with the template h and its
phase shifted counterpart ih [30, 60, 207]

ρΦ0,max(t) =

√
〈h|d〉2 + 〈ih|d〉2

〈h|h〉 . (3.54)

Third, template banks usually assume non-precessing systems [14, 15].
This reduces the dimensionality of the parameter space even further, as the
original 6 spin parameters are reduced to a total of 2 values that need to
be covered. Finally, the inverse Fourier transform in (3.50) is equivalent to
doing a convolution of the data with a template. So it efficiently changes
the coalescence time t0 of the template and produces the SNR value for all
possible values. All these optimizations lead to a four dimensional space that
needs to be covered by the template bank; m1, m2, χ3

1, χ3
2.

Current standard searches are limited to systems with aligned spin and a
mass range from ≈ 1 M� to ≈ 500 M�, depending on the implementation [14,
206]. Lower masses require denser template banks, as the systems are within
the sensitive band of the detectors for a larger number of cycles. This allows
small phase errors to accumulate to the point where match requirements
are exceeded [208]. The high-mass region is rather limited by the short
duration, which makes it difficult to distinguish astrophysical signals from
glitches [209].

Although using matched filtering alone is sufficient to detect GWs, it is
often stated that the first detected GW is visible in the data with the naked
eye. While one can barely make something out in Figure 3.8, we can make
use of the fact that we know the frequencies of the signal. Figure 3.9 shows
the data after whitening and applying an additional bandpass filter for the
range 20 Hz to 256 Hz. The signal is now clearly visible in the time domain
data.

Since matched filtering is mathematically proven to be the optimal de-
scriminator between pure noise and noise plus signal [30], it is used as a
target for the deep learning detection algorithms discussed in this thesis.

This section discussed detection algorithms based on matched filtering.
Due to heavy optimization, these algorithms are not designed to make state-
ments about many of the interesting parameters of the source. The task of
extracting all parameters that influence the waveform from the data is called

42



3.2. DATA ANALYSIS FOR COMPACT BINARY COALESCENCE
SIGNALS

0.0 0.2 0.4
Time [s]

−100

0

100

S
tr

ai
n

[1
]

Bandpassed whitened strain

101 102 103

Frequency [Hz]

10−5

10−3

10−1

A
m

pl
it

ud
e

sp
ec

tr
al

de
ns

it
y

[1
/√

H
z] Amplitude spectral density

Figure 3.9: The whitened data from Figure 3.8 with a highpass filter of
20 Hz and a lowpass filter of 256 Hz applied (left). The corresponding ASD
is shown on the right. The signal is now clearly visible. The data for all of
these figures is the Hanford data around GW150914 [13].

parameter estimation. These algorithms explore the likelihood surface and
allow to give estimates of the parameters of the source and quantify them
with error bars. Since the likelihood usually has to be estimated for millions
of points, these algorithms are computationally very expensive and can take
days or even weeks to converge. For a deeper explanation see for instance
[117, 125, 210].

3.2.3 Search Algorithm and Significance of Detections

The matched filter of the previous subsection produces a SNR time series
for every template. These are numerical values where larger values usually
imply a greater certainty that a GW is present in the data. Values of this
kind are known as ranking statistic. The question a detection pipeline has
to answer is: What value of the ranking statistic is required for us to be
confident that we have detected a GW? This subsection will go into how this
question is answered. I will follow the order of steps used by the PyCBC
offline analysis [60] but note that other modeled pipelines conceptually work
the same way and only differ in details [59, 161].

The first step a search pipeline has to perform is to select the data that
should be analyzed. The noise characteristics of the detectors change over
time [125]. During some periods, the data quality drops to a level where
analysis would lead to excessive rates of false positive detections. For this
reason, these parts of the data are identified by high-level quality checks [211]
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and excised from the analysis data. Easily identifiable loud glitches are also
cropped from the data [211]. The overall shape of the stationary component
of the noise is estimated by calculating the average PSD for each detector
and an appropriate template bank is constructed [60].

Afterward, the data from all detectors are filtered against the template
bank to produce SNR time series. From there, candidate events are identified
by applying a simple threshold to the SNR time series. The resulting points
are subsequently clustered for each template, as especially loud signals usu-
ally exceed the threshold for multiple samples. The cluster window duration
is a free parameter, which has to be small compared to the expected time
between signals and subsequent glitches.

If the noise in the detector were stationary and purely Gaussian, one could
take the SNR values of the candidate events as a ranking statistic. However,
as discussed in subsection 3.2.1 the noise is frequently contaminated with
glitches. Those that have not been removed from the data can lead to large
SNR values, even when the underlying process that produced the transient
has little to no resemblance to the signal one is searching for. Therefore,
the SNR is usually augmented with additional statistics to form the ranking
statistic. The goal of these additional statistics is to reduce the value of the
ranking statistic for glitches, i.e. down weighting their influence.

The most common adaptation is to to check the data for consistency with
the template. PyCBC and MBTA use a χ2-test that checks if the evolution
of the potential signal matches the expected signal evolution in different
time- and frequency-bands [60, 161, 189]. GstLAL uses a ξ2-test that checks
the evolution of the SNR time series against the expected evolution [59].
More recently, efforts were made to include the short term fluctuations of
the PSD into the ranking statistic [150, 212]. This reduces the impact of a
less stationary detector on the trigger rate.

Once the triggers and their corresponding ranking statistics have been
determined for each detector individually, they are checked for coincidences
between multiple observatories. A signal from an astrophysical source has
to be present in all detectors and arrival times may not differ by more than
the time of flight difference between the detectors. Additionally, coincident
triggers must be generated from the same template and the amplitude and
phase evolution must be consistent with the time delay between the detec-
tors [163]. These criteria already eliminate many false detections caused by
glitches or other noise processes. For surviving triggers, the single detector
ranking statistics are combined into a coincident ranking statistic. In recent
works the coincident ranking statistic was further altered by incorporating
information on the expected noise and signal trigger rates for different source
parameters [163].
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As a final step, the search algorithm has to relate the numerical value
of the coincident ranking statistic to a measure of how confident we are to
have detected a GW. In other words, the analysis must check how often a
false detection is made at a given ranking statistic value. The number of false
positive detections per unit time is known as the false-alarm rate (FAR). It is
estimated by analyzing constructed background data. The background data
is constructed by time shifting the single detector triggers of one detector by a
duration longer than the time of flight difference between the detectors. This
way, any coincident trigger cannot be of astrophysical origin. By applying
multiple different time shifts, the theoretical amount of data which can only
contain false positives can be extended to millions of years [60]. To determine
the FAR at a ranking statistic, the number of false positives with a coincident
ranking statistic larger than the threshold are counted and divided by the
theoretical duration of the analyzed data:

Fρ =
Nρ

T
. (3.55)

Here Fρ is the FAR for the coincident ranking statistic ρ, Nρ is the number
of false positives in the background with a ranking statistic ≥ ρ, and T is
the duration of the analyzed background.

This thesis is mainly concerned with the comparison of machine learn-
ing based search algorithms against matched-filter based searches. For this
comparison, one can analyze a simulated population of sources with both
algorithms and study how many signals are recovered by either search. How-
ever, for a fair comparison we want to assess the sensitivities at the same
useful astrophysical FAR. Furthermore, to allow for an objective comparison
between different works, the sensitivity must be normalized to the popula-
tion. In the extreme case, the number of detected sources can always be
driven to zero by choosing a population of signals injected into the noise
where all sources are excessively far away. For these reasons, all works dis-
cussed in this thesis estimate the sensitive distance of the search for sensible
populations. I will briefly introduce it here.

Let Φ(~x, λ) be the probability distribution that describes the injected
population, where ~x is the location in space and λ are the remaining source
parameters. Let, further, ε(~x, λ;F) be the fraction of injections being re-
covered by the search with parameters ~x and λ with FAR ≤ F . Then the
expectation value of the volume from which sources are detected is given
by [60]

〈V (F)〉 =

∫
d3x dλ

d3V (~x)

dx3 Φ(~x, λ)ε(~x, λ;F), (3.56)
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where d3V (~x)

dx3
is the differential volume element. This volume is usually mea-

sured empirically, by applying the search to data with many known injec-
tions drawn from the distribution Φ. The integral can then be estimated
by Monte-Carlo integration. If the prior is uniform in volume, the sensitive
volume is proportional to counting the recovered injections. This counting
statistic then needs to be normalized to the prior volume and the number of
injections. If the prior volume is a sphere with radius rmax where injections
are distributed uniformly in volume, the Monte-Carlo approximation of the
sensitive volume is given by [60]

〈V (F)〉 ≈ V (rmax)
NI,F

NI

, (3.57)

where NI,F is the number of injections recovered from the data with FAR
≤ F , NI is the total number of injections in the data, and V (rmax) is the
volume of a sphere with radius rmax. When a different distribution is used to
sample the injections, the formula has to be reweighted or the integral has to
be computed. The sensitive distance is defined as the radius of a sphere with
volume 〈V (F)〉. As such, it is the average distance from which the search
can detect sources and not an upper limit.

3.3 Deep Learning

Artificial Intelligence (AI), Machine Learning (ML), and deep learning are
terms often used interchangeably and to describe a wide range of topics. The
beginning of this section tries to clarify the meaning of these terms in the
context of this work before discussing the topic of deep learning in more
detail.

AI is the broadest of the three topics and encompasses the others [213].
While it lacks an agreed-upon definition, the term broadly describes the re-
search dedicated to creating machines that enact some form of intelligence
[214]. However, this only shifts the burden of definition to the term “in-
telligence”. In his excellent book on the history of AI Nilsson describes
intelligence as the “quality that enables an entity to function appropriately
and with foresight in its environment” [214]. Taking these definitions as a
basis, AI research tries to create algorithms or machines that make decisions
based on their environment to maximize their chance of success to achieve
some goal.

ML is part of the research field on AI and aims to create algorithms
that extract general features from example data. These learned features are
then to be used to make predictions about samples that were not part of
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the example data. It specifically requires algorithms to improve based on
past experiences [213]. Usually, a general purpose framework is adapted to
specific problems only through a prior training phase, where the algorithm is
exposed to example data. This means that the learning algorithm does not
have to be changed to adapt to different data.

An example for a class of AI algorithms that do not fall under the category
of ML algorithms are knowledge based approaches. These try to encode
knowledge in a formal language and infer decisions by querying the resulting
database. [213]. The Cyc project is one of the most well known approaches to
a knowledge based AI and makes use of the CycL language [215]. However,
creating a database that is both suitably large and complex is very labor
intensive and often more fragile than utilizing ML algorithms. For these
reasons ML is currently the most widespread approach to AI.

Deep learning refers to ML algorithms which utilize a specific kind of
framework; deep neural networks (NNs). While the concept of NNs will
be introduced in detail below, in short they are directed graphs that apply
simple functions at every node, where the weights of the edges are optimized
during the training phase based on the example data. These graphs can be
structured into layers and a NN is called deep, when the network is composed
of many subsequent layers [213].

Besides deep learning, there are many other kinds of ML algorithms.
Some examples include random forests [216], support vector machines (SVMs)
[217], and Gaussian process regression. Even simple regression algorithms,
like linear regression, can be seen as a kind of ML algorithms [218]. For a
short overview of these different types see for instance chapter 1 and for a
more detailed discussion chapters 5 to 7 of [218].

All ML algorithms can broadly be classified into three categories based
on the training mechanism, where training is the process of improving the al-
gorithm based on example data. These three classes are supervised learning,
unsupervised learning, and reinforcement learning [213, 219]. In supervised
learning tasks the desired output y – often called label or target – for example
data x is known [218] and the algorithm tries to approximate the conditional
probability distribution p(y | x) [213]. Regression algorithms are a good ex-
ample for supervised learning. In unsupervised learning only the example
data x is known and the ML algorithm is tasked with finding the underlying
probability distribution p(x) [213]. Many clustering algorithms are a prime
example for unsupervised learning. Reinforcement learning is completely de-
tached from the previous two classes. Here the algorithm observes the state
of its environment and has to decide on an action it wants to take. It is then
rewarded or penalized based on the action it has chosen [218, 220]. The al-
gorithm learns by trial and error, without human intervention. This kind of
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learning is especially popular in the field of robotics and computer games [51,
213, 221–223]. The above mentioned classifications of algorithms are by no
means rigid. A single algorithm may also be trained by a combination of the
above mentioned strategies. There are also other means of classifying ML
algorithms into different categories [218].

Today ML algorithms are used anywhere from recommendation systems
in the entertainment industry [224] to advanced medical diagnostics [225].
Especially NNs have gained a lot of traction in recent years and improved
state-of-the-art performance for ML algorithms for a wide variety of tasks
such as image recognition [49, 226, 227], autonomous driving [222], playing
board- [228] and computer-games [51], speech recognition [229], or audio
synthesis [230]. ML algorithms have also been applied in many scientific
fields [231], some of which are the prediction of protein structure used in
pharmaceutical studies [232, 233], improvements to material composition and
synthesis [234], and event reconstruction at the Large Hadron Collider [235].
Machine learning has also been explored as an option for many tasks in GW
data analysis and GW astronomy and an overview is given in section 3.4.

This work considers only neural networks as a means of machine learning.
For this reason the basic concepts as well as a few advanced techniques will
be briefly introduced in the following subsections. For a more thorough
introduction I recommend [213] for a deep dive into the topic, [218] for a more
applied approach, and [236] for a quick and easy to understand overview.

3.3.1 Neural Networks

The start of the research on neural networks based on the theory of computa-
tion and mathematics can be traced back to a study conducted by McCulloch
and Pitts in 1943 [237]. They tried to come up with a model description of the
human brain, where they modeled neurons by utilizing propositional logic.
By making the simplifying assumptions that neurons have an arbitrary num-
ber of binary inputs, a single binary output that is one (i.e. “fires”) only
if a pre-defined number of inputs is active, and that individual inputs may
prevent any output, they were able to build all logic gates and combine them
to do complex computations [238]. While the original work exclusively used
propositional logic, their idea of the neuron can suggestively be expressed by
the functional form

n : {0, 1}m × {−1, 1}m × Z→ {0, 1} ; (~x, ~w, b) 7→ H(~x · ~w + b), (3.58)

where ~x are the inputs to the neuron, ~w are known as the weights, b is
known as the bias, ans H is the Heaviside function. See Figure 3.10 for a
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z = ~w · ~x+ b

x1

x0

x2

H(z)

w0

w1

w2

Figure 3.10: Depiction of the neuron defined in (3.58). The inputs x0, x1, x2

are either 0 or 1. The weights w0, w1, w2 are either −1 or 1. The bias b is a
whole number. H is the Heaviside function.

depiction. This definition of the neuron is not equivalent to the idea proposed
by McCulloch and Pitts but conveys the central findings of their study and
leads to a more coherent picture of subsequent developments.

To form basic logic gates, values for the parameters ~w and b have to be
chosen. The ”and”-operation A ∧ B is obtained by setting ~w = (1, 1)T , b =
−1, whereas the ”not”-operation ¬A can be represented by w = −1, b = 1.
These simple gates can then be connected to form complex computational
graphs and compute any computable function. However, notice that the
parameters of these networks have to be hand-picked.

In 1957 Rosenblatt introduced the Perceptron [239]. Instead of restricting
individual neurons to have binary inputs and discrete weights, he allowed all
arguments to be real numbers

n : Rm × Rm × R→ {0, 1} ; (~x, ~w, b) 7→ H(~w · ~x+ b). (3.59)

More importantly, however, he proposed an algorithm based on the Hebbian
principal that allowed the parameters of the network to be optimized from
example data. The Hebbian principal states that directly connected neurons
that often fire together form stronger bonds; ”Neurons that fire together, wire
together.” [218] The Perceptron is a collection of these neurons, where every
neuron is connected to all inputs. The number of binary outputs, therefore,
is equivalent to the number of neurons in the Perceptron. The left panel of
Figure 3.11 shows an example of a perceptron.

During training the output of the Perceptron is compared to the target
value. If the predicted output of any neuron does not match the target value,
the weights connected to the inputs that would have pushed the output to
its correct state are increased [218]. The actual change applied to the weight
connecting input i with output neuron j is given by

dwij = η(yj − ŷj)xi. (3.60)

Here yj is the j-th target output, ŷj is the corresponding predicted output, xi
is the i-th input, and η is a special parameter called the learning rate [218].
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x0

x1

(a) (b)
x0

x1

Figure 3.11: An example of a perceptron (a) and a MLP (b). The arrows
indicate connections between the input vector ~x = (x0, x1)T and the individ-
ual neurons, where each connection is assign a weight. The step inside each
neuron represent the Heaviside function that is applied to the weighted sum
of the inputs.

Notice that in a Perceptron the neurons are only connected to the inputs and
not other neurons.

Although the Perceptron had great success at the time, it was quickly
shown that the design had its limitations. One of the greatest criticisms
was the inability to represent the XOR-gate, i.e. there exists no Perceptron
such that n((0, 0), ~w, b) = 0, n((0, 1), ~w, b) = 1, n((1, 0), ~w, b) = 1, and
n((1, 1), ~w, b) = 0 [213]. To resolve this issue, the outputs of a first set
of neurons have to be used as input to a subsequent neuron. Connecting
multiple neurons in succession was hence called a multi-layer Perceptron
(MLP) and the name is still sometimes used today to refer to deep NNs.
Panel (b) of Figure 3.11 shows a simple MLP that can represent an XOR-
gate, when the weights and biases are chosen correctly.

The MLP demonstrates that a greater depth of the network, i.e. a greater
number of neurons between the input and output, can allow the network to
represent more complex functions than an individual neuron is capable of.
This behavior should not surprise given the early work of McCulloch and
Pitts [237], as modern computers fundamentally are a complex network of
simple logic gates. The concept of greater depth leading to the ability to
represent more complex concepts is also true for modern NNs [240], hence
the term ”deep learning”.

The problem with deeper networks is the training process. The original
algorithm proposed by Rosenblatt becomes ineffective and the weights and
biases for deeper networks could not be set efficiently. A solution to the
problem was only found in 1986 [218], when Rumelhart, Hinton, and Williams
introduced the backpropagation algorithm [241]. I will discuss this algorithm
in more detail in subsection 3.3.2, but in short it is an extension of the
updating procedure given in equation (3.60) that utilizes the chain-rule to
efficiently calculate derivatives with respect to all weights and biases. The
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Figure 3.12: A selection of different commonly used activation functions on
the left and their derivatives on the right.

resulting gradient can then be used to update all parameters of the network.
The use of the backpropagation algorithm required to switch out the

Heaviside function previously used in neurons to a function that has a non-
zero derivative. Otherwise the gradient would vanish everywhere and no
weight update could be applied. Today this function is called the activation
function

a : R→ R; z 7→ a(z). (3.61)

Furthermore, if the resulting NN is supposed to be able to represent non-
linear functions, the activation function has to be non-linear as well. The
original paper [241] used the sigmoid function

σ(z) =
1

1 + e−z
. (3.62)

Today popular choices for the activation function include the hyperbolic tan
function, the Exponential Linear Unit (ELU) [242], and the Rectified Linear
Unit (ReLU) [243, 244]. See Figure 3.12 for an overview of these different
activations and their derivatives.

With this, today’s definition of a neuron is given by

n : Rm × Rm × R→ R; (~x, ~w, b) 7→ a(~w · ~x+ b). (3.63)

A diagram of a modern neuron is shown in Figure 3.13. In general a NN
consists of arbitrary connections of these kinds of neurons, that allow for the
representation of more complex functions.

However, when defining a NN it is often convenient to take a more struc-
tured approach. The individual neurons can be combined into layers. Each
neuron in the layer is then required to have the same inputs and the same
activation function. As such a layer of neurons is a function

L : Rm × Rl×m × Rl → Rl;
(
~x,W,~b

)
7→ a

(
W · ~x+~b

)
, (3.64)
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z = ~w · ~x+ b
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Figure 3.13: Depiction of a single neuron. It takes a three dimensional input
~x = (x0, x1, x2)T and has four parameters; the weights ~w = (w0, w1, w2)T and
the bias b. Its output is the activation a applied to z = ~w · ~x+ b.

where W is the weight-matrix, consisting of the weights of each neuron
stacked in the rows, and ~b summarizing the biases of the different neurons.
The activation function a is understood to operate component-wise on its
argument.

To form a NN, these layers can then be connected. In its most simple
form, a NN is a set of nested layers:

N (~x, θ) = Ln(Ln−1(. . .L1(~x, θ1), . . . θn−1), θn). (3.65)

The values θi =
(
Wi,~bi

)
are collectively called the parameters of the layer

and θ = (θ1, . . . , θn) are the parameters of the network.
Equation (3.65) defines a feed forward neural network. Information flows

only in one direction, from the input x, through the intermediate layers
L1,L2, · · · ,Ln−1, to the output Ln. No feedback connections are allowed and
the resulting graph is acyclic [213]. When the graph does contain cycles, the
resulting network is known as a recurrent neural network (RNN) [245, 246].
These have traditionally had many applications in different kinds of natural
language processing (NLP) [247] and are viewed as resembling biological
brains more closely. They were even considered as a central idea in the
original works by McCulloch and Pitts [237, 238]. However, feed forward
NNs tend to be easier to optimize than RNNs and variants of feed forward
NNs have started to perform better than state-of-the-art RNNs [248, 249].
For these reasons my works have exclusively considered feed forward NNs.
I point the interested reader to chapter 10 of [213] and chapters 15 and 16
of [218] for more detail. When talking about NNs from here on out I will
exclusively refer to feed forward NNs unless otherwise stated.

A NN can generally be structured into three parts, as illustrated in Fig-
ure 3.14. The first part is the input layer that passes its inputs unchanged.
It has not been stated explicitly in the discussion above and is represented
by the input vector ~x in equation (3.65). Its shape is, therefore, dictated by
the example data. The final layer Ln is the output layer and its shape is
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Figure 3.14: A fully connected NN with two hidden layers of equal size
(green). It has an input layer with three neurons (blue) that accepts the
input-vector ~x = (x1, x2, x3)T . Its output layer has a single neuron (red) and
outputs o1.

determined by the desired output of the network. All intermediate layers L1

to Ln−1 in equation (3.65) are called hidden layers. The name stems from
the fact that the use of these layers is not dictated by the data but fully
determined by the learning algorithm [213]. The state is basically hidden to
the outside observer, i.e. one can generally not determine the structure of
the NN just from considering outputs on example data.

The statement that the design of the hidden layers cannot be obtained
from example evaluations of the network follows directly from the universal
approximation theorem. The theorem states that a feed forward NN with
a linear output layer and at least one hidden layer of sufficient size with a
non-linear activation function3 can approximate any finite dimensional Borel
measurable function to arbitrary precision [213, 250, 251]. In practical terms
this means that one can always find a NN N (~x, θ) with appropriate parame-
ters θ that can approximate a function f(~x). Since only a single hidden layer

is required, this also means that any NN N̂ (~x, θ̂) can be approximated by a
NN N (~x, θ) with just a single hidden layer.

3The activation function has to also be “squashing”. The common sigmoid activation
for example fulfills all required conditions for the universal approximation theorem [213].
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One caveat of the universal approximation theorem is the size of the hid-
den layer. It is generally not possible to know how large it has to be to
approximate any function and greater depth usually leads to better perfor-
mance. Furthermore, while it is true that effectively most functions can be
approximated by some NN, there is no NN that is the best for all tasks. This
statement can be made even sharper: All ML algorithms perform equally
well when their performance over all possible data generating distributions is
averaged [213]. It is known as the no free lunch theorem and was proven by
Wolpert in 1996 [252]. However, it does not state that a particular algorithm
cannot outperform others for any particular task. It simply means that it is
impossible to design an algorithm that is optimal for all tasks.

To conclude this subsection I want to point out that equations (3.63),
(3.64), and (3.65) have only considered vector-valued inputs and functions.
This is not required but simplifies notation. In subsection 3.3.3 layers with
different inputs and outputs will be introduced.

3.3.2 Training Neural Networks

The task of training a NN N is to use example data in order to find a set
of parameters θ such that N (·, θ) suitably approximates a target function f .
This simple statement already entails the three critical components that are
required for training. First we need data sampled from the input domain of
f . If the algorithm is supposed to be trained in a supervised manner, the
corresponding outputs f(~x) are also required. Second, we need to quantify
what it means for N to be a good approximation to f , i.e. we require
a performance measure or error-function. Finally, we require a procedure
to find parameters θ that minimize the error between N and f [213]. This
subsection will discuss these three aspects and will also touch on a few pitfalls
that one may encounter.

The data used to train the NN is called the training set. It is a collection
of discrete examples which are used to optimize the parameters θ. As my
work has focused solely on supervised learning tasks, for the remainder of
this section I will assume that these examples contain both the input as well
as the label. While a lot of what is said in this section remains true also for
unsupervised learning algorithms, I refer the reader to [213] for more detail.

While the training set is used to optimize the parameters of the NN,
we are only indirectly interested in its performance on this set. If we cared
only about the predictions of the network on the training set we could simply
create a lookup-table of the examples and would obtain optimal performance.
Instead of remembering only the training set, we want the NN to learn the
underlying function f . To measure how good this approximation is, we
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have to measure the performance of the NN on a second set that is sampled
independently from the training set. This second set is called the test set
and the error obtained on it is known as the generalization error or simply
test error [213].

To be able to make statistical statements based on mathematical proofs
about the ability to generalize learned features from the training set to the
test set, the test set should be sampled not only independently from the
training set but also be distributed identically to the training set. Collec-
tively these conditions are called the i.i.d conditions. In practice it is most
important that the test set is as close to the real application scenario as pos-
sible. In my work the training set often consists of discrete samples, while
the test set is a continuous time series. This means that both sets are funda-
mentally not distributed identically. However, both sets are generated with
very similar assumptions and thus it is plausible that the NN will be able to
generalize. In fact a core result of our studies is that we are able to optimize
our NNs on the discrete training sets and obtain low, but marginally larger,
generalization errors on the continuous test sets.

In order to measure the generalization error a performance measure is
required. This performance measure is problem specific but may not always
be computationally efficient to calculate or even tractable. Furthermore,
for the optimization algorithms that will be discussed below it is vital that
the error function is differentiable. Therefore, instead of optimizing the true
performance measure one often optimizes a substitute error function instead,
in the hope that the two are correlated [213]. This error function in deep
learning is known as the loss or cost-function and the name comes from the
fact that it penalizes errors. If instead it rewards good performance, it is
called the fitness function [218]. In deep learning the use of a loss function
is more prominent. Mathematically, the loss is a function

L : Rm × Rm → R; (y, ŷ) 7→ L(y, ŷ), (3.66)

where y is the label and ŷ is the predicted output of the network. The
lower the loss-values the closer the network is supposed to approximate the
function. When the loss is calculated for the entire training or test set it is
averaged over all examples.

For certain purposes the loss may also depend directly on other variables,
most notably the parameters of the network. We ignore this case here as it
is not relevant to my work, but note that including the parameters can force
certain behavior of the network. For example, one can push the weights of the
network to be numerically small, which can have desirable properties [213].

While the loss can in general be freely chosen to suite the task that should
be solved, it is often at least partially inspired by a maximum likelihood prin-
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ciple. For instance, if we assume the labels y of the input data x to be drawn
from a normal distribution, it is sensible to train the network to estimate
the mean of that distribution. Assuming further that the variance σ2 of the
underlying distribution y = f(x) is fixed, the network that approximates the
data generating process best will be the one that maximizes the likelihood

M∑
i=1

log [p(yi | xi, θ)] =
M∑
i=1

log
[
N
(
yi, ŷi, σ

2
)]

= −M log [σ]− M

2
log [2π]− 1

2σ2

M∑
i=1

||ŷi − yi||2, (3.67)

where ŷi = N (xi, θ), N(yi, ŷi, σ
2) is the normal distribution with mean ŷi

and variance σ2 evaluated at the point yi, and (xi, yi) are the examples from
the training set. Maximizing equation (3.67) by tuning only the parameters
θ is equivalent to minimizing

MSE =
1

M

M∑
i=1

||ŷi − yi||2, (3.68)

which is known as the mean squared error (MSE) [213]. This function is
commonly used as a loss in regression tasks and I have utilized it in many of
my works.

Another common task in machine learning is binary classification. Defin-
ing a loss function inspired by a maximum likelihood principle in that case
is not trivial, as the conditional probability, too, is binary and as such is
not continuous. In this case one often uses a sigmoid activation function
(see equation (3.62)) on the output layer of the network and interprets the
output as a probability. In this case the negative log-likelihood divided by
M is given by [213]

Binary Cross-Entropy = − 1

M

M∑
i=1

(yi log [ŷi] + (1− yi) log [1− ŷi]), (3.69)

which is known as the cross-entropy loss function or binary cross-entropy
loss function [218]. In case the output layer has n neurons and the labels are
one-hot encoded, the loss can be generalized to the categorical cross-entropy

Categorical Cross-Entropy = − 1

M

M∑
i=1

n∑
j=1

yi,j log [ŷi,j] . (3.70)
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A one-hot encoded vector has a single entry with the value of 1, whereas the
remaining entries are 0. Alongside the MSE, the categorical cross-entropy
was the most used loss function in my works.

The third component required to train a NN is an optimizer that adjusts
the parameters θ. The goal of the optimizer is to minimize the loss on the
training set. NNs as introduced in subsection 3.3.1 are generally highly com-
plex, non-linear functions that require non-convex optimization. Therefore,
it is usually not possible to analytically find the optimal parameters for the
network. However, if we consider a fixed example or set of examples from the
training set, the loss indirectly becomes a function that depends only on the
parameters of the network θ. Minima of that function are extremal points
and have a vanishing gradient. Furthermore, the gradient points in the di-
rection of larger values and so one lowers the loss by taking a sufficiently
small step in the opposite direction of the gradient (see Figure 3.15). This
concept is known as gradient descent and its usage requires the existence of
a derivative of the loss function [213]. With

J(θ) =
1

M

M∑
i=1

L(yi, ŷi = N (xi, θ)) (3.71)

the parameters of the network are updated as [213]

θ → θ − η∇θJ(θ), (3.72)

where η is the learning rate that controls how far the parameters are moved
along the error surface of the loss function in the opposite direction of the
gradient. Small values of η lead to very accurate optimization but potentially
require many steps to reach an optimal value. Large values on the other hand
lead to quick improvements but risks overshooting minima [213]. Therefore,
the learning rate usually has to be adjusted by trial and error to be as large
as possible while still reaching low values of the loss.

The gradient in equation (3.72) is calculated on the entire training set.
To take multiple steps, the calculations have to be repeated on the entire
training set. One such pass on the training set is called an epoch. Since
the entire training set has to be used to calculate a single step, gradient
descent scales linearly with the size of that set. As it can be shown that
the generalization error falls when the size of the training set increases, NNs
are usually trained on very large sets [213]. This can make the use of full
gradient descent computationally prohibitive.

A cheaper alternative to gradient descent is stochastic gradient descent
(SGD). Instead of using the entire training set, a random subset, known as a
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Figure 3.15: Visualization of the gradient of a cost function for a two di-
mensional parameter space. The height on the vertical axis and the color
represent the value of the cost function. The gradient is evaluated at the
location of the red dot and is represented by the red arrow. It points in the
direction of the largest positive incline. Moving a small step in the oposite
direction will reduce the value of the cost function, which is the idea behind
gradient descent.

mini-batch, is selected. The gradient is subsequently approximated using only
the examples from the mini-batch. This procedure has multiple advantages.
First, it reduces the computational cost of a single update to the network
parameters and forces it to be constant with regards to the size of the training
set. Updating the network more often with an approximation of the gradient
has proven to reduce wall-clock training time significantly [213]. Second,
the error between the approximate version and the full gradient scales as
1/
√
n, where n is the size of the mini-batch [213]. It, therefore, scales slower

than the cost of calculating the gradient and one can balance computational
efficiency against the quality of the gradient approximation. Third, using a
random subset reduces redundant calculations. In the extreme case, where
all examples in the training set are the same, calculating the gradient on the
entire training set is equivalent to calculating it on a single example. In a
realistic case many examples from the training set may have similar effects on
the gradient and applying the update to the parameters earlier leads to faster
convergence [213]. Finally, the stochastic nature introduces randomness into
the parameter update steps taken. This may be beneficial when the algorithm
finds a local minimum of the loss function, which gradient descent would be
unable to get out of. However, this randomness also prevents the algorithm
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to settle into true minima. In practice, this is a minor issue when mini-batch
sizes are not too small and the advantages outweigh the drawbacks [218]. A
more sophisticated version of SGD known as “Adam” will be discussed at the
end of this subsection as it was the optimizer I primarily used in my works.

SGD is not mathematically guaranteed to arrive even at a local minimum,
but practical application have shown that it is capable of reaching sufficiently
small values in most cases [213]. To improve optimization further, the whole
training set can be shuffled and used for another iteration of SGD. Since the
entire training set is reused in this case, one full pass on it is also called an
epoch.

While SGD describes how to change the network parameters once the
gradient is known, it does not provide means to obtain it. This step was the
major roadblock for deep learning which was resolved with the introduction
of the backpropagation algorithm, or simply backprop, by Rumelhart, Hinton,
and Williams in 1986 [241]. At its core, backprop is a simple application of the
chain rule of derivatives. However, it also utilizes the structured nature of the
NNs to save redundant calculations and thus enables an efficient computation
of the gradient. Due to its importance to the field of deep learning, I will
introduce the algorithm in the following paragraphs in a bit more detail.

The goal of backpropagation is to efficiently calculate ∇θJ(θ). For sim-
plicity we assume J to be of the form introduced in (3.71), i.e. the loss
function depends on the parameters θ only through the network. In this case
we can focus on calculating the gradient of the per-example loss L(yi, ŷi).
For simplicity we, furthermore, assume that the output of the network ŷ is
a vector. If it is not, we apply a reshaping operation that orders the outputs
to be of vector form. For readability we also drop the example index i and
understand that the following calculations are done for a single example. By
the chain rule we then find [213]

(∇θL(y, ŷ))i =
∂ŷj

∂θi

∂L(y, ŷ)

∂ŷj
= (∇θŷ · ∇ŷL(y, ŷ))i, (3.73)

which uses the Einstein summation convention. The rightmost part in equa-
tion (3.73) ∇ŷL(y, ŷ) is the gradient of the loss function with respect to the
network output. This can be calculated analytically once and is then evalu-
ated for each example simply by inserting the corresponding network output.
The other part is the Jacobian of the network with respect to its parameters

∇θŷ = ∇θN (x, θ). (3.74)

We assume the network to be a simple chain of layers as defined in (3.64).
Once the backpropagation algorithm has been developed for this case, ex-
tending it to branching networks is trivial. For easier notation it is helpful to
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define the recursive relation zi := Wiai−1(zi−1) +~bi, with the stopping condi-
tion z0 = x and a0 being the identity mapping. Let ∇θi ŷ be the gradient of
ŷ only with respect to the parameters of layer i. With this we find

∇θiN (x, θ) = ∇θian(zn)
i<n
= (∇θizn) · ∇zan

∣∣∣
z=zn

= Wn∇θian−1(zn−1) · ∇zan

∣∣∣
z=zn

, (3.75)

which is a recursive relation for ∇θian(zn) that stops on layer i. n is the
number of layers of the network. Note that while the calculations above
suggest that Wi have to be matrices and zi have to be vectors, the equations
hold for tensors of arbitrary dimension. A few things about equation (3.75)
are noteworthy. First, ai are scalar functions that are applied component
wise. To calculate the gradient ∇zai, the one-dimensional derivative ∂zai
simply has to be evaluated at the different values of zi. So the derivative for
each activation function a has to be computed analytically in advance only
once and can then be used to rapidly calculate the gradients ∇zai. Second,
since (3.75) is a recursive equation, the gradient at layer n− i depends on all
gradients from layer n− i+ 1 to n. This is where the name backpropagation
comes from, as the gradients are propagated back through the network. The
recursion stops on layer i

∇θiai(zi) = (∇θiWi)ai−1(zi−1) +∇θi
~bi. (3.76)

For practical implementations, the backprop algorithm is comprised of
two stages. First, the input data is passed through the network and the acti-
vations zi are stored for every layer. This operation is known as the forward
pass. The second step uses the data from the forward pass to iteratively com-
pute the gradient using equations (3.73), (3.75), and (3.76). This is referred
to as the backward pass.

In principle the calculation of the gradient could be done sequentially. In
real applications this is often impractical, since GPUs allow for high degrees
of parallelization. Therefore, many, if not all, examples from a mini-batch
are evaluated at the same time. Since the backprop algorithm requires to
store the output of all intermediate layers, the memory requirements during
training scale linearly with the mini-batch size. This was a limiting factor
for many of our works and usually required us to use small mini-batches.
Furthermore, a computational graph is usually built which describes the
operations and their order that need to be taken to compute the output of
the NN given its input. Each node in this graph then needs to implement
a backprop-method that returns the gradient of that node given any of its
inputs and an inbound gradient.
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As an example consider the matrix multiplication operation C = AB.
Its backprop-method needs to return GBT when it is called for input A and
inbound gradient G and ATG if it is called for input B. For a more thorough
discussion of how the computational graphs are built I refer the reader to
chapter 6 of [213], where the above example was taken from.

With the definition of a training and test set, the loss function, and SGD
in combination with backprop we have developed the most important tools
to train a NN. However, during training multiple problems can arise. I will
now discuss the most common ones and how to characterize them.

Common problems during training

One of the most challenging problems of deep learning is the training setup.
How does one choose a network structure that is capable of efficiently solving
a given problem? The structure of a NN is most commonly referred to as
the architecture of the network and designing it is often more of an art than
a science. Certain conditions, like translation invariance of the problem or
hardware resource limitations, may inform or constrain it, but most of the
time, the architecture is found empirically.

Another part of the training setup is the optimizer. It, too, can greatly
influence how efficiently a NN learns. Even the simple SGD optimizer dis-
cussed above has a free parameter, the learning rate η. Setting it too large
or too small may have detrimental results on the ability of the NN to learn.
More complex optimizers, such as Adam [253], often have a larger number of
tunable parameters and setting them correctly can be challenging. To find
good settings for the optimizer, one usually has to resort to trial and error
as well.

Both the architecture and the parameters of the optimizer have in com-
mon that they are set outside of the training loop. They can, therefore,
not be updated automatically. Parameters that control the behavior of the
learning algorithm are known as hyperparameters [213].

To optimize the hyperparameters, one often tests different settings, trains
the algorithm, and compares their generalization errors. The settings that
yield the best performance are then used. As we are interested in the gen-
eralization error, the training set cannot be used for this calculation. On
the other hand, using the test set to optimize the hyperparameters would be
dangerous, as this would introduce a bias. We would optimize the learning
algorithm to perform well on the test set, reducing the ability of said set to
measure how well the algorithm can generalize beyond previously observed
examples. For this reason a third set is introduced: the validation set. With
this set, hyperparameters are optimized by choosing specific settings, train-
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ing the resulting algorithm using the training set, and calculating the error on
the validation set. The errors for different hyperparameters are subsequently
compared and the model with the best performance is chosen. Finally, the
generalization error is calculated on the test set only once on the chosen
model to estimate how well the algorithm will perform. The error calculated
on the validation set is also called the validation error, to differentiate it from
the generalization error [213].

When a NN is trained for long periods of time, one can often observe
that the network starts to “remember” the samples of the training set. To
spot this, one can compare the error or loss calculated on the training set
to the one calculated on the validation set after every epoch. When the
network starts to remember individual samples it stops to generalize and the
validation error will grow. This process is known as overfitting [218].

To understand overfitting, we can consider polynomial regression. Let us
imagine that our training set consists of N samples with data xi and labels
yi. Let us further assume that the underlying distribution of our data is the
polynomial p(x) =

∑M
j=0 ajx

j of degree M < N , i.e. yi =
∑M

j=0 ajx
j
i . If we

use a polynomial p̂(x) =
∑M

j=0 âjx
j of degree M to fit our training data, we

will drive the MSE of the training set to 0 when âj = aj ∀j ∈ {0, 1, · · · ,M}.
However, we can also fit all samples from the training set identically when
we use a polynomial of any degree ≥ N [213]. Importantly, this fit does not
necessarily have to find the coefficients

âj =

{
aj, j ≤M

0, otherwise
(3.77)

but may find a different solution. See panels (b) and (c) of Figure 3.16 for an
example. In the case of overfitting the model is too complex for the task that
has to be solved [213]. When the new model of degree ≥ N is evaluated on
new points, it will most likely make incorrect predictions; it has “memorized”
the training samples but is incapable of generalizing to new samples.

There are two options to reduce overfitting. One can either decrease the
model complexity or increase the number of samples in the training set. As
data could be generated at little additional cost for most of the studies in
this work, we have usually chosen to take the latter approach [213, 218].

Instead of the model being too complex for the problem, the opposite
may also happen. When the model is inherently not capable of representing
the underlying data distribution, it is underfitting the data. In the example
of polynomial regression above, any polynomial of degree < M would most
likely be incapable of matching the training data. Panel (a) of Figure 3.16
shows an example [213].
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Figure 3.16: Polynomials of different degrees fitting the same training data
using a least squares fit. The training data is generated from the second
degree polynomial shown in panel (b). All panels list the MSE of the fit
against the training and validation data on top. In panel (a) a linear model
is used to fit the data. It is not complex enough and underfits the data. Panel
(b) is a second degree polynomial that optimally fits the data. It minimizes
the MSE on both the training and validation set. Panel (c) fits a 9th degree
polynomial to the training set. It overfits and cannot generalize well to the
unseen validation data. This figure was inspired by figure 5.2 of [213].
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Spotting underfitting is often a lot more challenging than spotting overfit-
ting, because it keeps the error calculated on the training set large. However,
the same effect happens, when the network has not yet converged to a good
local minimum of the loss. Furthermore, one rarely knows a priory what
a good value for the converged loss would be. Upper limits can often be
derived, but those usually cover the network not being able to optimize at
all, rather than it failing to suitably approximate the true data distribu-
tion. Once underfitting has been identified though, one can usually increase
the number of trainable parameters of the NN to resolve the issue. Other
times finding a more suitable architecture or different data representation is
required.

Another common problem of deep neural networks are vanishing or ex-
ploding gradients [213, 218, 240]. Deeper layers tend to have smaller gra-
dients, which causes a stagnation in their optimization [218]. To a certain
degree studies have found that the main cause of vanishing gradients were
the combination of the network initialization, i.e. the initial parameters of
the network, and the activation functions [254]. But even with improved
network initialization and suitable activation functions, training can become
difficult beyond a certain depth [240]. The opposite can also happen, where
gradients grow exponentially. However, this is mostly a problem in RNNs
and can be combated by clipping the norm of the update step [213].

Further failure modes for the training of deep NNs are discussed in chapter
8.2 of [213].

The Adam Optimizer

All of the works centered around deep learning that are discussed in this
thesis make use of the Adam optimizer. For this reason, it is introduced here.
Adam stands for “adaptive moment” estimation and it computes individual
adaptive learning rates for different parameters from estimates of the first
and second moments of the gradients [253]. It can be seen as a variant to the
RMSProp algorithm [213, 255], which extends the AdaGrad algorithm [256].

The core idea of AdaGrad is to scale the learning rate of individual pa-
rameters based on the scale of the gradient. In regions where the loss surface
is shallow one wants to traverse it fast to reach more optimal values. In re-
gions where the surface has a steep gradient, smaller steps should be taken to
not overshoot a potential minimum. To do this, the algorithm aggregates the
squared gradients. On each SGD step the current gradient is then divided
by the square root of the aggregated squared gradients.

RMSProp uses an exponential moving average to aggregate the squared
gradients. This reduces the memory of gradients from the extreme past and

64



3.3. DEEP LEARNING

helps to keep the learning rates large enough to converge quickly once a
locally convex bowl has been found [213].

Adam uses two exponential moving averages. Instead of just keeping
track of the squared gradient, i.e. the second moment of the gradient, it also
keeps track of the first moment of the gradient, i.e. its mean. Additionally, it
removes biases from the moments. The full algorithm is given in algorithm 1
of [253]. The core calculations of the algorithm in the language used in this
thesis are [218]

1. m← β1m− (1− β1)∇θJ(θ)

2. s← β2s+ (1− β2)∇θJ(θ)�∇θJ(θ)

3. m̂← m

1− βt1
4. ŝ← s

1− βt2
5. θ ← θ + ηm̂�

√
ŝ+ ε, (3.78)

where β1, β2, and ε are hyperparameters of the algorithm, t counts the iter-
ations, and � and � are element wise multiplication and division operators,
respectively. The default values suggested in [253] are β1 = 0.9, β2 = 0.999,
ε = 10−8, and η = 0.001.

Steps 1 and 2 are the exponential moving averages of the first and second
moment of the gradient, respectively. The values for m and s are both
initialized as arrays filled with zeros. This initialization would introduce a
bias, which is removed by the operations in steps 3 and 4. Finally, step 5
applies the gradient update, which scales the learning rate by the inverse
square root of the second moment of the gradients. The gradient updates
are also only propagated using the running mean of step 3.

3.3.3 Convolutional Neural Networks

The layers discussed in section 3.3.1 connect every input to every neuron.
They are known as fully connected or dense layers. A fully connected layer
with N inputs and M outputs has a weight matrix of dimension M × N .
For large inputs and outputs this can quickly become very straining on both
memory and compute power. Furthermore, both the input- and output-shape
of the layers must be set at the beginning and cannot change.

All of these problems are being addressed by the convolutional layer which
was invented in 1989 [257]. Instead of connecting all inputs to all outputs,
it connects only parts of the input to each output neuron. Furthermore, the
weights are shared between different connections. In mathematical terms,
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the layer performs a discrete convolution of a kernel with the input data;
hence the name “convolutional layer”. For 1 dimensional data ~x, weights ~w,
and bias b the layer can be written as

Lconv(x, θ)i = a

(∑
j

xjŵi−j + b

)
, (3.79)

where

ŵi =

{
wi, 0 ≤ i < dim(~x)

0, otherwise
. (3.80)

The weights ~w in the above equation are often called kernel, and when defin-
ing a NN architecture with convolutional layers one often sets the kernel size,
i.e. the dimension of the kernel.

Depending on the problem, convolutional layers have several advantages
over fully connected layers. First, the introduction of sparse connections.
This means that not all outputs are connected to all inputs, which reduces
the theoretical computational time from O(M ×N) to O(K ×N), where
K = dim(~w). Second, the introduction of shared weights, which reduces
memory requirements, as only K rather than M × N numbers have to be
stored for the weights. Third, the introduction of equivariance to translation.
This is a direct consequence from sharing parameters and translating them
over the input, as it allows to search for the same learned features in multiple
locations of the input data. For instance, if a kernel has been optimized to
detect edges in an image, it will be able to detect these edges in all parts of
the image. A fully connected layer, on the other hand, would need to learn
this filter at every location. While this is in principle possible, and one can
reduce the convolutional layer to a special case of a fully connected layer
when the input size is known4, it is not quite so simple in real applications.
If we want to learn to detect a specific edge in all parts of the image, a
fully connected layer needs sufficiently many examples of such edges at every
location of the image. A convolutional layer might learn the filter even if
the edges are only presented in one specific region of the images from the
training set [213]. Additionally, convolutional layers can process inputs of
arbitrary size, as the parameters of the layer do not depend on the input.

A single kernel will learn a single filter. For example, the two dimensional
filter in the top branch of Figure 3.17 detects vertical edges. It will, however,

4The weight vector can be zero padded to have the same dimensionality as the input
vector. One then cyclicly changes the position of the weight vector in the zero padding
and uses the different resulting vectors as rows for the weight matrix of a fully connected
layer. See section 9.4 of [213] or [66] for more details.
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Figure 3.17: An image convolved with a vertical (top) and horizontal (bot-
tom) edge-detection kernel. The original image is shown on the left. The
processed images are shown on the right. The ∗ is the symbol for the convo-
lution operation. Brighter pixels in the output images signify larger values,
i.e. a larger overlap between the kernel and the image. On the top branch
one can clearly spot the bright vertical edges of the posts, which are not
visible in the lower branch. On the other hand, one can clearly spot the
sharp edges at the top of the posts in the lower branch but not in the upper
branch.

not be able to also detect horizontal edges. For this reason, a convolutional
layer usually has multiple kernels of the same dimensions. It optimizes them
in parallel to learn multiple different filters. The outputs of the convolutions
with the different kernels are then stacked. The output of a single kernel
convolution is known as a feature map and the index dimension of the differ-
ent feature maps is known as the channel dimension. The name feature map
originates from the observation that the activation at a certain location is
particularly large, when the kernel strongly overlaps with a specific feature
in the input data [258]. Naming different feature maps different channels,
stems from RGB-images, which have three distinct channels; one for red (R),
one for green (G), and one for blue (B) [213].

As was the case for NNs consisting only of fully connected layers, greater
depth of convolutional neural networks (CNNs) allow them to detect features
of greater complexity. For instance, if the first layer learns one filter for
vertical edges and one for horizontal edges, a subsequent layer may use the
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information from both channels to infer the angle of an edge. For this to be
possible, it has to combine the information. Therefore, a single kernel of a
one dimensional convolution as defined in equation (3.79) spans all channels.
If the input to a one dimensional convolutional layer has n samples and c
channels, a single kernel W will be of dimension k × c, where k is the kernel
size. See Figure 3.18a for a visualization.

The definition of the convolution operation in equation (3.79) shifts the
kernel by a single sample for each step. However, one can just as easily imple-
ment a convolution-like operation that has a larger step size. This step size
is known as the stride and exchanges resolution for computational efficiency,
as fewer computations need to be carried out [213]. The standard convolu-
tional layer has a stride of 1. Figure 3.18b shows a strided convolution, i.e.
a convolution with stride > 1.

When a convolutional layer with kernel size k and stride s is applied to
input data with n samples, the number of output samples nc by default is
given by

nc = bn− k
s
c+ 1, (3.81)

where b·c is the flooring operation. For k > 1 or s > 1, we find nc < n. So the
output is smaller than the input when a convolutional layer is applied. To
avoid this shrinking, one often applies padding to the data. To pad the data
one commonly uses zeros or mirrors the data at the edges. See Figure 3.18c
for a visualization of zero-padding.

By design, individual output neurons of a convolutional layers have only
access to a small portion of their input data. This in turn limits the scale
of features they may detect. To avoid this issue, one can stack multiple
convolutional layers. Figure 3.18d shows two stacked convolutional layers,
which both have a kernel size of 3. Each output of the final convolutional
layer is connected to 3 neurons on the first layer. Each of those neurons, in
turn, is connected to three input samples. As such, the output neurons have
indirect access to 5 samples from the input. This increases the amount of
data they are receptive to. For this reason, the input samples each output
of a convolutional layer is directly or indirectly connected to is known as its
receptive field.

Instead of connecting only subsequent samples from the input, a kernel
may also skip a few samples in between. This concept is known as dilation. It
can be used to increase the scale of features a convolutional layer can detect,
at the cost of resolution. The number of neurons that are skipped minus
one is known as the dilation rate. When a convolutional layer has a dilation
rate of n, every n-th input sample is connected. Figure 3.18e shows how a
convolutional layer with a dilation rate of 2.
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Figure 3.18: (a) Convolution: Depiction of a 1 dimensional convolution
with multiple kernels. Each kernel has the same size and spans all channels
of the input. The different channels are shown as columns. Different ker-
nels produce different channels in the output. The output in this example is
calculated as oa,b =

∑2
m=1

∑2
n=1 im+a−1,n · wbm,n. (b) Stride: A convolution

with a stride of 2. Instead of shifting the kernel by one sample, it is shifted
by multiple. The different colors relate the outputs with their inputs. (c)
Padding: The input of the convolutional layer is padded with zeros, such
that the output has the same number of samples. (d) Receptive field: The
figure shows the neurons of two stacked convolutional layers, where padding
is applied such that the input and output have the same number of samples.
Both convolutional layers have a kernel size of 3. The colored squares high-
light the neurons which the output o3,1 depends on. The connecting lines
for every neuron show the region of the previous layer they are directly con-
nected to. By stacking the convolutional layers, the single output neuron o3,1

is influenced by almost the entire input data. The part of the input a single
neuron is influenced by is called its receptive field. (e) Dilation: Shown
is a convolutional layer with a kernel that is not connected but skips a few
of its input. The kernel in the figure uses only every second output and it,
thus, has a dilation rate of 2. A dilation rate of n means that only every n-th
neuron from the input is considered.

69



CHAPTER 3. FOUNDATIONS

The first major application of CNNs was the LeNet-5 [259], which was
used for handwriting recognition [213, 218]. Since then CNNs have been
the major driving force in computer vision tasks such as image classifica-
tion [49, 260–262] and object detection [50, 218, 262–265]. They have also
found applications in audio processing [230], NLP [247], and many scientific
fields [231]. All of the works which utilized deep learning and that are part
of this thesis have made use of CNNs.

Convolutional layers can be easily extended to higher dimensions. When
the input data has n dimensions with c channels, the kernel will still span all
channels but be limited in size in the data dimensions. It will then be moved
across the input in all dimensions to fully cover it.

3.3.4 Special Layers and Concepts

This subsection covers a few deep learning concepts that were used in dif-
ferent works discussed in this thesis. They go beyond fully connected and
convolutional layers and are largely non-essential to gain an understanding
of the works. I will, therefore, discuss them only very briefly. The interested
reader may check the different sources provided below to learn more.

Pooling

One type of layer that is often used in CNNs are pooling layers. Like convolu-
tional layers, these layers take a confined part of the input and aggregate it.
The region they summarize is then shifted over the entire input. However, in
contrast to dense or convolutional layers, they do usually not have any train-
able parameters. They also usually operate on every channel individually
and do not combine them like convolutional layers.

The two most common pooling layers are max-pooling [266, 267] and
average pooling [257]. As their name suggests, they summarize a region of
the input by its maximum or average value, respectively. See Figure 3.19a
for an example of pooling.

Another form of pooling divides the entire input into a fixed number of
bins and summarizes each bin. This form of pooling is useful, when a variable
size input has to be mapped to a fixed size. This is often the case in image
classifiers, where the input image is analyzed by a fully convolutional NN
that produces a feature map. This feature map is then passed to a fully
connected classifier to extract a prediction for the classes one is interested
in. See for instance the RoIPooling operation in [268] or RoIAlign in [269].
At the extreme, all inputs are pooled together. This operation is commonly
called global pooling.
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Figure 3.19: Two kinds of pooling layers. Panel (a) shows a normal max
pooling layer, that pools 3 input neurons and has a stride of 1. Panel (b)
shows global average pooling, where all input neurons are pooled together.

The main effect of pooling layers is the introduction of an invariance to
the exact location of features in the network input. By summarizing the ac-
tivations in a given region, a large value anywhere within this region usually
has a large value of the summary as consequence. Another effect is the down-
sampling of data throughout the network. This reduces the computational
cost to evaluate the network, as fewer paths have to be calculated, at the
expense of resolution.

Dropout

In 2014 dropout layers were introduced [270]. They aim to reduce overfitting
during training by randomly setting the output of some neurons on hidden
layers to zero, effectively erasing them from the network for one training step.
See Figure 3.20 for a visualization of dropout. The rate of setting outputs
to zero is known as the dropout rate and is the only hyperparameter of this
layer. Erasing individual outputs has multiple beneficial effects.

First, the network is trained as a kind of ensemble of multiple networks.
The different networks of the ensemble all share their architecture and weights
with the network where no units are dropped, but some paths are removed.
As the dropped units change for every mini-batch, each ensemble member
usually is trained directly only for few iterations. Due to the shared weights,
however, they are all updated simultaneously and profit from every step.
During inference, no dropout is applied and as a consequence, each member
of the ensemble is effectively evaluated. This can then be understood as the
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x1
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Figure 3.20: Visualization of NN with dropout. Dashed neurons have been
dropped from the graph by setting the connected dashed weights to zero.

ensemble of all possible dropped units “voting” for the correct output [213].

Second, dropping different hidden units forces the network to become re-
sistant to the removal of individual hidden units. It, thus, has to either learn
redundancy or to classify based on different features. In a sense, dropout
applies noise on the feature level. For instance, if a neuron has learned to
detect a nose in a face and this neuron is dropped, the network is forced to
learn to classify a face even when a nose is not present [213].

Batch Normalization

When training a NN the weights are usually updated by equation (3.72).
The gradient ∇θJ(θ) is comprised of partial derivatives ∂θi , which assume
that all other parameters are kept constant. However, in deep NNs changing
the weights on one layer will have a direct influence on the inputs to the
second layer. This means that higher order effects are disregarded5 and the
output can change a lot more than one would initially expect. In other words,
the distribution of inputs to deeper layers changes as parameter updates are
applied to earlier layers.

To counteract this problem, the authors of [271] introduced a layer called
Batch Normalization. The core idea is to keep the mean and standard devi-
ation of all or most layer outputs constant. At its core, batch normalization

5Compare equation (8.34) of [213].
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calculates

µ =
1

M

M∑
i=1

xi (3.82)

σ2 =
1

M

M∑
i=1

(xi − µ)2 (3.83)

for every mini-batch. It then shifts the inputs by

x̂i =
xi − µ√
σ2 + ε

, (3.84)

where ε is a small constant used for numerical stability. This centers the
activations of the previous layer to have a mean of 0 and a standard deviation
of 1. Crucially, the gradient takes these calculation to correct the mean and
variance into account. Were this not the case, the optimization algorithm
could drive the mean or the variance to infinity [213, 271].

By applying the transformation of equation (3.84) one limits the ability
of the network to represent certain distributions. For instance, if the Sig-
moid activation (3.62) is considered, one would constrain it to the linear
regime [271]. To allow the network to set the batch normalization layer to
act as identity, the output is defined as

yi = γx̂i + β. (3.85)

The parameters β and γ are of the same dimension as the xi and are learned
during optimization. While it may seem like a null-operation to first set the
mean to 0 and the standard deviation to 1 and then introduce parameters
β and γ to change the same parameters to different values, it does have a
positive effect on the learning dynamics [213].

The calculation of the mean and standard deviation described above are
only done during training. For inference a running mean of these values is
kept.

Residual Blocks

The submission that won the 2015 ImageNet large scale visual recognition
challenge (ILSVRC) [227] made heavy use of a concept known as residual
connections [240]. These residual connections allowed for their network to
be effectively trained even when more than 100 stacked layers were used [240].
They found that the more layers could be added before training stopped being
effective the larger the performance of the network. This highlights further
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H(x) = F (x) + x

ReLU

Figure 3.21: General structure of a residual block. The input x is passed
through one or multiple layers in the residual block F (x) and the output is
added onto its input. This figure was adapted from figure 2 in [240].

the general notion that deeper networks usually perform better. Although
introduced in 2015, their architecture is still commonly used for many state-
of-the-art works today [262, 272–274].

Residual blocks contain one or multiple layers that are setup such that
the blocks do not change the shape of their inputs. Their outputs are then
added onto the input and passed on. See Figure 3.21 for a visualization. This
change reformulates the learning problem. Rather than optimizing the layer
block to learn a function H(x), one optimizes the layer block to learn the
residual function F (x) = H(x)−x. While this does not change the functions
that the block can represent, it changes the mapping the block learns if all
parameters are driven to 0. If the block does not use residual connections
and is, hence, optimized to learn H(x) directly, setting all parameters to 0
results in the zero mapping. The residual block instead would drive F (x) to
the zero mapping, such that H(x) becomes the identity. Therefore, residual
blocks hypothesize that an identity mapping should be the default behavior
of a layer block, if it can extract no further information. This seems plausible,
as one would expect that when two networks are compared, where the only
difference between them is the depth, that the deeper network should not
perform worse than the shallower one. In the worst case it should be able to
set all of its layers at a greater depth than the shallower network to be the
identity mapping [240].

Another benefit of residual blocks is that they allow for an easy passing of
the gradient to layers further up in the stack. This is because the derivative
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of the residual block is given by

d

dx
(F (x) + x) =

d

dx
F (x) + 1. (3.86)

So even if the derivative d
dx
F (x) is very small, i.e. the block is close to an

optimal configuration or has not started to improve yet, the additive term
allows the gradient to skip past the block and propagate upwards in the
network [218, 240]. For this reason the residual blocks are also called skip
connections.

3.4 Machine Learning in Gravitational-Wave

Astronomy

Machine learning is a computational tool that has started to gain renewed
interest in the early 2010s. It is only natural for scientists to evaluate the
usefulness of new tools to their own area of research. However, there are rea-
sons beyond the academic curiousness that justify a thorough investigation
of the capability of modern ML algorithms to solve some of the problems
in GW data analysis. As previously discussed, since the first observation
of a GW the rate of detections has rapidly increased [15] and is expected
to grow faster as detectors are upgraded [194, 275]. This necessitates the
use of highly optimized data analysis algorithms to process the data in real
time and produce accurate and reliable alerts. Additionally, it is desirable to
produce accurate sky-maps of the expected origin of each signal to allow for
prompt EM follow-up and to be able to extract more information from some
mergers [62]. ML algorithms are known for their capability to discover pat-
terns in data and their computational efficiency has enabled many advances
in other scientific fields such as computer vision [49, 213]. This makes them
a great contender to solve many of the above mentioned problems.

Many applications of ML to GW data analysis have already been studied.
These include the identification and classification of glitches in the detector
output, partial and full GW search pipelines, and parameter estimation al-
gorithms. Below I will give an overview of recent developments in the field
and will mainly focus on algorithms relevant to CBC signals. A great and
more general overview of the field can be found in [48].

3.4.1 Data Quality

One of the first GW research fields that has made use of ML algorithms is the
classification of data quality of the detector output [276–279]. As previously
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discussed, the detector output contains many non-Gaussian noise transients
known as glitches. Finding and classifying these glitches is important to
identify their source and to reduce the number of false alarms. ML can
be useful to identify different categories of glitches or predict them from
recordings of external sensors that monitor noise sources, such as ground
motion or EM interference [280], which couple highly non-linearly into the
detector output.

The citizen science project GravitySpy [190] was started in 2016 and asks
volunteers to classify time-frequency representations of different glitches. It
leverages the Zooniverse platform and combines the use of ML algorithms
with human categorization to classify glitches into known and unknown cat-
egories. The resulting data sets are then used to train machine learning
models [281]. Importantly, the input data is a direct product of the detector
output and does not take into account auxiliary data channels.

A different approach is taken by the iDQ pipeline, which tries to predict
the presence of glitches only from auxiliary sensor data in real time [282]. It
monitors O(103) auxiliary channels to produce a classification into “glitch”
or “no-glitch” for every time step. The underlying ML algorithms are con-
tinually updated to account for non-stationarity of the noise. iDQ has been
in use throughout the first three observing runs [14] and contributed to the
rapid release of GW170817, which coincided with a glitch [48].

Other projects trying to identify glitches exist [283–285], many of which
rely on the time-frequency representation produced by the Omicron software
package [191].

3.4.2 Gravitational-Wave Searches

More important for this thesis, there exists a wide variety of ML based GW
search algorithms. It is currently a very active area of research with sev-
eral groups around the world providing rapid improvements over initial algo-
rithms. The earliest works based on random forests use data products from
other search algorithms or hand crafted features to identify signals [53, 286].

The first proof of principle using deep learning to directly detect BBH
signals in time series data was proposed by George et al. in 2016 [55]. They
used a 3-layer CNN to process 1 s of whitened time series data sampled at
8 kHz from a single detector and classified it into the two categories “signal”
and “noise”. Their network was trained on non-spinning BBH waveforms
with masses between 5 M� and 75 M�. Due to these simplifications, the pa-
rameter space consisted only of the two dimensional m1−m2-plane. For this
restricted parameter space they demonstrated the ability of their algorithm
to be competitive in signal recovery to matched filtering for high false-alarm
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probabilities (FAPs). As a difference to FARs, FAPs, in the context of this
work, are not derived on long duration data but from individual samples that
either do or do not contain a signal. The FAP is then the number of false
positives divided by the number of true negatives. Independently, Gabbard
et al. developed a similar algorithm [56] and verified the findings of [55].
They also extended it to lower FAPs. Both works, however, were limited
by testing the signal recovery only on discrete samples, where each sample
consisted of either a well aligned waveform submerged in noise or pure noise.

The first study using deep learning to detect BNS signals was published
by Krastev in 2019 [287]. He used a network architecture similar to that of
[55] to process 10 s sampled at 4 kHz to distinguish pure noise, BBH signals,
and BNS signals. He was able to reproduce the performance on BBH signals
from [55, 56], but his method was significantly less sensitive to BNS signals.
He also quoted performance figures only as a function of FAP derived on
discrete samples rather than in terms of FAR derived on continuous data.
The study was later extended to cover real detector noise and produce point
estimates for the source parameters [288]. In an independent work Schäfer et
al. proposed a novel NN architecture tailored toward the detection of BNS
signals that allowed processing of 32 s of data [61]. To enable processing so
much data, they introduced a multi-rate sampling approach, that reduced
the size of the data by a factor of 9 while preserving all relevant information.
This allowed them to be substantially more sensitive than [287] to low SNR
signals. However, their approach does not generalize well to high SNR signals
and is incapable of detecting BBH signals. They also tested the algorithm on
a continuous data set down to a FAR of 0.3 per month, thus providing a direct
grounds of comparison to state-of-the-art matched filter search pipelines. It
showed that there is a significant performance gap especially for low FARs.
Furthermore, they analyzed data from two detectors in a single network.
This approach is briefly summarized in chapter 4 of this thesis.

The studies discussed so far made use of a CNN with a few fully connected
layers to generate the classification output. This architectural choice requires
the use of a sliding window approach, when the networks should be applied to
data of duration longer than the input the network was trained on. Gebhard
et al. introduced a fully convolutional architecture in [289], which allows
for the network to be applied to input of arbitrary sizes. It also produces
outputs with a higher time resolution than partially convolutional networks.
The authors provide criticism of the evaluation procedure used in previous
works, which quote performance metrics in terms of FAPs instead of FARs.
They then provide extensive studies of their own approach and test it in
terms of FARs. They also investigate the timing accuracy of their network
to the location of the merger. Their architecture was picked up and further
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improved by Wei et al. in [57]. This improved architecture was tested on
real data from O2 and O3 and is capable of detecting real GW events in the
data at a FAR of 2.7 per day. Both of these networks were also designed to
process data from multiple detectors.

Another approach that has started to be explored is building NNs inspired
by matched filtering. Wang et al. create a convolutional layer from a reduced
template bank of whitened waveforms and use it to perform a matched filter
operation in the time domain [290]. Their network takes an estimate of the
PSD into account and uses a CNN to process the resulting SNR time series.
They manage to detect all GW events from O1 at a high FAR. The group also
contributed to the mock data challenge discussed in chapter 8, where their
approach is evaluated at low FARs. Yan et al. notice that matched filtering
searches are formally equivalent to a particular NN architecture, that can
be hand crafted [54]. However, they highlight that matched filtering is not
optimal when the signal is not known exactly, as it is not mathematically
guaranteed that it minimizes the FAR for a given true positive rate. As a
consequence, they initialize their network with a given discrete template bank
and fine tune it in the hope of finding a better detection criterion. They claim
that their approach can consistently outperform matched filtering. However,
they test a limited mass range of 40 M� to 50 M�, where they use up to 10 000
templates, use only data from a single detector, and maximize over the raw
SNR of all templates. The use of a possibly over-dense template bank, as
well as the lack of coincidence and signal consistency tests artificially increase
the FAR of any detection. Nonetheless, they highlight important deficiencies
of matched filtering and their work demonstrates a possible avenue for deep
learning to go beyond the capability of existing methods.

The previously discussed algorithms have all made use of time series data.
Most ML advances, on the other hand, originate in computer vision, which
processes two dimensional images. For this reason, some studies have looked
at a time-frequency representation of the data to make use of such concepts.
Wei et al. utilize a ResNet50 [240] pre-trained on image classification data to
create early warnings for BNS mergers from spectrograms of the data [291].
The network is fine tuned on injected GW data and is resilient to glitches.
The network is capable of detecting GW170817 10 s before the merger. Aveiro
et al. use the object detection network YOLOv5 [292] to accurately locate
GW mergers in these time-frequency plots. While their work is still at a proof
of concept stage, this domain transform highlights an under utilized aspect
of machine learning, where rapid development in other fields can improve the
capability of GW detection.

Some works try to utilize the computational efficiency of NNs along a
similar route as Wei et al. [291]. They try to produce early warnings for
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BNS signals to increase the probability of successful prompt EM follow-up
observations. Baltus et al. [293, 294] use a CNN similar in nature to the early
works by George et al. [55] and Gabbard et al. [56] to analyze time series
data. In the optimal case of strong signals they expect an early warning of
up to 100 s. Yu et al. [295] use the detector output as well as auxiliary noise
channels to reduce non-linear noise couplings and increase their sensitivity
to low-frequency signals. Their network is trained to produce early warnings
for BNS and NSBH signals. They claim similar early warning capabilities
as Baltus et al. Chapter 5 of this thesis summarizes a qualitative analysis
of early warning capabilities of an existing state-of-the-art matched filtering
based search pipeline. Such studies are important on their own but are also
imperative as a point of comparison to machine learning algorithms. An
advantage of the study presented in chapter 5 over the works by Baltus et
al. and Yu et al. is the capability of producing a sky-location estimate.

Besides direct searches, many studies are looking into ways to improve ex-
isting search pipelines. They mainly try to achieve this goal by adjusting the
ranking statistic. Jadhav et al. [296] introduce MLStat, a deep learning al-
gorithm that processes time-frequency representations of the data obtained
from a continuous wavelet transform to differentiate between CBC signals
and glitches. The model is a pre-trained InceptionV3 [297] image classifier
which is fine tuned on parts of the GravitySpy data set [190]. They use the
output of the CBC class as a probability to re-weight the coincident rank-
ing statistic and report an increase in the sensitive volume of the PyCBC
search [60] by up to 30%. Instead of creating a new metric to adjust the
ranking statistic, McIsaac et al. [298] use deep learning to improve the exist-
ing χ2 tests. They train a NN to optimize hyperparameters of a χ2 test to
improve signal recovery and glitch rejection for high mass signals. They quote
an improvement in sensitivity of up to 11% to high total mass signals and
are confident that such an automatic tuning of hyperparameters can also be
used to improve other signal consistency tests. Choudhary et al. [299] present
a NN that aims to distinguish CBC signals from blip glitches. While they
do not specify its use in altering the ranking statistic, they claim it to be
superior in classification to classical χ2 tests. They introduce a sine-Gaussian
projection, which produces a time-frequency representation of the data and
use this as input to their network. The loosely modeled coherent wave burst
(cWB) search [37, 38] has recently introduced a ML based enhancement to
their pipeline [300]. The original algorithm produces vetos based on summary
statistics generated by the search to reduce the impact of non-Gaussian noise
transients. These vetos are a binary decision between noise-like events and
signal-like events. The ML improvement uses a learning algorithm known as
XGBoost [301] to create an ensemble of decision trees. A weighted average
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of all ensemble outputs is then processed by a Sigmoid activation to produce
a continuous output. As input the decision trees use a subset of 14 summary
statistics generated by the search. By using the Sigmoid output as a mod-
ification to the original ranking statistic and by eliminating all other vetos,
the authors of [300] find an improvement of up to 26% in sensitivity.

Other applications of ML to GW searches exist. Some notable works
include the application to CW searches [302–305], EMRI searches [306], and
the search for novel signals by anomaly detection [307, 308]. The GWSkyNet
project uses public data from alerts of GW events intended for other as-
tronomers for EM follow-up to distinguish between astrophysical events and
noise artifacts [309, 310]. The aim of the project is to better inform other
astronomers about which alerts are most valuable for follow-up observations.

With this plethora of different search algorithms an objective compari-
son among different approaches and to state-of-the-art methods is desirable.
However, this task is complicated by differing data sets and the usage of
different evaluation metrics. For instance, in chapter 4 we find that our ap-
proach is substantially more sensitive to quite BNS systems than the work
presented in [287] but is still far away from the sensitivity of PyCBC Live,
a state-of-the-art low-latency GW search pipeline. For this reason, chapters
6 and 7, among other contributions, re-analyze the early work by Gabbard
et al. [56] and compare them to PyCBC [60], both in the single- and multi-
detector case. Chapter 8 describes an attempt of creating a reference data set
and evaluation metrics to allow for the important quantification of ML based
search algorithm performance. It is one of the goals of this thesis to create
an environment that allows for an objective evaluation of ML algorithms for
CBC detection to enable targeted development and quick adoption of good
methods into production searches.

3.4.3 Parameter Estimation

Another important aspect of GW data analysis is the estimation of source
parameters including error estimates. In the last three years major progress
has been made in using ML to rapidly produce posterior estimates. This is
of special interest as traditional parameter estimation can take days or even
weeks, depending on the source, to finish analyzing a single event.

As parameter estimation is not the main focus of this thesis, I will only
highlight a few of the important works of the recent past. The inital work by
Chua et al. [311] is capable of producing posteriors in one or two dimensions
by producing histograms or parameters for a Gaussian mixture distribution.
Gabbard et al. [312] use a conditional variational autoencode network to
predict the full 15 dimensional posterior of BBH directly from the whitened
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strain data. A variational autoencoder creates a latent representation of the
input data in terms of parametrized probability distributions using an en-
coder. The distribution is then sampled and each sample is processed by a
decoder, which in turn produces a second set of parametrized distributions.
A single sample is drawn from this second set of distributions for every sam-
ple from the latent distributions. In this way a posterior is built up. Green
et al. [313–315] use normalizing flows to produce posteriors. The idea of a
normalizing flow is to find the transformation from a simple distribution, like
a Gaussian distribution, to the target distribution. In their case the target
distribution is the GW posterior for the parameters. They also include knowl-
edge about symmetries of the parameters in their algorithm to simplify the
task. All of these algorithms have the advantage that they do not need true
posteriors as targets. Instead they learn by sampling the prior distribution
during the training process. This means that training data is drawn from the
prior and the networks only require the true parameter as label. Chatterjee
et al. [316] also use a normalizing flow for rapid sky-location estimation. It
can produce accurate estimates of the source location in milliseconds. Other
than previous deep learning methods it does so not only for BBH, but also
for BNS and NSBH sources.

A completely different approach was taken by Williams et al. [317]. They
create an algorithm named NESSAI, which is a drop in replacement for the
samplers used in many state-of-the-art parameter estimation codes. Their
network is also based on a normalizing flow and predicts the contours of
iso-likelihood surfaces based on live-points in a nested sampling algorithm.
The normalizing flow then allows them to efficiently sample the contour,
resulting in an increase in the speed of nested sampling by a factor of 1.4
over the nested sampler DYNESTY [318].
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Chapter 4

Detection of
Gravitational-Wave Signals
from Binary Neutron Star
Mergers using Machine
Learning

This chapter briefly summarizes the work done in [61], which in turn is based
on my master thesis [66]. It highlights the improvements of [61] over [66].
It is discussed in this thesis, as the detection of long duration GW signals
from BNS mergers is a major challenge in machine learning based search
algorithms.

4.1 Introduction

Long duration BNS signals are computationally expensive to search for using
matched filtering. This is an effect of the required high density of templates
in the bank at low masses. On the other hand, detecting BNS signals with
as low a latency as possible is important to maximize EM observation time
of potential counterparts.

One possible approach to try to reduce computational demands of the
search is to employ advanced ML methods, that shift the computational
cost to the training phase. To prove they are capable of rapid and accurate
detection, these algorithms must be evaluated at FARs that are at a level
comparable to online production search pipelines [58]. In this study, we
develop a deep learning search algorithm for BNS signals. We compare it
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to the PyCBC Live pipeline which has been used in the online analysis of
O2 and O3. We also compare our algorithm to another deep learning based
search that targets BNS mergers.

The core problem of developing deep learning based BNS search algo-
rithms is the duration the signal spends in the sensitive bands of the detec-
tors. This long duration in combination with a merger at high frequencies
results in a large number of samples that have to be processed. When the size
of the input to a NN grows, so must typically the size of the network [213].
This makes training unfeasible due to excessive hardware requirements. Our
solution to this problem is to use the knowledge of the frequency evolution
of BNS signals to re-sample different parts of the data at different rates.

4.2 Methods

To reduce the number of samples in the input to the NN we sample the data
at different rates. During the early inspiral the frequency is low and evolves
slowly. As a consequence, a low sample rate is sufficient to resolve the signal
for a long duration. Only close to the merger are high frequencies involved
and a high sample rate is necessary. Informed by this signal evolution, we
re-sample the first 16 s of the input data at a rate of 128 Hz. The next 8 s
are sampled at a rate of 256 Hz. We continue doubling the sample rate and
halving the duration of data we sample until the final second of our 32 s input
data. The final second is split into two 0.5 s parts, each sampled at 4096 Hz.
This procedure reduces the number of samples by a factor of 9, while the
SNR that is lost due to the early truncation at low frequencies is only ≈ 2%.
In [66] we had re-sampled 64 s by starting with a sample rate of 64 Hz for
the first 32 s part. However, we found that for some signals the maximum
frequency in that time period exceeded the limit of 32 Hz set by the sampling
rate. See Figure 4.1 for a visualization of the re-sampling process.

The architecture used in [61] is highly adjusted to the multi-rate sampled
data. Each of the 7 different parts of the input data is processed by a different
input to the network. After each sample rate has been processed individually,
pairs of two are combined and processed further. This structure cascades
down until only a single branch remains. This single branch is processed
by a few more layers to produce two outputs: An estimate of the optimal
SNR contained in the input and a p-score that is a value between 0 and 1
signifying the confidence of the network that a signal is present in the input.
A high-level overview of the architecture is given in Figure 4.2. For more
details see [61, 66]. The architecture is the same as the one presented in [66],
adjusted to the reduced number of multi-rate sampled parts.
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Figure 4.1: The top panel shows the strain evolution of an example GW
from a BNS merger in black. The bottom panel shows the corresponding
frequency evolution in black. The colored boxes represent parts of the signal
which we sample at different rates. The height of these boxes in the bottom
panel represents the Nyquist-frequency of the sample rate which is used for
each part. To fully resolve the signal, the black curve must stay inside the
colored boxes of the bottom panel at all times. Figure and caption were
taken from [61].

85



CHAPTER 4. BINARY NEUTRON STAR SEARCH USING MACHINE
LEARNING

F
igu

re
4.2:

A
h
igh

level
overv

iew
of

th
e

arch
itectu

re
p
resen

ted
in

[61].
D

etails
on

every
b
lo

ck
can

b
e

fou
n
d

in
[66].

T
h
e

n
etw

ork
takes

sign
al

an
d

n
oise

in
p
u
ts

1
to

7,
w

h
ere

each
n
u
m

b
er

corresp
on

d
s

to
a

d
iff

eren
t

p
art

of
th

e
re-sam

p
led

raw
d
ata.

It
ou

tp
u
ts

an
estim

ate
of

th
e

S
N

R
con

tain
ed

in
th

e
in

p
u
t

an
d

a
p
-score,

w
h
ich

rates
h
ow

likely
th

e
d
ata

is
to

con
tain

a
B

N
S

sign
al.

F
igu

re
an

d
cap

tion
w

ere
taken

from
[61].

86



4.2. METHODS

parameter uniform distribution

component masses m1,m2 ∈ (1.2, 1.6) M�
spins 0
coalescence phase Φ0 ∈ (0, 2π)
polarization Ψ ∈ (0, 2π)
inclination cos ι ∈ (−1, 1)
declination sin θ ∈ (−1, 1)
right ascension ϕ ∈ (−π, π)
distance r2 ∈ (02, 4002) Mpc2

Table 4.1: The astrophysically motivated distribution of parameters used to
generate injections. These are used to estimate the FAR and sensitivity of
the search algorithm specified in [61]. Table and caption were taken from
[61].

Training and validation data were created by the same process. Noise is
simulated from the advanced LIGO design sensitivity curve in its zero de-
tuned high-power configuration [319]. Signals are generated using the Tay-
lorF2 waveform approximant [86, 320, 321], with all parameters except for
the distance r drawn from Table 4.1. The distance is set indirectly by fixing
the optimal SNR to a value uniformly drawn between 8 and 15. For each
sample in the training set, we generate 96 s of data, whiten it by the PSD
model, and crop the resulting data to 32 s. The exact position of the merger
time in the final data is varied by ±0.25 s. We create noise for the LIGO-
Hanford and LIGO-Livingston detectors and inject the projected waveforms
into both. The test set consists of ≈ 101 days of continuous data split into
multiple files. Injections are generated using the same waveform model and
the distributions of Table 4.1. They are spaced by 180 s to 220 s. Our work
in [61] corrects an error from [66] where the PSD was sampled too coarsely.
This reduced the SNR of the signals below the expected value.

To apply the network to data of duration longer than the input, i.e. 32 s, a
sliding window is used. Each window is whitened and re-sampled as described
above. The window uses a step size of 0.25 s, matching the variation of the
merger time in the training data. The outputs of the network are time series
of SNR estimates and p-scores. We apply thresholds of SNR 4 and p-score
0.1 and cluster points exceeding the threshold if they are within 1 s of each
other. Afterward, we compare the time of the maximum value of each cluster
with the injections to determine true and false positive detections. We accept
something as true positive, if it is within 3 s of an injection.
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Figure 4.3: The sensitive distance as a function of the FAR. The blue curve
shows the sensitive distance when the SNR is used to classify events. The
yellow curve shows the sensitive distance when the p-score is used. The green
curve is generated from the data found in [163] by counting all signals at a
higher injection SNR than the corresponding FAR. We are able to resolve
a small overlap-region between the two different searches but find that the
sensitivity of our search drops close to zero for FARs below 10 per month. At
high FARs both outputs of our network perform equally well, for low FARs
the SNR shows superior performance. Figure and caption were taken from
[61].

4.3 Results

The sensitivity of our proposed algorithm is summarized in Figure 4.3. Our
testing procedure allows us to calculate sensitivities down to a FAR of 0.3
per month. We find that the SNR output collapses to zero sensitivity below a
FAR of 0.6 per month, while the p-score collapses already at a FAR of 12 per
month. This is an improvement over [66], which was incapable of resolving
FARs below 30 per month. The algorithm shows non negligible sensitivity
down to a FAR of 10 per month in the SNR output and 20 per month in
the p-score output, where it reaches a sensitive distance of ≈ 130 Mpc. We
also find that at low FARs the SNR output is more sensitive than the p-score
output, which stands in contrast to our previous findings in [66].
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We compare our analysis to PyCBC Live [58]. To estimate the sensitivity
of PyCBC Live, we use Figure 1 from [163] to obtain a ranking statistic R as
a function of FAR. We then assume that all injections with optimal network
SNR > R are found by PyCBC Live. The green curve in Figure 4.3 shows the
resulting sensitivity curve. We find that PyCBC Live achieves about twice
the sensitive distance measured for our algorithm at a FAR lower by about
one order of magnitude. We also measure the latency introduced by our al-
gorithm to compare it to the latency of PyCBC live. Ignoring pre-processing,
our algorithm is capable of producing alerts in real time and introduces an
average latency of 10.2 s. Restricting PyCBC Live to the parameter region of
Table 4.1 results in a template bank containing 1960 templates per detector,
which can be used to filter the data for both detectors on a single CPU core in
real time. This analysis also introduces a latency of O(10) seconds, making
it at least as computationally efficient as our deep learning alternative.

We also compare our search algorithms to another deep learning based
BNS signal detection pipeline published as [287]. The original pre-print [322]
was revised before publication as [287] shortly before we published our study.
For this reason we compare our approach to both versions. The pre-print
study [322] gave signal strength in terms a peak signal-to-noise ratio (pSNR),
which we estimate to be related to optimal SNR by SNR = 41.2pSNR. Both
the pre-print as well as the published version operate only on data from a
single detector, whereas our algorithm uses data from two detectors. For
this reason, we also scale the SNR from [322] and [287] by a factor of

√
2

to estimate the network SNR. The comparison in terms of true positive rate
can be found in Figure 4.4 at different FARs. We find that our approach is
about 4 times as sensitive as the one presented in [287] in the SNR region
our network was trained on, which is marked by the gray area in the plot.
However, our algorithm falls off rapidly for loud signals and only saturates
at a sensitivity of 100% for SNRs > 46.65.

4.4 Conclusions

We introduced a novel procedure of making long duration time domain data
accessible to NNs, by sampling the data at multiple rates. This multi-rate
sampling was used to train and evaluate a deep learning based search algo-
rithm for GWs from BNS mergers. We compared it to the state-of-the-art
matched filter based low-latency search pipeline PyCBC Live and found that
it is neither computationally more efficient nor as sensitive. This shows that
more work is required to build competitive deep learning search algorithms
for complex signals.
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Figure 4.4: To compare our search to the work of [287] we plot their true
positive rate at a fixed FAR of 8500 per month in yellow and our true positive
rate at the same FAR in green and red. On the x-axis we track the injected
optimal network SNR. The blue curve shows the data from [322], where
the results were given in terms of pSNR. We use the conversion SNR =
41.2 ·

√
2 · pSNR. To obtain these curves we bin the injected signals by their

optimal injection SNR and a bin size of 4. For high SNRs some bins are
empty. Empty bins are interpolated linearly from the remaining data. The
area marked gray highlights the region covered by the training set. We find
that our search performs better for low SNRs but is less sensitive for strong
signals. We also show the true positive rate of our search at a FAR of 10 in
purple and brown. Within the training range we find that our search closely
matches the true positive rate of [322] at a higher FAR. Figure and caption
were taken from [61].
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We also compare our analysis to another deep learning BNS search algo-
rithm. Our algorithm was approximately four times as sensitive to signals
with SNR ≤ 15 but could not generalize well to louder signals.

Finally, we proposed an evaluation scheme that produces results that are
comparable to existing pipelines and is normalized to the injected population
of GW sources. We used this scheme to test our algorithm down to a FAR of
0.3 per month. This analysis showed that the sensitivity of our deep learning
based algorithm drops to zero for FARs that are low compared to FARs at
which deep learning algorithms are usually tested. Following [289], we argued
that using FAPs, which are derived on discrete samples does not translate
well to performance measures based on the more physically relevant FARs,
as clustering effects are disregarded for FAPs.

91



CHAPTER 4. BINARY NEUTRON STAR SEARCH USING MACHINE
LEARNING

92



Chapter 5

Gravitational-wave Merger
Forecasting: Scenarios for the
Early Detection and
Localization of Compact-binary
Mergers with Ground-based
Observatories

This chapter summarizes the work published as [62]. It discusses a classical
low-latency search for pre-merger detection of BNS systems. It is covered
in this thesis, as machine learning is often stated to be a tool to decrease
latency. Having a reference point of existing algorithms that are capable of
pre-merger detection is important to determine research areas where machine
learning algorithms may be of practical use.

5.1 Introduction

GW170817 [24] was the first detected GW event emitted by a BNS merger.
It was accompanied by an EM counterpart observed in multiple frequency
bands [27]. The earliest EM signal was a gamma ray burst observed by Fermi-
GBM and INTEGRAL [323–325] about 1.7 s after the GW merger. The first
optical observations began only about 11 hours after the merger [25]. These
EM observations provided new insight into the nuclear equation of state [18,
19, 326–329], the Hubble constant [20, 330, 331], the phenomenon of kilonova
(see [332] and references therein), and the central engine of short gamma-ray
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bursts [62, 333–335].
If early observations of the optical band would have been available, differ-

ent kilonova emission models could have been differentiated [336]. It is also
hypothesisized that pre-merger EM emissions exist [337–342], which could be
constrained by pre-merger observations. However, early or even pre-merger
EM observation of CBC mergers are constrained by two factors: The latency
between GW signal detection and telescopes being alerted, as well as the
ability of EM instruments being able to cover the sky area where the source
is estimated to be located.

This study assesses the possibility of generating pre-merger alerts for
different eras of detectors and quantifies the localization error associated with
them. By providing pre-merger alerts, the latency is automatically reduced.
Quantifying the localization error allows for EM observation strategies to
be optimized and coordinated. To do so, the evolution of the pre-merger
alert capabilities of ground based detectors over the next O(10) years are
evaluated. Additionally, the capabilities of the current low-latency PyCBC
Live [58, 343] analysis to generate early warnings is tested.

5.2 Methods

Our study covers the five current and planned ground based GW observa-
tories of the coming decade LIGO-Hanford (H), LIGO-Livingston (L) [6],
LIGO-India (I) [192], Virgo (V) [7], and KAGRA (K) [8]. For this net-
work of detectors, we consider three different eras: “Design”, “A+”, and
“Voyager”. The “Design” era expects the four detectors LIGO-Hanford,
LIGO-Livingston, Virgo, and KAGRA to be operational at their 2021-2022
design sensitivity [194]. Starting with the “A+” era, we expect LIGO-India
to be operational and matching the sensitivity of both LIGO-Hanford and
LIGO-Livingston. We use the design PSD of the planned upgrades to the
LIGO instruments from 2024-2026 for the three LIGO detectors [344]. For
Virgo and KAGRA we conservatively assume that their sensitivity will not
improve beyond their “Design” era. The “Voyager” era assumes the PSD of
the three LIGO detectors to match the “Voyager” plans [45]. A follow-up
study covered the third generation detectors ET and CW [345].

To assess the capability of pre-merger detection in the different configu-
rations discussed in [62], we simulated a population of O(105) BNS mergers.
This population is distributed uniformly in volume and isotropically in sky
location and binary orientation. The masses are chosen to be a reference bi-
nary with 1.4− 1.4 M�, but the results can be generalized to arbitrary masses
(see Section 4 in [62]). The signals are subsequently injected into simulated,
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Gaussian noise, colored by the PSD of different detectors and eras.
We pursue two different criteria for signal detection. To gauge the general

capability of pre-merger detection, our first method assumes the detection of
a signal if the combined optimal network SNR > 10. This choice is consistent
with the threshold for confidently detected mergers in [212, 346]. To deter-
mine the pre-merger detection capabilities, we calculate the network SNR
as a function of time before merger. Once the network SNR exceeds the
threshold, it is counted as detected and we generate a posterior of the sky
location using Baystar [347] for every time step. The second method involves
a full search using PyCBC Live in a low-latency configuration at a FAR of
1 per year. To adapt it to pre-merger detection, the template bank is a
combination of several template banks using different pre-merger truncation
times. The truncation of the different banks are chosen such that they cover
5% increments of the total expected SNR. This second analysis allows us to
test how capable existing analysis methods are at pre-merger detection. Sky
localization is again performed using Baystar [347].

5.3 Results

The core results of the study are given in Figures 5.1 to 5.3. They show the
search sensitivity, localization error accuracy, and detection rate estimates as
functions of time of detection before merger. The two columns compare the
network of currently operational detectors with the planned detector network
for each era. The times on the horizontal axis do not include the latency of
the analysis or any other processing. They merely reflect the upper frequency
cutoff at which the two analysis methods can detect them.

From the plots, we find that the PyCBC Live analysis is comparable to the
idealized search and even outperforms it at a FAR of 1 per month. This shows
that current analysis methods are fully capable of pre-merger detections at
the calculated rates. Assuming a merger rate density of 1000 Gpc−3yr−1,
we find that one source per year can be expected to be detected with a
90% confidence localization of < 100 deg2 and an early warning of 18 s, 54 s,
and 195 s for the “Design”, “A+”, and “Voyager” era, respectively. If the
confidence region is reduced to 50%, the early warning increases to 34 s,
104 s, and 335 s. Alternatively, the pre-merger warning can be kept constant
to increase the expected number of detections to 4−6 sources per year. This
strategy would more than double the number of detected EM counterparts,
assuming that 50% of the counterparts lie outside the credible region.
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Figure 5.1: “Design” era (2021-2022) detection and localization for the HLV
network (left) and the full gravitational-wave detector network (right) as a
function of time before merger for a fiducial 1.4-1.4M� BNS merger. (Top)
The sky-averaged detection range for the idealized search and PyCBC Live
operating at a false alarm rate of once per year. (Middle) The upper limit
on the localization sky area and source distance, respectively, for detectable
sources. Sky areas are quoted at the 90% credible level. (Bottom) The
detection rate of all sources (black) and those that also have a sky localization
less than 1000 deg2 (blue), 100 deg2 (orange), 10 deg2 (green), or 1 deg2 at
a 90% (solid), 50% (dashed), and 25% credible level (dotted). Figure and
caption are taken from [62].
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Figure 5.2: “A+” era (2024-2026) detection and localization for the HLV
network (left) and the full gravitational-wave detector network (right) as a
function of time before merger for a fiducial 1.4-1.4M� BNS merger. (Top)
The sky-averaged detection range for the idealized search and PyCBC Live
operating at a false alarm rate of once per year. (Middle) The upper limit
on the localization sky area and source distance, respectively, for detectable
sources. Sky areas are quoted at the 90% credible level. (Bottom) The
detection rate of all sources (black) and those that also have a sky localization
less than 1000 deg2 (blue), 100 deg2 (orange), 10 deg2 (green), or 1 deg2 at
a 90% (solid), 50% (dashed), and 25% credible level (dotted). Figure and
caption are taken from [62].
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Figure 5.3: “Voyager” era (late 2020’s) detection and localization for the HLV
network (left) and the full gravitational-wave detector network (right) as a
function of time before merger for a fiducial 1.4-1.4M� BNS merger. (Top)
The sky-averaged detection range for the idealized search and PyCBC Live
operating at a false alarm rate of once per year. (Middle) The upper limit
on the localization sky area and source distance, respectively, for detectable
sources. Sky areas are quoted at the 90% credible level. (Bottom) The
detection rate of all sources (black) and those that also have a sky localization
less than 1000 deg2 (blue), 100 deg2 (orange), 10 deg2 (green), or 1 deg2 at
a 90% (solid), 50% (dashed), and 25% credible level (dotted). Figure and
caption are taken from [62].
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5.4 Conclusions

We have shown that for different detector network configurations in the com-
ing decade the possible pre-warning time for a BNS merger may increase from
O(10) to O(100) seconds. However, this amount of pre-warning is still insuf-
ficient for many observatories for re-pointing and tiling a 100 deg2 area [348].
Notable exceptions include Swift [349], ZTF [350, 351], MASTER [352], and
CTA [353]. Observatories that are not capable of re-point and tile the sky
region in the provided early warning time may still benefit by adjusting their
observing configurations [354].

We hope that this roadmap provides grounds for the observing commu-
nity to plan continued and automated observations with existing instruments,
as well as further motivation to build new instruments with different obser-
vation bands. This includes concepts such as the Transient Astrophysics
Probe [355]. If these hopes are met, it seems plausible that the first BNS
detection with simultaneous observation of the prompt EM emissions can be
made within the next decade.
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This chapter is essentially a full reprint of [63] with minor edits for for-
matting. It discusses the influence of different training strategies on deep
learning GW search algorithms and introduces a novel way of treating the
network output.
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6.0 Abstract

Compact binary systems emit gravitational radiation which is potentially
detectable by current Earth bound detectors. Extracting these signals from
the instruments’ background noise is a complex problem and the computa-
tional cost of most current searches depends on the complexity of the source
model. Deep learning may be capable of finding signals where current algo-
rithms hit computational limits. Here we restrict our analysis to signals from
non-spinning binary black holes and systematically test different strategies
by which training data is presented to the networks. To assess the impact
of the training strategies, we re-analyze the first published networks and di-
rectly compare them to an equivalent matched-filter search. We find that
the deep learning algorithms can generalize low signal-to-noise ratio (SNR)
signals to high SNR ones but not vice versa. As such, it is not beneficial to
provide high SNR signals during training, and fastest convergence is achieved
when low SNR samples are provided early on. During testing we found that
the networks are sometimes unable to recover any signals when a false alarm
probability < 10−3 is required. We resolve this restriction by applying a mod-
ification we call unbounded Softmax replacement (USR) after training. With
this alteration we find that the machine learning search retains ≥ 91.5% of
the sensitivity of the matched-filter search down to a false-alarm rate of 1
per month.

6.1 Introduction

The direct detection of a gravitational wave (GW) on September 14, 2015
[13] started the era of GW astronomy. After the analysis of two and a half
observing runs, tens of GWs have been confirmed [206, 356]. GW170817 [24]
was the first GW event also seen in the electromagnetic spectrum [26, 27,
323, 324].

The latency between a GW and its reported detection is a vital aspect of
multi-messenger missions. Lowering the delay between data aggregation and
signal detection allows to maximize the electromagnetic observation time and
reduces the risk that early emissions are being missed.

To extract GW signals from the instrument data, a well-established tech-
nique known as matched filtering is used in many search algorithms. It con-
volves templates, i.e. pre-calculated models of the expected signals, with the
measured data [36, 58, 158, 161, 357]. When one of these templates matches
the data to a given degree and the data quality is high enough, these searches
report a candidate detection.
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Matched filtering is known to be optimal in stationary Gaussian noise
when accurate models of the waveform exist [30]. However, it can be compu-
tationally limiting when many templates are required. This is the case when
effects such as higher-order modes [41], precession [40] or eccentricity [358]
are considered. Furthermore, signals which are not covered by the filter bank
may be missed entirely. While there are unmodeled searches that detect co-
incident excess power in different detectors [37–39], they are less sensitive in
regions where accurate models exist.

Recently, new deep learning based searches have started to be explored
[55, 56, 61, 287, 302, 359]. Summaries of the current state of the field are
given in [48, 360]. The pioneering works by George et al. [55] and Gabbard
et al. [56] demonstrated that deep neural networks are capable of detecting
GWs from two merging black holes (BBH). The networks have also proven
to generalize to signals with previously unseen parameters [55, 361]. It was
shown that these algorithms can distinguish data containing a GW from
pure noise as well as matched filtering with a false-alarm probability (FAP)
down to 10−3. That means, the networks were tested down to a level at
which about 1 in 1000 pure noise samples was falsely classified as containing
a signal.

The authors of [289] find that the FAPs determined by the original stud-
ies do not directly translate to false-alarm rates (FARs) on continuous data
streams. For FARs, the appropriate question to ask is how many false signals
does the network identify per time interval of continuous data, as opposed
to how many uncorrelated data chunks are falsely identified as containing
a signal. The effects of clustering subsequent outputs when the network is
applied via a sliding window have to be accounted for. Comparing deep
learning searches to traditional matched-filter searches is, therefore, not triv-
ial because matched-filter searches typically operate at FARs that are orders
of magnitude smaller than what has been tested for early neural networks. In
[61] we suggested a standardized testing procedure which produces statistics
which are comparable to traditional search algorithms to resolve these issues.

In this paper we reanalyze and extend the results given in the initial
papers [55, 56]. Our motivation is twofold. First, we want to verify and
test the performance of the networks quoted in those papers. Specifically,
we apply the testing procedure outlined in [61]. Second, we discuss how
the GW data is prepared for and presented to the network. The form of
data preparation is often taken as a given, while comparatively more work is
invested in finding a network structure that suits the problem. We carefully
examine the influence of different choices of data presentation and training
strategies on the ability to detect signals given a fixed network.

Here we focus on signal detection. The problem of deep learning param-
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eter estimation is another vital and active area of research. Multiple groups
have made advancements in this field [55, 311–313, 317, 362].

We use the network presented by Gabbard et al. [56] for most of our
studies. It is trained on simulated data containing GWs from BBHs with
individual black hole masses ranging from 10 M� to 50 M�. The search is
restricted to a single detector. This restriction reduces the parameter space
to the two component masses, the orbital phase, the distance to the source
and the time of coalescence.

The network classifies segments of 1 s duration sampled at 2048 Hz into
the two categories “noise + signal” and “noise” by returning a value between
0 and 1 we call “p-score”. A larger p-score corresponds to a higher confidence
of the network that the input contains a signal.

To optimize the training strategy, we focus on the difference between
curriculum learning [363] and fixed interval training. Fixed interval training
uses a single training set, i.e. a single, fixed range of signal-to-noise ratios
(SNRs). Curriculum learning lowers the SNR of the training signals pro-
gressively, thus increasing the complexity with time. We evaluate different
variants of both strategies. In total 15 different approaches are tested.

Each strategy is applied to 50 randomly initialized networks. We do this
to guard against favorable initializations. All tests are done with two different
implementations, to further increase robustness of our results. The different
implementations use the two core libraries Tensorflow [364] and PyTorch
[365], respectively.

We find that most training strategies are capable of closely reproducing
the results given in [56]. We do not see a significant difference in performance
between curriculum learning and fixed interval training strategies. However,
networks that had access to lower SNR signals during training generally
outperformed those that only saw high SNR signals. We find that networks
trained on fainter signals can generalize to loud ones, while the opposite is
not the case.

Further analysis of the networks showed that the efficiency, which is the
fraction of correctly classified input samples containing a signal at a given
FAP, drops to zero beyond a FAP of 10−3 when the training is carried out
for long enough. This drop is caused by numerical instabilities in the final
activation and the comparatively low penalty of false positives. We propose
a simple modification that does not require retraining of the network to
push this problem to significantly lower FAPs. We call this modification
unbounded Softmax replacement (USR).

We evaluate 3 different networks of each training strategy on a month
of simulated data. The networks are applied using a sliding window with
step size of 0.1 s. We follow the procedure outlined in [61] to analyze the
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results. Our evaluation of the base line network is limited by O (103) false
alarms estimated with perfect confidence to contain a signal. By applying the
USR modification we are able to eliminate this restriction and can calculate
sensitivities down to a FAR of 1 per month. For comparison, we construct a
template bank and use it to do a matched-filter search on the same data used
to evaluate the networks. We find that the machine learning search retains
at least 91.5% of the sensitivity of a matched-filter search for all tested FARs
and most strategies.

All code required to reproduce our analysis is public and can be found at
[366].

The contents of this paper are structured as follows. In section 6.2 we
describe the architecture, data sets, training strategies, and evaluation meth-
ods. We apply these in section 6.3 and describe our findings. In particular
we describe the USR modification which allows the networks to be tested at
low FAPs. We conclude in section 6.4.

6.2 Methods

6.2.1 General setup

We focus our studies on the network presented by Gabbard et al. in [56].
They used a convolutional neural network with 6 stacked convolutional layers
followed by 3 fully connected layers. All but the last layer use an exponential
linear unit (ELU) as activation function.

The architecture is altered in two details compared to the original version
of [56]. We added a batch normalization layer before the first convolutional
layer to take care of input normalization. Input normalization scales all
inputs to have a mean-value of 0 and a variance of 1. This is standard
practice in contemporary deep learning and has been proven to help the
network train efficiently [271]. The second modification is a reduction of the
pool sizes. This change was required because we lowered the sample rate of
the data from 8192 Hz to 2048 Hz. We decided to lower the sample rate for
multiple reasons. First of all, the detector sensitivity drops sharply above
1 kHz. Thus little to no SNR is lost by disregarding higher frequencies.
For this reason current searches are often limited to the same frequency
band as well [58, 367, 368]. Second, signals within our training set merge at
much lower frequencies and do not exceed 1 kHz. Finally, as we will show
in section 6.3, our training converged to the same state as previous works.
We are thus confident that this reduction in the sample rate has no negative
impact on the network’s ability to detect signals. A reduction of the size of
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Table 6.1: The modified neural network from [56] as used in this study.
The given shapes correspond to the tensor shapes in the TensorFlow version
of the code, i.e. data length × number of channels. PyTorch swaps these
dimensions. The order of the layers is given by reading the column ”layer
type” from top to bottom and left to right. Layers are grouped by their
influence on the output shape and by trainable weights.

layer type kernel size output shape
Input + BatchNorm1d 2048× 1
Conv1D + ELU 64 1985× 8
Conv1D 32 1954× 8
MaxPool1D + ELU 4 488× 8
Conv1D + ELU 32 457× 16
Conv1D 16 442× 16
MaxPool1D + ELU 3 147× 16
Conv1D + ELU 16 132× 32
Conv1D 16 117× 32
MaxPool1D + ELU 2 58× 32
Flatten 1856
Dense + Dropout + ELU 64
Dense + Dropout + ELU 64
Dense + Softmax 2

the input to a neural network usually also helps with training. The resulting
network setup is depicted in Table 6.1.

All studies presented in subsection 6.2.2 and subsection 6.2.3 were carried
out using the network from George et al.1 [55] as well. However, with our
particular training setup, every metric showed performance similar to the
network from [56]. We present only results using the network based on the
work of Gabbard et al.

Each GW signal is defined by the component masses m1,m2 and a phase
φ0. Two masses are drawn independently from a uniform distribution be-
tween 10 M� and 50 M� and the higher and lower values are assigned to m1

and m2, respectively, to enforce the condition m1 ≥ m2. Phases are uni-
formly drawn from the interval [0, 2π]. We generate signals with 5 different
phases for each pair of masses (m1,m2). The amplitude, and therefore the
distance of the source, is determined by the target SNR we have chosen. We
fix the sky position to be overhead the LIGO Hanford detector [6] and the

1We adjusted the network from George et. al. too, by using batch normalization for
input normalization and reducing the sample rate of the input to 2048 Hz.
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inclination as well as the polarization to 0, because in the case of nonprecess-
ing signals and assuming a single detector, any variation in those parameters
can be fully absorbed by modifications of the amplitude and phase of the
signal.

The waveforms are generated with a sample-rate of 2048 Hz, a lower-
frequency cutoff of 20 Hz, and using the model SEOBNRv4_opt [369] (opti-
mized version of SEOBNRv4 [118]). It is common practice to shift the location
of the maximum amplitude by some small time within each training sample.
This procedure allows the network to be less sensitive to the exact align-
ment of the waveform within its input. To achieve this behavior, we shift
the position of the merger by a time uniformly drawn from −0.1 s to 0.1 s
before projecting onto the Hanford detector. After the projection the sig-
nals are whitened using the analytic model of LIGO’s design sensitivity at
its zero detuned high power configuration [319], i.e., we divide the Fourier
transformed signal by the square root of the power spectral density (PSD)
associated with the power of the background noise at different frequencies,
and transform back to the time domain. Whitening the data reduces the
power at frequencies where the detector is known to be less sensitive. Next,
the waveforms are scaled to an optimal SNR of 1. The optimal SNR ρopt is
defined by

ρopt
2 = 4Re

[∫
df
h̃(f)h̃∗(f)

Sn(f)

]
, (6.1)

where h̃ is the Fourier transform of the time domain signal, before it was
whitened, h̃∗ is its complex conjugate, Sn is the PSD and Re extracts the
real part of the complex number. Finally, we extract a time slice such that
the original, not shifted merger time is located 0.7 s from the start of the
window.

All noise is simulated from the same PSD used to whiten the signals. After
generation, the noise is whitened by the PSD used to create it in the same
way the signals are whitened. We choose to explicitly whiten the colored
noise to take into account any artifacts the process may introduce. This also
eliminates sources of errors and is in principle extendable to real noise.

The whitened signals and noise samples are combined during training.
This allows us to rescale the signals at runtime to a desired strength. Since
during generation all signals are scaled to SNR 1, rescaling is achieved by a
multiplication of the signal with the target SNR.

We have briefly tested training on frequency domain data. This was mo-
tivated by studies such as [291, 302]. While these studies analyze longer
duration signals, there is no conceptual problem to using the frequency rep-
resentation of short BBH waveforms. To accommodate the complex valued
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frequency representation we changed the input layer in Table 6.1 to a shape
of 1025 × 2 and inserted the real and imaginary parts as different channels.
With this being our only modification to the architecture, the network was
able to differentiate data containing a signal from pure noise but found up to
65% fewer signals at low SNR. We suspect that with greater effort in finding
an optimized architecture, one could regain the performance of the network
on time domain data.

We have also explored training on raw data, i.e. data where the computa-
tionally expensive whitening is skipped. Even after several hundred epochs
the network was not able to distinguish data containing signals from pure
noise, irrespective of using the time or frequency domain representation of
the data.

Our training set contains 20 000 unique combinations of component masses
each of which is used to generate 5 waveforms with random coalescence
phases. Therefore, it contains 100 000 individual signals. We generate 200 000
independent noise samples, 100 000 of which are used in combination with
the signals. The remaining 100 000 noise samples are used as pure noise. Our
training set, therefore, contains 200 000 independent samples.

The validation set is assembled in the same way as the training set. It
too contains 100 000 samples of the “signal”-class and 100 000 samples of the
“noise”-class for a total of 200 000 samples. The validation set was chosen
to be of equal size to the training set due to its influence when curriculum
training strategies are used. The conditions for when the complexity of the
training set is increased are evaluated on this set.

We use a third data set to calculate relevant metrics of the network during
training. This third set is required, as the validation set directly influences
the training for curriculum strategies. Metrics determined on the validation
set may, therefore, be biased. We call this third set the efficiency set and
describe its usage in subsection 6.2.2. It contains 10 000 unique signals and
400 000 independent noise samples.

Finally, we evaluate the performance of the network on a test set. This
test set contains a month of simulated Gaussian noise with injections sepa-
rated by a time uniformly distributed in the interval [16, 22] s. The injection
parameters are drawn from the distributions shown in Table 6.2. Noise is
generated using the same PSD used for the training set. A month of data
corresponds to ∼ 26 million correlated samples.

Each network is trained for 200 epochs, i.e. 200 full passes on the training
set. We found this to be a sufficient number of training cycles for most of
the networks to converge to a stable performance on the validation set. We
use the default implementations of the Adam optimizer with a learning rate
of 10−5, β1 = 0.9, β2 = 0.999 and ε = 10−8 [253]. As loss we use a variant of
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Table 6.2: Injection parameters for the data set used to determine the FAR
and sensitive volume of the different networks.

Parameter Uniform distribution
Component masses m1,m2 ∈ (10, 50) M�
Spins 0
Coalescence phase Φ0 ∈ (0, 2π)
Polarization Ψ ∈ (0, 2π)
Inclination cos ι ∈ (−1, 1)
Declination sin θ ∈ (−1, 1)
Right ascension ϕ ∈ (−π, π)
Distance d2 ∈ (5002, 70002) Mpc2

the binary crossentropy that is designed to stay finite,

L(yt,yp) = − 1

Nb

Nb∑
i=1

yt,i · log (ε+ (1− 2ε)yp,i) . (6.2)

Here yt is either (1, 0)T for data containing a signal or (0, 1)T for pure noise,
yp is the prediction of the network, Nb = 32 is the mini-batchsize, and
ε = 10−6.

6.2.2 Network performance

A common metric when training neural networks is the accuracy, which is
the ratio of correctly classified samples over the total number of samples.
This approach weighs false-negatives and false-positives equally.

GW searches assign a statistical significance to each event. This is usually
given as the FAR of the search at the ranking statistic threshold associated
with the candidate event. For the network we use the p-score as ranking
statistic. The more false positives a search produces at a given ranking
statistic, the less significant each event becomes. Therefore, false-positives
severely limit the ability of the search to recover true events. Low latency
searches do not distribute any event candidates publicly with a FAR greater
than ∼ 1 per month [58]. For searches which operate on archival data, low
FARs are needed to assign a probability for the signal to be of astrophysical
origin, based on the expected astrophysical rate of comparable events [206,
356].

For these reasons we monitor the efficiency of the network rather than
the accuracy. The efficiency is the true-positive probability at a fixed false-
positive probability, i.e., a fixed FAP. To do so, we sort the p-score outputs
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of the network on the noise from the efficiency set and use the x-th largest
as a threshold, where we choose

x = bNn · FAPc (6.3)

Here, Nn is the total number of noise samples used and b·c denotes the
flooring operation. We then evaluate the signals from the efficiency set scaled
to SNRs 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 and count the samples that exceed
the threshold. The efficiency is then given by

efficiency =
Ns>t

Ns

, (6.4)

with Ns>t being the number of signals assigned a p-score larger than the
threshold and Ns the total number of signals. To get a better understanding
of the efficiency as a function of the signal strength, we also calculate the
efficiencies at each of the SNRs individually. In this work, a FAP of 10−4 is
used for all efficiency calculations.

For each of the strategies we discuss in subsection 6.2.3 the network is
trained 50 times from scratch. The parameters of the networks are initially
random for each run. The final performance of a single network may depend
on these initial values. Training each network-strategy combination multiple
times and averaging over their efficiencies reduces the influence of the network
initialization, thus yielding greater insight into the impact of the training
strategy.

After training has completed for all 50 networks, we choose 3 networks
for which we calculate the sensitive volume and the false-alarm rate on a
month of simulated data. The networks are chosen by the following scheme.
We select the epoch of the maximum efficiency of all networks. At this epoch
we pick the best and the worst performing networks, where ranking is based
on the efficiency. The last network is chosen to be the one which has the
efficiency closest to the average efficiency over all 50 runs at the chosen epoch.

The sensitivity and FAR calculation follows the procedure outlined in
[61]. As suggested in [55, 56], the network is applied to time series data of
duration longer than the input window via a sliding window. We choose a
step size of 0.1 s to ensure the correct alignment of the merger time within
the input window for at least one step. Each window is whitened individually
using the same method and noise model applied to the training set.

To reduce the computational cost, the data are sliced into the input win-
dows and preprocessed only once. We store this sliced data and apply the
different networks to it. This allows us to evaluate the entire month of data
in about 1 h on a single NVIDIA RTX 2070 SUPER.
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The network outputs a value between 0 and 1 for every slice. A value of 1
corresponds to the network being confident that it has seen a signal. We use
this output as ranking statistic. Outputs that exceed a threshold, which we
call trigger-threshold, are clustered by their time. Within each cluster the
first time where the output becomes maximal is picked. The combination of
this time and the corresponding network output is called an event.

The list of events is compared to the known injection times. If the event
is separated from the closest injection by more than some maximum time
it is called a false positive. Otherwise we consider it a true positive. From
these we can calculate the FAR as well as the sensitive volume as detailed in
[61]. The FAR is given by

FAR =
Nf

To
, (6.5)

where Nf is the number of false positives and To is the duration of the
analyzed data. When the injections are distributed uniformly in volume the
sensitive volume of the search is given by

V (FAR) = V (dmax)
Nt (FAR)

Ni

, (6.6)

where dmax is the maximum distance at which sources are injected, V (dmax)
is the volume of a sphere with radius dmax, Ni is the total number of injections
and Nt (FAR) is the number of true positives at a given FAR. The FAR can
be adjusted by considering only events above a given threshold. To convert
the sensitive volume to a distance we calculate the radius of a sphere of the
given volume.

We use a p-score of 0.1 as our trigger-threshold. Triggers are said to
belong to a cluster if they are within 0.2 s of the cluster bounds. An event
is called a true-positive if there was an injection within 0.3 s of the reported
event time. Otherwise it is a false-positive. We chose the cluster boundary
time as twice the step size to allow for modest smoothing of the network
output, while keeping it short compared to the average duration of a signal
(O (1 s)). The maximum separation between an event and the corresponding
injection was chosen to be larger than the cluster boundaries but still small
compared to the average signal duration. None of these parameters were
optimized.

Figure 6.1 shows example output from one of the networks. The top panel
shows the raw input with the injected waveform overlayed in black. The
injection time is marked with a red vertical line and the grey lines highlight
±0.3 s where events are true positives. The bottom panel shows the network
output for the corresponding time. The black vertical lines show the events
returned by the search.
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Figure 6.1: A sample output from the network on long duration data. The
top panel shows the whitened input data. The injected signal is overlayed in
black. The red vertical line signifies the time of the injection, i.e. the time
that would ideally be returned by the search algorithm. The vertical grey
lines mark the interval within which a returned event is classified as a true
positive. The bottom panel shows the output of the network corresponding to
the input. The vertical red and grey lines, again, show the true injection time
and the allowed interval for true positives respectively. The black vertical
lines mark the events returned by the search. Their height is the p-score
attributed to the event. While the first event is a true positive, the second
event is a false-positive originating from noise.
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6.2.3 Training strategies

The two initial publications by George et al. [55] and Gabbard et al. [56]
disagree on the usefulness of curriculum learning. Whereas George et al. find
a noticeable improvement by using curriculum learning, Gabbard et al. find
no difference in the final performance of the network.

We aim to determine the impact curriculum learning has on the final
performance and speed of convergence of these networks. By doing so we
optimize the sensitivity of the networks tested here and hope that our findings
generalize also to state-of-the-art machine learning search algorithms [57, 61,
287, 312].

Our study contains 10 curriculum learning and 5 fixed interval training
strategies. An overview can be found in Table 6.3. The minimum SNR
allowed in any of these strategies is ≥ 5. We choose SNR 5 as a lower bound
as this is roughly the lowest single detector SNR at which signals seen in
multiple detectors can be confidently distinguished from noise [206, 356].

We test 5 different conditions for the optimal SNR contained in the train-
ing data for both types of strategies. For curriculum strategies, these con-
ditions prescribe when the SNR of the training data is lowered. For fixed
interval strategies the conditions are the interval from which the SNR for
each sample is drawn.

Curriculum strategies use either the validation loss, the validation accu-
racy, or the number of epochs since the last step as conditions. For validation
loss and validation accuracy we choose either a threshold or wait until the
values stabilize and do not improve anymore. The latter are labeled by a pre-
fix ”plateau” throughout this paper. We choose a threshold of 0.95 for the
validation accuracy and 0.2 for the validation loss. These values are arbitrary
but proved to work well. When using the plateau conditions we lower the
training range when the validation loss or validation accuracy, respectively,
do not improve by more than 0.01% for 6 consecutive epochs. Finally, we also
test lowering the training SNR irrespective of any of the metrics, by waiting
5 epochs between steps. We choose to wait 5 epochs to allow the network
enough time at each signal strength while ensuring we reach the minimum
SNR. No extensive studies testing different values were made.

We test two different approaches to lowering the training SNR. All cur-
riculum strategies start with SNRs which are uniformly drawn from the in-
terval [90, 100]. Strategies that are given the postfix ”relative” lower the
bounds of this interval by 10% at each step. The ranges are not lowered fur-
ther when the lower bound of the interval reaches SNR 5. Strategies without
the postfix ”relative” lower the bounds of the interval by a fixed value of 5
at each step. This procedure is also continued down to a minimum bound of
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SNR 5.
For fixed interval training strategies we test training on a single SNR as

well as a fixed size interval of SNRs. We choose to train on fixed single SNRs
8, 15 and 30 to cover the low, mid and high SNRs respectively. Training on
a single SNR allows us to test how well the network generalizes to lower and
higher SNRs than it has seen during training. By drawing the SNR from an
interval we aim to reduce the dependence on a specific signal strength. We
choose two strategies that draw SNRs from a fixed range. One covers only
the lowest range used by any of the non-relative curriculum strategies, i.e.
it draws the signal SNRs from the interval SNR ∈ [5, 15]. The other draws
the SNRs from the entire range of SNRs seen by the curriculum strategies,
SNR ∈ [5, 100].

6.2.4 Matched-filter baseline

In order to assess how sensitive the trained networks are in relation to conven-
tional searches, we perform a matched-filter analysis of the test set described
in subsection 6.2.1. To do so, we utilize the PyCBC analysis toolkit [370].

The template bank covers component masses from 10 M� to 50 M� and
is constructed to lose no more than 3% of the SNR of any signal due to
its discreteness. The templates are placed stochastically. In total, the bank
contains 598 templates.

The search is implemented by pycbc_inspiral. We configured it to
output a set of times where any template of the bank convolved with the data
exceeds a matched-filter SNR of 5. Unlike the optimal SNR, the matched-
filter SNR is the match of a detector data segment with a template, and so it
varies based on the noise realization, while the optimal SNR assumes a noise
realization that is constant zero. Combining the times where the threshold
is exceeded with the corresponding matched-filter SNR and by using this
SNR as ranking statistic, we obtain a set of triggers. We then process these
triggers as described in subsection 6.2.2 to find events and calculate FARs
and sensitive distances.

The configuration files are included in the data release [366].

6.3 Results

6.3.1 Sensitivities

We are able to reproduce or in some cases even improve on the results given
in [56]. The top panel of Figure 6.2 shows the efficiency of one network as
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Table 6.3: An overview of the different training strategies tested in this work.
The ”Curriculum” type strategies lower the SNR of the training samples
whenever the condition in the last column is fulfilled. All of them start with
SNR ∈ [90, 100]. Curriculum strategies with the postfix ”relative” in their
name lower the boundaries of the interval by 10% at each step, until the lower
limit falls below SNR 5. The other curriculum strategies lower the bounds
by a fixed value of 5, until the lower limit reaches SNR 5. A metric fulfills
the plateau condition when it has not improved by more than 0.01% for 6
consecutive epochs. The ”Fixed interval” type strategies use a single SNR
range for the entire training. Their interval is given in the last column.

Type Name Condition

Curriculum

accuracy
when validation accuracy ≥ 0.95

accuracy relative
epochs

every 5 epochs
epochs relative
loss

when validation loss ≤ 0.2
loss relative
plateau accuracy

6 epochs validation accuracy plateauplateau accuracy
relative
plateau loss

6 epochs validation loss plateauplateau loss
relative

Fixed interval

SNR 30 SNR = 30
SNR 15 SNR = 15
SNR 8 SNR = 8
low SNR ∈ [5, 15]
full SNR ∈ [5, 100]
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a function of the SNR at fixed FAPs calculated on the efficiency set. We
compare our findings to theirs and find excellent agreement with the results
shown in Figure 3 of [56], which closely reproduced efficiencies of matched
filtering. The efficiencies at FAPs down to 10−3 for most other training
strategies also closely follow the findings of Gabbard et al. We are, therefore,
able to robustly reproduce the findings of [56].

In Figure 6.3 we show the evolution of the efficiency of the 50 networks
trained on the fixed interval SNR ∈ [5, 15] as the number of training epochs
is increased at a FAP of 10−4. Each panel of the plot shows the efficiency
for a chosen SNR which allows us to observe how well the networks perform
during different stages of the training at different signal strengths. This is
especially interesting for curriculum strategies, where the SNR in the training
set is adjusted as the network trains. The grey lines show the evolution of the
efficiency for the different network initializations. The black, dashed line is
the average of the grey lines. We highlight the evolution of a single network
in dark grey. The red, dashed, vertical line signifies the epoch of maximum
efficiency over all 50 networks and 200 epochs.

All networks in Figure 6.3 converge to similar efficiencies during the first
∼ 100 epochs. However, as training continues sudden drops to zero effi-
ciency occur which become more frequent at later epochs. As a result the
average efficiency drops continuously after some time. All networks show
this behavior and thus the influence of an unlucky initialization can be ruled
out. Furthermore, the drops are observed at all SNRs simultaneously and,
therefore, do not depend on the signal strength.

The same effect can be seen in the top panel of Figure 6.2. For FAPs ≥
10−3 the curves behave as expected. As one lowers the FAP the efficiency at
any given SNR is expected to drop. Visually this manifests in a shift of the
efficiency curves toward higher SNRs. Ideally, this behavior would be true
for any FAP. However, at a FAP of 10−4 the efficiency collapses and becomes
a constant 0.

The drops to zero efficiency are caused by noise samples which are at-
tributed a p-score of 1. Since the Softmax activation on the last layer restricts
outputs to the interval [0, 1], no signal samples can achieve a p-score larger
than the threshold and thus they cannot be distinguished from noise.

Many of the noise samples attributed a p-score of 1 are caused by numer-
ical rounding errors in the Softmax activation

Softmax (x)i =
exp (xi)∑N
j=0 exp (xj)

, (6.7)

where x = (x0, x1, . . . , xN) is the vector of outputs of the previous layer in
the network, and N + 1 is the number of neurons in the layer.
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Figure 6.2: The efficiency as a function of optimal SNR at different FAPs.
The network was trained on SNRs drawn from the fixed interval [5, 15]. We
used epoch 186 of the network with the lowest efficiency at that epoch to
produce this figure. The top panel shows the efficiency when the last layer
uses a Softmax activation, the bottom panel shows the same network with
the USR modification. We determine the threshold on the network output
using a set of 400 000 pure noise samples. Any of the 10 000 signals at each
SNR exceeding this threshold are counted as detected. We compare our
findings to Figure 3 of the reference [56] which closely reproduces efficiencies
of matched filtering.
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Figure 6.3: The evolution of the efficiency as a function of the epochs at
different optimal SNRs. Training used the fixed SNR interval [5, 15]. The
individual evolutions of all 50 runs are included as grey curves that form
overlapping grey bands when plotted together. The dashed black line is the
average of those. In dark grey we highlight the evolution of the efficiency for
a single network. At the epoch marked by the red, dashed, vertical line we
select the network with the highest, lowest and closest to average efficiency
for further testing. The curves are computed at a FAP of 10−4.
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The networks operate with single precision (32-bit) floating point num-
bers. Therefore, small changes in the values of x may cause a roundoff error
due to the rapid change in scale of the exponential functions. When this
occurs, the fraction may evaluate to 1 even when mathematically (6.7) may
never be 1.

We removed the final activation of the pre-trained network in an attempt
to avoid the rounding errors. To do so, we recast (6.7) for N = 1 into

exp (x0)

exp (x0) + exp (x1)
=

1

1 + exp (x1 − x0)
, (6.8)

and impose thresholds for the efficiency calculation on the difference x0− x1

directly rather than Softmax (x)0. Since (6.8) is bijective, there exists a direct
relation between thresholds in x0−x1 and the thresholds on Softmax (x)0. We
use x0−x1 rather than x1−x0 as our ranking statistic since x0−x1 > x̂0−x̂1 ⇔
Softmax (x)0 > Softmax (x̂)0. We call this modification unbounded Softmax
replacement.

The resulting efficiency is depicted in the bottom panel of Figure 6.2.
Figure 6.4 shows the efficiency evolution at different optimal SNRs. We find
that the drops to zero efficiency vanish when we apply USR. This is the case
for all training strategies we explored and more examples are shown in the
appendix (see Figure 6.9 to Figure 6.12).

One could also try to resolve the rounding issue by using double precision
(64-bit) floating point numbers instead of single precision when applying
the Softmax layer. We have tested a numerically safe implementation of
the Softmax and found that its first output is rounded up to one even for
quadruple (128-bit) precision when the difference x0 − x1 > 45. This is
a relatively low value that indeed occurs for some noise realizations in our
experiments. Although using higher precision for the Softmax layer increases
the range of values it can operate on, the USR still solves roundoff issues more
robustly.

The efficiency is a metric that is easy to calculate and physically more
relevant than the accuracy of the network. However, it does not deal with
samples where waveforms are misaligned in the data or take into account
longer stretches of time. It is, therefore, only an approximation to the true
statistic we want to calculate: the sensitive volume.

To assess if the efficiency is a good approximation to this statistic, we
calculate the sensitive volume of three chosen networks for every training
strategy as described in subsection 6.2.2. The networks are chosen from the
50 different initializations based on their efficiency at a selected epoch. We
pick the networks with the highest, lowest and closest to average efficiency
and denote them with ”High”, ”Low” and ”Mean”, respectively, from here
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Figure 6.4: The evolution of the efficiency as a function of the epochs at
different optimal SNRs. Training used the fixed SNR interval [5, 15]. The
individual evolutions of all 50 runs are included as grey curves that form an
overlapping grey band when plotted together. The dashed black line is the
average of those. In dark grey we highlight the evolution of the efficiency for
a single network. At the epoch marked by the red, dashed, vertical line we
select the network with the highest, lowest and closest to average efficiency
for further testing. The curves are computed at a FAP of 10−4. This figure
shows the same networks as Figure 6.3 after applying USR. This prevents
the efficiency to drop to 0.
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Figure 6.5: The sensitive distance as a function of the FAR (bottom horizon-
tal axis) for different search algorithms. We compare differently initialized
networks trained on data containing signals with SNR ∈ [5, 15] to an equiv-
alent matched-filter search. The dashed lines show the original networks,
the filled lines show the corresponding network when USR is applied. The
labels ”High” (green), ”Mean” (yellow) and ”Low” (red) correspond to the
networks with the highest, closest to average and lowest efficiency at epoch
186, respectively. In purple we show the equivalent matched-filter search that
operates with a template bank containing 598 templates. The top horizontal
axis shows the SNR threshold for the matched-filter search corresponding to
the FAR on the bottom axis.

on out. If the efficiency at a fixed FAP is a good indicator of the networks
sensitivity we expect the sensitive volume to scale with the efficiency.

Figure 6.5 shows the sensitive distance as a function of the FAR computed
for the three networks trained on the fixed, low SNR interval. It compares
the networks with (dashed) and without (continuous) the final Softmax acti-
vation and shows an equivalent matched-filter search in purple as reference.
We find that the network is sensitive to sources up to a distance of 2150 Mpc
with 1 false alarm per month.

The sensitive radii of all converged deep learning searches lie within 3.4%
of each other for FARs where all of them are non-zero. However, the sen-
sitivity of the networks with the final Softmax activation drops to zero for
FARs ≤ O(103) per month. This drop is caused by O(103) false alarms
with a p-score of 1. This saturation of the final activation can be alleviated
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Figure 6.6: Sensitivity of the ”mean” run of the ”fixed low” strategy using
the Softmax layer of various floating point precisions as well as the USR. A
similar behavior of USR performing at least as well as the Softmax with all
precisions was observed in all 45 evaluated runs.

by applying the USR modification and using the new output as a ranking
statistic.

All tested networks have also been re-evaluated using higher precision
floating point data types for the final activation function evaluation (example
shown in Fig. 6.6). This resulted in the networks remaining sensitive at FARs
down to 3 per month. However, applying the USR modification allowed us
to test the network down to a FAR of 1 per month. Additionally, casting to
a higher precision considerably increases computation time in the network
due to hardware optimizations of GPUs for single precision floating point
operations. In our view, the effectiveness of the USR outweights the benefits
of using higher precision, hence we only report results obtained with the USR
modification.

We had expected to find networks with higher efficiencies to be more
sensitive, even within different initializations of the same training strategy.
As such in Figure 6.5 we expected to find the sensitivity curve labeled ”High”
to be above the one labeled ”Mean” above the one labeled ”Low”. While this
is true in the example shown in Figure 6.5 in some regions, for other training
strategies the order is arbitrary. All initializations converge to basically the
same sensitivity. Sensitivity plots for all training strategies are provided in
the data release [366].
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The machine learning algorithms are compared to an equivalent matched-
filter search, shown in purple in Figure 6.5. All searches perform equally well
for FARs ≥ 105 per month. For smaller FARs the matched-filter search is
sensitive to sources which are up to 200 Mpc farther away. The deep learning
search retains at least 91.5% of the sensitivity compared to the matched-filter
search at all FARs.

This result shows that with minimal modification to the architecture the
original network from [56] achieves a sensitivity comparable to matched fil-
tering for short BBH signals in simulated Gaussian noise even at FARs pre-
viously untested for this particular network architecture.

All results above were obtained on data generated and whitened by the
exact same PSD used during training. For realistic searches, this assumption
does not hold as the PSD in the detectors drifts over time [14]. To assert
that the network does not depend strongly on the exact PSD used during
training, we also evaluated the sensitivity using a version of the training-PSD
scaled by a constant factor of 1.05 in all frequency bins. This reduced the
sensitive distance at all FARs by roughly 1/

√
1.05, in agreement with the

theoretical expectation.
We also tested the effects of using a realistic variation of the PSD. To

determine the variation, we used 20 PSDs derived on real data from the O3a
observing run [149], chose one as reference, and divided it by all the others.
We then determined the PSD ratio that had the largest mean deviation from
unity and multiplied it with the training PSD to obtain a realistically varied
PSD. Generating and whitening the data by this varied PSD reduces the
sensitivity at FARs below 100 per month to around the same level as is
observed for the scaled PSD.

Finally, we tested whitening by a different PSD than the one used for
generating the data. For this purpose we used a second PSD variation to
whiten the data generated by the first PSD variation described above. To
obtain the second PSD, we used the PSD ratio that had the smallest, instead
of the largest, mean deviation from unity. This simulates a worst-case sce-
nario for realistic PSD variations. We find that the sensitivity drops by as
much as 20% compared to using the correct PSD for whitening. This analy-
sis shows that the network is robust against differences between the training
PSD and the PSD of the analyzed data, as long as the correct PSD is used
for whitening.

6.3.2 Training strategies

We trained 50 networks for every training strategy discussed in subsec-
tion 6.2.3. Figure 6.7 shows the evolution of the efficiency at SNR 9 for
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every training strategy. The networks use a Softmax activation on the final
layer. While we also monitor different SNRs, it is this region we are most
interested in for three reasons. The first is practical in nature. Above an
SNR of 9 networks trained with almost all training strategies recover close
to 100% of the signals. It is, therefore, impossible to separate them by effi-
ciency. Secondly, most GWs are expected to be detected at low SNRs [179].
Hence, efficiency at low SNRs is most important. Lastly, SNR 8 is often used
as a threshold above which matched-filter searches can comfortably detect
most signals (compare Figure 6.5). By probing the efficiency close to this
threshold we can get a sense of how well the search is doing overall.

Most training strategies do not have a major impact on the maximum
efficiency. With the exception of training with a fixed SNR 15 and 30 all
converged networks reach efficiencies of 90% (”Fixed full range”) to 94%
(”Fixed 8”). At SNR 6 the efficiency consistently drops to 24% (”Fixed full
range”) to 33% (”Loss relative”) for all converged networks other than the
above mentioned exceptions. Above an SNR of 12 the efficiencies reach 100%
for all networks except ”Fixed 15” and ”Fixed 30”. Those only achieve 100%
efficiency at SNR 15 and 21 respectively.

The relative plateau strategies did not manage to converge within the first
200 epochs. For these, we have extended the training length to 400 epochs,
which has allowed these runs to converge. They have reached comparable
efficiencies to those mentioned above.

The main difference between all runs is the number of epochs required to
reach a converged state. One can see that strategies which supply low SNR
signals earlier reach their maximal efficiency earlier. This is especially em-
phasized with the runs ”Fixed 8”, ”Fixed full range” and ”Fixed low range”.
The curriculum strategies that use the accuracy or loss as their condition
also converge quickly. They too supply low SNR samples very early on, as
the respective condition is fulfilled at each of the first few epochs. Waiting
for a set number of epochs to pass hinders the ability of the network to see
low SNR signals early on and, therefore, takes more time to converge. The
slowest converging strategies wait for the loss or accuracy to stop improving.
They effectively have to wait at least 6 epochs before lowering the training
range. Using a relative approach to lowering the SNR range further decreases
the speed at which low SNRs are explored. In the most extreme cases the
networks do not converge within the given number of epochs.

Finally, some training strategies become unstable toward the end. All
of these unstable strategies converge relatively fast. This suggests that the
longer one trains a converged network the more likely the efficiency is to
collapse. We, therefore, expect that strategies where the efficiency did not
collapse during the first 200 epochs would see a similar problem during later
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Figure 6.7: The efficiency for all 15 tested training strategies as a function
of the training epochs at SNR 9 and a FAP of 10−4. The light grey curves
show the efficiency for the 50 independent initialized training runs. The black
dashed line shows the average over these individual runs. We highlight the
evolution of a single run in dark grey. The vertical, red, dashed line signifies
the epoch with the largest efficiency. We choose 3 networks at this epoch for
which to calculate the sensitive volume.
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epochs.
The breakdown of the efficiency was resolved by the USR modification in

subsection 6.3.1. Figure 6.8 shows the evolution of the efficiency at SNR 9
when this fix is applied. We find that the drops to zero efficiency are removed
but the qualitative features of the efficiency curves stay the same.

All efficiency plots were generated from the TensorFlow version of the
networks. When training with PyTorch we found the results virtually indis-
tinguishable from the TensorFlow version.

We repeated our tests on networks with different capacities, although this
was not the main focus of the present work, to ensure that our findings are
robust against a few specific architecture changes. We found no significant
differences in the final efficiency, although the speed of training convergence
varied. Such studies are left to future work.

6.4 Conclusions

In this paper, we revisited the first deep learning GW search algorithms
and compared them directly to a matched-filter search. We showed that
for the considered parameter space and for a single detector the networks
retain performance closely following matched filtering even on long duration
continuous data sets and when considering FAR thresholds down to once per
month. While there are now more sophisticated deep learning algorithms
available that enhance the capabilities of the first proofs of concept, we think
that there is still a lot to be learned from these first steps.

Our initial focus was the optimization of the data presentation to these
networks. Two kinds of training strategies were previously explored; cur-
riculum learning, where training samples become more difficult to classify as
training continues, and fixed interval training, where the complexity of the
training set stays constant.

We found that the particular strategy is of little importance to the even-
tual performance of the network. It depends a lot more on the presence of
sufficiently complex samples in the training set. In particular, we found that
the networks are able to generalize low SNR signals to high SNR ones but
not vice versa.

On the other hand, the training strategy does have an impact on the
time it takes the network to converge. Since high SNR examples are not
as important to the performance of the network, strategies that provide low
SNR samples earlier converge faster. In conclusion, we recommend training
deep learning search algorithms on a fixed range of low SNR signals.

We use efficiency as our metric of performance during training. As this
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Figure 6.8: The efficiency for all 15 tested training strategies as a function
of the training epochs at SNR 9 and a FAP of 10−4. The light grey curves
show the efficiency for the 50 independent initialized training runs. The black
dashed line shows the average over these individual runs. We highlight the
evolution of a single run in dark grey. The vertical, red, dashed line signifies
the epoch with the largest efficiency. We choose 3 networks at this epoch for
which to calculate the sensitive volume. This figure shows the same networks
as Figure 6.7 with the USR modification applied. With this modification the
efficiency stays > 0 at all times.
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statistic has been used in previous publications, it allows us to verify that
we have converged to the expected performance.

The efficiency at FAPs ≤ 10−4 dropped to zero when networks were
trained for extended periods of time. This was unexpected and limited our
ability to test the search.

We found the drops in efficiency to be caused by numerical instabilities
in the final activation function of the networks. By removing the Softmax
activation on the final layer and imposing thresholds directly on the linear
output of the network, we were able to lift the limitations on the testable
FAPs. This USR modification has proven to be simple and effective, as no
re-training of the networks is required and virtually unlimited low FAPs can
be tested.

To compare the deep learning based searches to an equivalent matched-
filter search we calculated the sensitive volumes as functions of the FARs on
a month of simulated data. We found that the machine learning algorithm is
able to closely follow the performance of the traditional algorithm even down
to FARs of 1 per month, when USR is used.

The results given here are limited to a single detector, Gaussian noise and
signals from BBHs, which are relatively short in duration and comparatively
simple to detect with existing methods. Parts of the parameter space, like
the inclusion of higher-order modes [41], eccentricity [358], or precession [40],
where current searches are computationally limited, are not yet included.
However, it is expected that neural networks may generalize efficiently to
these more difficult signals. Deep learning detection algorithms for spinning
black holes with precession were recently explored for the first time by [57].
There is also ongoing work to construct neural network searches targeting
long duration signals [61, 287, 291, 303]. Considering real noise may en-
able deep learning algorithms to outperform matched filtering, which is only
known to be optimal for stationary Gaussian noise. Multiple studies have
shown that neural networks adapt well to non-stationary noise contaminated
with glitches [54, 57, 291, 359].

6.5 Appendix: Efficiency curve examples

This appendix provides examples of the usefulness of USR for various training
strategies explored in this paper. The plots show the efficiency as a function
of training epochs at 4 distinct SNRs with and without the application of the
USR. For both shown examples the USR manages to remove the efficiency
breakdown entirely.
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Figure 6.9: Efficiency evolution of the ”Accuracy relative” strategy using the
Softmax output as a ranking statistic.
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Figure 6.10: Efficiency evolution of the ”Accuracy relative” strategy using
the USR modification.

129



CHAPTER 6. TRAINING STRATEGIES FOR DEEP LEARNING
GRAVITATIONAL-WAVE SEARCHES

0 50 100 150 200
Epochs

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

SNR 6

Example
Average

0 50 100 150 200
Epochs

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

SNR 9

0 50 100 150 200
Epochs

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

SNR 15

0 50 100 150 200
Epochs

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

SNR 30

Figure 6.11: Efficiency evolution of the ”Fixed 30” strategy using the Softmax
output as a ranking statistic.
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Figure 6.12: Efficiency evolution of the ”Fixed 30” strategy using the USR
modification.
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CHAPTER 7. FROM ONE TO MANY: A DEEP LEARNING
COINCIDENT GRAVITATIONAL-WAVE SEARCH

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . 149

This chapter is essentially a full reprint of [64] with some minor edits for
formatting. It explores the capability of deep learning GW search algorithms
trained on a single detector to be applied in a coincidence search.

7.0 Abstract

Gravitational waves from the coalescence of compact-binary sources are now
routinely observed by Earth bound detectors. The most sensitive search
algorithms convolve many different pre-calculated gravitational waveforms
with the detector data and look for coincident matches between different
detectors. Machine learning is being explored as an alternative approach to
building a search algorithm that has the prospect to reduce computational
costs and target more complex signals. In this work we construct a two-
detector search for gravitational waves from binary black hole mergers using
neural networks trained on non-spinning binary black hole data from a sin-
gle detector. The network is applied to the data from both observatories
independently and we check for events coincident in time between the two.
This enables the efficient analysis of large quantities of background data by
time-shifting the independent detector data. We find that while for a single
detector the network retains 91.5% of the sensitivity matched filtering can
achieve, this number drops to 83.9% for two observatories. To enable the
network to check for signal consistency in the detectors, we then construct
a set of simple networks that operate directly on data from both detectors.
We find that none of these simple two-detector networks are capable of im-
proving the sensitivity over applying networks individually to the data from
the detectors and searching for time coincidences.

7.1 Introduction

Gravitational waves (GWs) are now routinely observed by the two Advanced
LIGO detectors [6] and the Advanced Virgo detector [7]. At the end of the
last observing period, the KAGRA detector [8] joined the network and is
expected to aid observations in the future. During three observing runs ≈ 90
GWs from compact binary sources have been identified, almost all of which
are consistent with the merger of Binary Black Hole (BBH) systems [14, 15,
28, 206, 346, 356].

Many searches for GWs from compact-binary coalescence use matched
filtering to separate potential signals from the background detector noise
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[59, 161, 343, 356]. Matched filtering is a technique that convolves a set of
pre-calculated template waveforms, each representing a possible source with
different component masses, spins, etc., with the detector’s data and is known
to be optimal for Gaussian noise [30]. A Signal-to-Noise Ratio (SNR) time
series is calculated for each template waveform; candidates are identified by
a peak in the SNR time series that also passes data quality [125, 371, 372]
checks. In a second step the candidate detections from one detector are
cross-validated with the candidate detections from other detectors to further
increase the significance of the reported events and rule out false positives
[60, 158, 356]. For sources where the gravitational-wave signal is unknown
or poorly modeled other search algorithms detect coincident excess power in
different detectors and do not require a model [38].

Deep learning has started to be explored as an alternative approach to
building an algorithm to detect GWs [48, 55–57, 61, 288, 291, 303, 359, 360].
It may potentially target signals which are currently challenging for matched
filter search algorithms due to computational limitations [57, 373, 374]. The
computational cost of these modeled searches scales with the number of tem-
plates required by the parameter space. Certain effects like higher-order
modes [41], precession [40], eccentricity [168, 358], or the inclusion of sub-
solar mass systems [171, 172] potentially require millions of templates and
are thus computationally prohibitive to analyze. Deep learning may also be
more sensitive when the noise is non-Gaussian [190, 282, 291].

In our previous work [63] we explored the sensitivity of a simple neural
network to non-spinning BBH sources in Gaussian noise for a single detector.
We tested how different training strategies influence the training procedure
and the final efficiency of the network. Our results showed that under the
given conditions the network can closely reproduce the sensitivity of matched
filtering and that most efficient convergence is reached when a range of low
SNR signals is provided throughout training.

Here we extend our previous work to two detectors. To do so, we use the
same single detector network explored in [63] and apply it individually to
the data from both observatories. This procedure produces a list of candi-
date events for each detector. We then search for coincident events between
the two, where two events are assumed to be coincident if they are within
the maximum time-of-flight difference between both detectors. We assume
this difference to be 0.1 s since the networks are trained to be insensitive to
variations on such scale.

The network uses the Unbounded Softmax Replacement (USR) modifi-
cation we introduced in [63]. It outputs a single detector ranking statistic.
Here we use it to construct a network ranking statistic. This network ranking
statistic turns out to be the sum of the individual ranking statistics minus a
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correction factor.
The main advantage of this approach is the trivial computation of the

search background which enables robust detection claims at comparable sta-
tistical significance (< 1 per 100 years) to existing production methodology.
By applying time shifts larger than the time-of-flight difference between the
detectors to the data from only one observatory, we can create large amounts
of data which by construction cannot contain any astrophysical coincident
candidates. By applying the time shifts to the single detector events rather
than the input data directly, we can skip re-evaluating the entire test set
and efficiently look for coincident events. This is a well established method
that has already been successfully applied [60, 158, 356]. By this approach
we can probe the search down to a false-alarm rate (FAR) of 1 false-alarm
per O (103) months. The FAR estimates how often a candidate is produced
by the search under the null hypothesis of no astrophysical candidates. Our
FAR-estimate is limited by the assigned hardware resources rather than the
available data.

We compare this search to an equivalent matched filter search [375]. We
find that the deep learning search still retains 92.4% of the sensitivity of a
two-detector matched filter search when the latter is restricted to using the
timing difference between the detectors as the only means for determining
coincident events. However, the matched filter search also extracts some
information on the parameters of the signal. When we also require matching
templates and the phase and amplitude of the triggered templates to be
consistent between detectors [163], the machine learning search only retains
83.9% of the sensitivity.

We then construct a single network that operates on the data from both
detectors. The idea is that the network may then be able to learn, summa-
rize, and cross-correlate signal characteristics between detectors. To do so,
we remove the last layer of the original networks applied to the individual
detectors and concatenate their output. Thereby the input data are com-
pressed to a 128 dimensional latent space. Dense layers are used to correlate
the concatenated outputs and condense it into a single ranking statistic.

Using a single network complicates the background estimation, as time
shifts between the detectors can in principle not be applied after evaluating
the individual data streams. However, the two-detector network architecture
is constructed such that the data from different detectors is analyzed by
individual sub-networks, concatenated and processed by a third sub-network.
This enables us to process the bulk of the data only once and apply time
shifts to the individual detector sub-network outputs. To obtain the ranking
statistic we are then only required to run the time-shifted data through the
final, small sub-network.
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We find that networks constructed this way are not able to improve the
sensitivity over a time coincidence analysis of the single detector machine
learning events. We test three different approaches to training these networks
but none show any improvement.

7.2 Coincident Search from Independent Single-

Detector Networks

The algorithm explored in this section uses a network trained on data from
a single detector and uses it to find coincidences in multiple detectors. It is
one of the most simple extensions and has two advantages. First, networks
trained on data from a single detector can be re-used which reduces require-
ments to computational resources. Second, the search background can be
estimated using well established and efficient algorithms allowing for much
higher confidence in candidate detections.

7.2.1 Architecture

We use the same network as in [63], which is an adaptation of the network
presented in [56]. It consists of 6 stacked convolutional layers followed by 3
dense layers. An overview of the architecture is given in Table 7.1.

The last layer contains a Softmax activation function, which we remove
during testing. In [63] we showed that this modification, which we called
Unbounded Softmax Replacement (USR), allows the network to be tested at
lower FARs than otherwise possible.

The Softmax activation for the first output neuron is given by

p := Softmax (x)0 =
1

1 + exp (−∆x)
, (7.1)

where x = (x0, x1) is the network output before the activation function and
∆x = x0 − x1. When ∆x is strongly positive, the denominator in (7.1) and
thus the fraction numerically evaluates to 1. This leads to problems when
setting the threshold value to use to determine true positive detections [63].

However, equation (7.1) is bijective and can be inverted

−∆x = log

[
1

p
− 1

]
. (7.2)

This quantity is monotonic and we can thus do statistics on ∆x directly,
avoiding numerical instabilities while still using the Softmax activation dur-
ing training.
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Table 7.1: A detailed overview of the architecture for the single detector
neural network. Rows are grouped by their influence on the shape of the
data. The layers are to be read from left to right and top to bottom to
construct the network.

layer type kernel size output shape
Input + BatchNorm1d 2048× 1
Conv1D + ELU 64 1985× 8
Conv1D 32 1954× 8
MaxPool1D + ELU 4 488× 8
Conv1D + ELU 32 457× 16
Conv1D 16 442× 16
MaxPool1D + ELU 3 147× 16
Conv1D + ELU 16 132× 32
Conv1D 16 117× 32
MaxPool1D + ELU 2 58× 32
Flatten 1856
Dense + Dropout + ELU 64
Dense + Dropout + ELU 64
Dense + Softmax 2

7.2.2 Data Sets and Training

The input to the network is a time series of 1 s duration sampled at 2048 Hz.
This allows for signals up to a frequency of 1024 Hz to be resolved which is
sufficient for the considered parameter space.

The network is trained on signals from non-spinning BBHs with com-
ponent masses m1,m2 uniformly distributed from 10 M� to 50 M�. We en-
force m1 ≥ m2 and for each pair of masses uniformly draw 5 coalescence
phases φ0 ∈ [0, 2π]. The signals are generated with the waveform model
SEOBNRv4_opt [369] (optimized version of SEOBNRv4 [118]) and scaled to vary-
ing optimal SNRs in the range [5, 15] during training. The time of merger
is varied from 0.6 s to 0.8 s from the start of the input window to decrease
the dependency of the network on the exact signal position. Each signal
is whitened by the analytic model for the detector power spectral density
(PSD) aLIGOZeroDetHighPower [319]. For further details on the training
set please refer to [63].

Notably, we do not vary the sky position, inclination or polarization dur-
ing training. For a single detector, variations in these parameters can be fully
expressed by changes in the distance, which is fixed by choosing a specific
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SNR, and the phase φ0. For a two detector setup this degeneracy is broken
as a time-of-flight difference is introduced and the amplitudes and phases
are correlated in the two detectors. However, our search algorithm is largely
parameter agnostic. This means that its output does not depend on the am-
plitude or phase. Thus, we do not have information on whether or not the
search responds to consistent signals. Finally, the time-of-flight difference is
on the order of the variation of the merger time within the training set and
can, therefore, not be resolved. In section 7.3 the network has access to data
from both observatories and the data is adjusted accordingly.

All noise is Gaussian and simulated from the aLIGOZeroDetHighPower

PSD [319]. We explicitly generate colored noise and whiten it afterwards.
This in principle allows to extend our training to real noise.

The training set contains 200 000 noise samples, 100 000 of which are
combined with 100 000 unique signals. The validation set1 contains 400 000
noise samples and 10 000 unique signal samples, which we subsequently scale
to SNRs 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30. This set is used to calculate the
efficiency of the network at a fixed False-Alarm Probability (FAP) of 10−4.
The FAP is the fraction of discrete noise samples misclassified as signals.
The efficiency is the fraction of discrete signal samples correctly classified as
signals at a given FAP.

The test set contains a month of continuous simulated noise for each of
the two detectors in Hanford and Livingston. We inject signals with parame-
ters drawn from the distributions shown in Table 7.2 into both data streams.
Injections are separated by a random time between 16 s to 22 s. To enable the
networks to process this data, the continuous stream is sliced into ≈ 26 mil-
lion overlapping, correlated samples. Each sample is whitened individually
by the analytic PSD.

We construct a second test set for background estimation. This set con-
tains the same time domain noise as the first test set but no injections are
performed. We pre-process this second data set in the same way we pre-
process the first data set for the network to be able to process it.

The network is trained for 200 epochs and we use the network with the
highest average efficiency over all SNRs for the analysis carried out here. We
use the Adam optimizer with a learning rate of 10−5, β1 = 0.9, β2 = 0.999
and ε = 10−8 [253]. We use a variant of the binary cross-entropy which was
designed to stay finite as loss function

L(yt,yp) = − 1

Nb

Nb∑
i=1

yt,i · log (ε+ (1− 2ε)yp,i) , (7.3)

1In out previous work [63] what we call validation set here was named efficiency set.
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where yt is (1, 0)T for a signal-class sample and (0, 1)T for a noise-class sam-
ple, yp is the prediction of the network, Nb = 32 is the mini-batch size, and
ε = 10−6.

We implemented the network using the high-level API Keras [376] of
TensorFlow version 2.3.0 [364].

7.2.3 Single Detector Events

To apply the network to data of duration longer than the 1 s input of the
network, we use a sliding window with step size 0.1 s. The contents of each
window are whitened individually by the PSD model. At each step the
network outputs a set of two numbers, the difference of which we use as our
ranking statistic.

We apply the same network to the data from both detectors individually.
We, thus, receive two output time series of ranking statistics. To determine
notable events in the individual detectors we apply a threshold to both time
series and cluster the resulting points above the threshold into events. A
point exceeding the threshold is counted toward a cluster if it is within 0.2 s
of the cluster boundaries. We choose a threshold on the USR output of −2.2,
which corresponds to a Softmax output of 0.1.

The search algorithm produces a list of events, where an event is a tuple
(t,∆x). Each event is a time t at which the network predicts a signal to be
present with a ranking statistic ∆x. The ranking statistic can be used to
assign a significance to the event.

7.2.4 Coincident Events

A signal will be present in the data of all detectors if it is of astrophyiscal
origin. Its SNR in each detector depends on the location and orientation of
the source. The number of false alarms can, thus, be reduced by requiring
that the event is picked up by multiple detectors at similar times.

To quantify the significance of an event detected by more than one ob-
servatory, a combined ranking statistic is required. For simplicity we restrict
our current analysis to two detectors. However, this approach is extendable
to any number of detectors.

If the network was using the final Softmax activation during evaluation a
combined ranking statistic would come straightforwardly from the interpre-
tation of the output as a probability.

pH+L = 1− (1− pH) (1− pL) (7.4)
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The 1-to-1 relation between p and ∆x given in equation (7.1) can be
inserted into (7.4) to get

−∆xH+L =−∆xH −∆xL

− log
[
1 + e−∆xH + e−∆xL

]
. (7.5)

The combined ranking statistic is the sum of the single detector ranking
statistics minus a correction term.

We consider an event in one detector to be coincident with another event
in the other detector if the event times ti are within 0.1 s of each other. This
time difference is chosen to be the maximum time resolution the networks
can achieve due to the time variation in the training set.

We construct a list of coincidence events from the single detector list by
the above condition. Each coincident event is assigned the combined ranking
statistic (7.5) and the time in the Hanford detector.

7.2.5 Background Estimation

To estimate the FAR at different ranking statistic values we evaluate the
same noise used to search for signals but omit injecting the GWs. This
ensures that all events found in this data set are noise artifacts and are not
influenced by close by injections.

We apply the network to the data and determine events as described in
subsection 7.2.3. We obtain two lists of events and search for coincidences
as detailed in subsection 7.2.4.

The lowest FAR that can be probed is limited by the duration of the
analyzed data. Our test set covers one month. The duration can be increased
by shifting the data in one of the detectors by a time larger than the maximum
time-of-flight duration between the detectors. Rather than shifting the data
itself one may instead alter the event times returned by the search. This
allows us to skip reanalyzing the full data for each time step and only requires
us to look for coincidences between the events from one detector and the time
shifted events from the second detector. Increasing the amount of background
by applying time shifts is a well established method that has already been
successfully applied in production searches [60, 158, 356].

We choose a time shift of 1024 s and apply any possible integer multi-
ple of this step size. We then search for coincidences in these events as
detailed in subsection 7.2.4. This procedure increases our background to
≈ 2400 months = 200 years.

A list of FARs at different network ranking statistics is obtained by count-
ing the number of events in the way described above with a larger ranking
statistic.
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Table 7.2: Distributions of the parameters used for the injections in the test
set.

Parameter Uniform distribution
Component masses m1,m2 ∈ (10, 50) M�
Spins 0
Coalescence phase Φ0 ∈ (0, 2π)
Polarization Ψ ∈ (0, 2π)
Inclination cos ι ∈ (−1, 1)
Declination sin θ ∈ (−1, 1)
Right ascension ϕ ∈ (−π, π)
Distance d2 ∈ (5002, 70002) Mpc2

7.2.6 Sensitivity

The sensitive volume of a search can be estimated by

V (F) ≈ V (dmax)
Ns (F)

Ninj

, (7.6)

when it is derived on data containing injections which are distributed uni-
formly in volume [60]. Here F is the FAR at which the volume is being
calculated, dmax is the maximum distance of any injection, V (dmax) is the
volume of a sphere with radius dmax, Ns (F) is the number of signals detected
with a FAR ≤ F and Ninj is the total number of injected signals. We report
the radius of a sphere with volume V (F) instead of the sensitive volume.

We analyze a month of simulated data from the two detectors Hanford
and Livingston, assuming the PSD aLIGOZeroDetHighPower [319]. The data
contains injections drawn from the distribution shown in Table 7.2. We apply
the network to the data from both detectors individually as described in
subsection 7.2.3. The resulting single detector events are correlated and a
list of coincident events is produced as detailed in subsection 7.2.4. We then
pick out any events that are within 0.3 s of an injection. These events are
called foreground events from here on out.

To determine the search background, we evaluate the same month of noise
used to find the foreground events. However, this data does not contain
any injections. The networks return a list of single detector events, which
are correlated and shifted in time to increase the effective duration of the
analyzed data as detailed in subsection 7.2.5. The resulting coincident events
are called background events from here on out.

We can then assign a FAR to any foreground event. To do so we count
the number of background events with a ranking statistic larger than the
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ranking statistic of the considered foreground event. This number is divided
by the effective duration of the analyzed background to obtain a FAR. The
sensitive volume is then obtained from equation (7.6) and converted to a
distance. The sensitive distance as a function of the FAR is obtained by
evaluating the sensitive volume at the FARs of all foreground events.

7.2.7 Matched Filtering

The template bank contains 598 unique waveforms and is constructed such
that no more than 3% of the SNR of any signal is lost due to the discrete-
ness of the bank. It covers the same mass range of 10 M� to 50 M� as the
training set of the networks and spins are set to 0. The individual templates
are generated using the waveform model IMRPhenomD [129, 130] and placed
stochastically.

To run the matched filter search we use the program pycbc_inspiral

[375]. It is setup to use a SNR threshold of 5 in both detectors to create
two sets of single detector triggers. These two sets are then checked for
coincidence by two different approaches.

One approach handles the matched filter triggers analogous to the net-
work single detector triggers, i.e. they are clustered and turned into single
detector events as described in subsection 7.2.3. In this case the ranking
statistic is the SNR returned by the best matching template. We then look
for coincidences as described in subsection 7.2.4 by requiring two events in
different detectors to be separated by no more than 0.1 s. The combined
ranking statistic in this case is given by

ρH+L =
√
ρ2
H + ρ2

L. (7.7)

This disregards the information about the possible parameters obtained from
the best matching template and only looks for time coincidence, i.e. no signal
consistency is required.

The other approach leverages the signal information and checks for phase
and amplitude correlation as well as requiring that the templates matching
the data are consistent between detectors. In particular we utilize the com-
bined ranking statistic given in equation (2) of [163] and find coincidences as
described therein.
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7.2.8 Evaluation and Comparison to Matched Filter-
ing

In Figure 7.1 we show the injections that were found and missed by the net-
work coincident search at a FAR of 1 false alarm per month. The x-axis
shows the optimal SNR of the injections in the Hanford detector and the
y-axis shows the optimal SNR in the Livingston detector. The color indi-
cates the network ranking statistic as calculated by equation (7.5). Missed
injections are marked with a red cross. A network SNR of 8 as calculated by
equation (7.7) is highlighted by the black line.

Figure 7.1 shows that the combined ranking statistic (7.5) is correlated
with the network SNR. As the network SNR increases so does the combined
ranking statistic. The loudest missed injection has a network SNR of 22.7.
However, the signal is most dominantly seen in the Hanford detector with
a single detector SNR of 22.6, whereas Livingston has an optimal SNR < 2
due to the location of the source. Therefore, it is not surprising that the
signal does not show up in both detectors and is missed by the coincidence
search. When considering only the detector in which the signal is observable
with lower SNR, the loudest missed signal has a optimal SNR of 9.2 in that
detector.

In Figure 7.2 we show the sensitive distance of different algorithms as
a function of the FAR. The orange lines show the sensitivity curves of the
machine learning based algorithms whereas the purple lines show the sen-
sitivities of a comparable matched filter search. The dashed lines show the
sensitivity of the searches when only a single detector is considered. We com-
pare those to a two-detector search where we require coincident detections in
both detectors. The filled orange line and the dash-dotted purple line show
the comparison between the machine learning and matched filter algorithms,
respectively, when both impose the same coincidence condition. The filled
purple line shows a more realistic application of matched filtering where the
consistency of the time of arrival, the phase, the amplitude, as well as the
parameters of the best matching template are required.

We find a significant improvement of up to 20% at a given FAR when the
machine learning algorithm has access to data from both detectors compared
to using only data from a single detector. Furthermore, we can probe FARs
down to ≈ 4× 10−4 false alarms per month without needing to increase the
amount of evaluated data by applying time shifts between detectors as de-
scribed in subsection 7.2.5. In principle this limit may be decreased even fur-
ther and time shifts are only limited by the time-of-flight difference between
the detectors. The large increase in the available background potentially
greatly increases the statistical significance of any event.
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Figure 7.1: Found and missed injections from the test set as returned by
the procedure discussed in section 7.2. The top panel overlays the missed
injections by the found injections and the bottom panel reverses the order.
The x- and y-axis show the optimal SNRs of the injections in the Hanford and
Livingston detector, respectively. The color of found injections represents the
combined ranking statistic as defined by equation (7.5). Missed injections
are marked by a red cross. The black line indicates an optimal network SNR
of 8. The plot is generated at a FAR of 1 false alarm per month.
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The sensitivities of the machine learning search algorithms are compared
to an equivalent matched filter search. For the single detector searches given
by the dashed lines in Figure 7.2 we find that the machine learning algorithm
retains at least 91.5% of the sensitivity at a fixed FAR of the matched filter
analogue. This corresponds to a maximum absolute separation of 200 Mpc.
This difference in sensitivity is basically unchanged when data from two
detectors is considered and both the machine learning as well as the matched
filter search calculate coincidences only based on the timing in the different
detectors. The corresponding curves in Figure 7.2 are the filled orange and
the dash-dotted purple line, respectively. In this case, the machine learning
algorithm retains at least 92.4% of the sensitivity of the time coincidence
matched filter search which corresponds to an absolute separation of 180 Mpc.

However, matched filtering also carries information about the intrinsic pa-
rameters of the source, the relative phase, and the relative amplitudes in the
two detectors. This information can be used to further constrain coincidences
and improve the ranking statistic [163] by testing for signal consistency. We
compare the time coincidence machine learning search (filled, orange line in
Figure 7.2) to this matched filter coincidence search utilizing signal consis-
tency checks (filled, purple line in Figure 7.2). The machine learning search
now only retains at least 83.9% of the sensitivity in FAR regions where both
are defined. This corresponds to an absolute separation of 430 Mpc.

We truncate the sensitivity curve of any search that has access to data
from both detectors in Figure 7.2 at a FAR of 103 false alarms per month.
This is done due to a large number of true positives at high FARs originat-
ing from random noise coincidences. This means that the search returns a
coincident event that is caused by a particular noise realization which hap-
pens to coincide with an injection with an optimal SNR below the trigger
threshold. Many of these injections should thus not be recoverable but are
detected at high FAR due to these noise fluctuations. At a FAR of 103 per
month we expect less then O(10) of these false associations. Another reason
to only compare the sensitivity at low FARs of the machine learning and the
matched filtering based searches are the thresholds used to find triggers. The
matched filter search uses a threshold of SNR 5 whereas the machine learning
search uses a threshold on the USR ranking statistic of −2.2. Because there
is no direct relation between these two statistics, we cannot guarantee that
both thresholds correspond to similar signal strengths. It may be possible
that one search excludes weak signals which are found by the other based on
this difference in the threshold.

The sensitivity difference between machine learning and matched filtering
stays constant between using data from a single detector and using data from
two detectors when matched filtering may only check for time consistency
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Figure 7.2: Shown are the sensitive distances of different search algorithms
as a function of the FAR. In orange we show the sensitivity curves of the
machine learning based searches presented in [63] and this work. In purple
we show sensitivity curves of an equivalent matched filter search. The dashed
lines are derived on data only from a single detector. A label ”coinc. t” refers
to events being tested for coincidence based solely on the time difference of
the events in the two detectors. The label ”coinc. signal” means that the
matched filter search also checked for signal consistency based on the time-,
phase-, amplitude-difference, and intrinsic parameters in the two detectors.
Sensitivities derived on data from more than one detector are truncated at a
FAR of 103 per month due to an increasing number of true detections caused
by random coincident events in the noise.

between detection candidates from the two observatories. The performance
difference increases when matched filtering also checks for signal consistency.
It is, therefore, reasonable to believe that a multi detector machine learning
search may be more sensitive when it too can check for signal consistency.
This would either require the single detector network to output parameter es-
timates of the detected signal alongside a ranking statistic or a single network
that uses the data from both detectors as input. In the following section 7.3
we explore the second hypothesis.

7.3 Two Detector Network

The deep learning algorithm presented in section 7.2 is significantly less sen-
sitive than the full matched filter analysis that takes signal consistency into
account. On the other hand, when the deep learning algorithm is compared
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to the matched filter search where signal consistency is ignored, the difference
in sensitivity is comparable to the difference in sensitivity for a single detec-
tor. This gives reason to believe that the difference in sensitivity compared
to the full matched filter search could be reduced when the network may
operate on the data from both detectors and consider coincidences itself.

7.3.1 Architecture

We construct a network that uses data from both detectors while still retain-
ing the ability to efficiently estimate a large background. The network from
section 7.2 is still applied to the data from the two detectors individually.
However, the final layer is removed and the 64 output-neurons from both
networks are concatenated. We then add 3 more fully connected layers to
look for coincidences between the detectors. An overview of the network is
shown in Figure 7.3.

The last layer from the single detector network is removed to create a
large latent space. A matched filter search compresses the input data into
the ranking statistic, the time of the merger, and the parameters of the best
matching template. The intention is that 64 neurons may be sufficient for a
comparable compression and that the additional layers that operate on the
concatenated outputs could perform a signal consistency analysis.

The sub-networks A and B in Figure 7.3 are intended to act as encoders
that reduce the 2048 dimensional input into a latent space of dimension 64.
It may be interesting in the future to train these sub-networks initially as au-
toencoders [377] from which only the encoder is used for detection purposes
afterwards. Autoencoders are neural networks which in the most simple
form consist of an encoder network and a decoder network. The encoder net-
work compresses the input to some lower dimensional latent representation
whereas the decoder uses that lower dimensional representation to recon-
struct the input. Other studies have already found that autoencoders have
potential applications in GW data analysis [312, 378].

7.3.2 Data Sets and Training

The network is trained on data similar to that presented in subsection 7.2.2.
However, the data is extended to two detectors and sources are uniformly
distributed in the sky. The latter change is required due to the amplitude
and phase correlations in the two detectors. We use the same number of
noise and signal samples as in subsection 7.2.2.

We utilize the pre-trained single detector network used in section 7.2 in
two different ways. In both cases the single detector parts of the two detector
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Softmax
input: 2
output: 2

3× Dense
input: 128
output: 2

Concatenate
input: [64, 64]
output: 128

C

2× Dense
input: 1856
output: 64

Flatten
input: (58, 32)
output: 1856

6× Conv1D
input: (2048, 1)
output: (58, 32)

H1 (2048, 1)

A

2× Dense
input: 1856
output: 64

Flatten
input: (58, 32)
output: 1856

6× Conv1D
input: (2048, 1)
output: (58, 32)

L1 (2048, 1)

B

Figure 7.3: A high level overview of the two-detector architecture. The
network consists of three sub-networks A, B, and C. A detailed description
of the sub-networks A and B can be found in Table 7.1 by removing the final
row. The fully connected Dense layers contain 128, 64, and 2 neurons in that
order. All but the final Dense layer are equipped with an exponential linear
unit (ELU) activation.
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network (A and B in Figure 7.3) are initialized with the weights of the pre-
trained model from section 7.2. However, for one of the two networks, these
weights are then not optimized during training, leaving only the weights
of the final fully connected layers (C in Figure 7.3) to be adjusted. This
approach is known as transfer learning [379] and has been successfully applied
for different problems [380–382]. The second network optimizes the weights
of the entire network. We also train a third network of the same architecture,
where all parameters are initialized randomly and optimized during training.

The same optimizer settings and loss function described in subsection 7.2.2
are used to train all three networks for 300 epochs. They are trained with
a Softmax activation on the final layer, which is removed during evaluation.
Each network is only trained once and the epoch with the highest efficiency
on the validation set is chosen for further analysis.

7.3.3 Coincident Events

Because the networks output a single value when given the data from two
detectors, we interpret that output as a coincidence ranking statistic at the
corresponding time. We then perform the same clustering and thresholding
described in subsection 7.2.3 to obtain a list of coincident events.

7.3.4 Background Estimation

Determining the background of the two detector network is more challenging
than for the single detector network from subsection 7.2.5, as there is no
direct way of performing time shift in a computationally efficient way. One
would, therefore, naively be limited by the duration of the analyzed data
or would have to re-evaluate the entire month of test data multiple times.
However, the network is designed in such a way that the data from both
detectors are still analyzed individually and combined only at later stages.
We evaluate the single detector data individually with the sub-networks A
and B from Figure 7.3 and store those outputs. We then permute the order of
the outputs from sub-network B such that it corresponds to a time shift with
respect to the output from sub-network A. Finally, sub-network C is applied
to the concatenated data from sub-network A and B for many different time
shifts. Since sub-network C is very simple and time shifts can be generated
trivially this process generates O (1000) months of background within < 12 h
on a NVIDIA RTX 2070 Super.
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7.3.5 Evaluation and Comparison to Matched Filter-
ing

Figure 7.4 shows the sensitive distance of the various networks as a function
of the FAR and compares them to the results presented in subsection 7.2.8.
All curves are truncated at a FAR of 103 per month due to the large number of
false associations described in subsection 7.2.8. The three networks utilizing
the data from both detectors described in this section are labeled as ”Machine
learning network coinc.”. The matched filter results are shown in purple,
where the dash-dotted line considers only time coincidence and the filled
line also takes the consistency of intrinsic source parameters, phase, and
amplitude into account. The orange line corresponds to the network from
section 7.2.

The networks described in this section were designed to be able to take
signal consistency into account by reducing the input data to a large latent
space. As such we were expecting sensitivities at low FARs to be larger
than those obtained from time coincidence between single detector events
produced by the single detector network.

However, we find that at low FARs all of the two detector networks are
roughly as sensitive as the network tested in subsection 7.2.8. Therefore, they
are still less sensitive than the matched filter equivalent and do not seem to
take signal consistency into account. For high FARs, on the other hand,
they are more sensitive. We suspect that the large time variation of the peak
amplitude of ±0.1 s may be responsible for this behavior. The networks are,
thereby, trained to be insensitive to variations in timing of less then 0.1 s,
which may produce phase and amplitude variations in a broad range.

7.4 Conclusions

In this paper we have extended the single detector deep learning GW search
algorithm from [56, 63] to two detectors and compared it to an equivalent
matched filter algorithm. We found that the most simple extension, applying
the one detector network to the data from two detectors individually and
searching for coincident events, retains ≈ 92% of the sensitivity of matched
filtering, when only the time consistency between detectors is required. This
fraction drops to ≈ 84% when signal consistency between detectors is also
considered.

To operate on data from two observatories, we constructed a two detector
ranking statistic for the machine learning search based on the single detector
USR ranking statistic proposed in [63]. This ranking statistic proved to be
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Figure 7.4: The sensitivity of different search algorithms as a function of the
FAR. All shown algorithms operate on the data from two detectors. The
curves labeled ”Machine learning coinc.” are neural network search algo-
rithms that consider data from both detectors and an overview can be found
in Figure 7.3. The network labeled ”initialized” initializes the sub-networks A
and B as shown in Figure 7.3 from the single detector network used in subsec-
tion 7.2.8 but optimizes them during the subsequent training. The network
labeled ”transfer” also initializes both sub-networks as the ”initialized” net-
work but freezes their weights. The network labeled ”scratch” initializes all
parameters of the network randomly. All other searches operate on the data
from the individual detectors first and then search for coincident events. A
label ”coinc. t” refers to events being tested for coincidence based solely on
the time difference of the events in the two detectors. The label ”coinc. sig-
nal” means that the matched filter search also checked for signal consistency
based on intrinsic parameters and the time-, phase-, and amplitude-difference
in the two detectors. The curve labeled ”Machine learning coinc. t” refers
to the two-detector machine learning search analyzed in subsection 7.2.8.
All sensitivities are truncated at a FAR of 103 per month due to a growing
number of true positive detections caused by the coincidence of noise events.
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correlated with the network SNR.
We also highlighted the advantages of using a single detector network to

construct a two detector search. First, the single detector network does not
need to be re-trained to be applied to the second detector, if both have similar
noise characteristics. Second, this approach enables an efficient background
estimation by applying relative time shifts to the recovered single detector
events. This allows to test the two detector search to almost arbitrarily low
FARs at low computational expenses. This method has already proven to be
effective and reliable in state-of-the-art classical search algorithms [60, 158,
356].

Because using a single detector network restricts one to check for coinci-
dences based solely on the timing difference, we tested a simple network that
operates on data from both detectors directly. This allows the network in
principle to construct internal signal representations which can be correlated
between observatories. The network was constructed by removing the final
layer of the single detector network, concatenating the outputs and adding
a few fully connected layers to check for coincident events. The final fully
connected layers, thus, receive 64 latent variables for each detector that can
be checked for coincidence.

This design of the two detector network allowed us to do efficient back-
ground estimation. By applying relative time shifts to the outputs of the
individual detector sub-networks, only the final few fully connected layers
need to be evaluated for all shifts. The bulk of the computation, namely
evaluating the input data of the detectors, only needs to be done once.

The network architecture was trained in three different ways; randomly
initialized parameters for the entire network, parameters of the sub-networks
initialized from the single detector network, and parameters of the individual
detector sub-networks fixed to the single detector parameters and optimizing
only the final fully connected layers.

We found that all of these networks have very similar performance at
low FARs. Neither of them performed substantially better than the initial
network that looked for time coincident events between the single detector
network outputs. It, therefore, seems as if the network architecture explored
here is unable to learn any additional information about the signal. This may
be caused by the allowed time-variance of ±0.1 s for signals in the training
set, which may limit the time resolution of the network and thus overshadow
correlations in any other parameters. More sophisticated network architec-
tures with higher time resolution may improve our findings. First promising
steps have already been taken by [57, 374]. Using an autoencoder to find a
more meaningful latent representation of the input data may also be of use.

While the sensitivity was not improved by using a single network to pro-
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cess the data of two detectors, we still want to highlight that the method of
determining the background may be of use for future networks.

Here we limited our research to GWs from non-spinning binary black holes
with signal duration < 1 s and Gaussian noise. Any of these simplifications
are desirable to be lifted. Especially considering real noise may increase
the gap in sensitivity between the single detector and multi detector search
algorithm, by vetoing glitches. While we considered only two detectors an
extension to a larger network should be trivial and may follow studies such
as [164].
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This chapter is essentially a full reprint of [65] with some minor edits for
formatting and adjustments to address comments from two referee reports. It
discusses the results of a mock data challenge we organized that was targeted
at placing machine learning GW searches into the context of existing, state-
of-the-art algorithms.

8.0 Abstract

We present the results of the first Machine Learning Gravitational-Wave
Search Mock Data Challenge (MLGWSC-1). For this challenge, participat-
ing groups had to identify gravitational-wave signals from binary black hole
mergers of increasing complexity and duration embedded in progressively
more realistic noise. The final of the 4 provided datasets contained real noise
from the O3a observing run and signals up to a duration of 20 seconds with
the inclusion of precession effects and higher order modes. We present the
average sensitivity distance and runtime for the 6 entered algorithms derived
from 1 month of test data unknown to the participants prior to submis-
sion. Of these, 4 are machine learning algorithms. We find that the best
machine learning based algorithms are able to achieve up to 95% of the sen-
sitive distance of matched-filtering based production analyses for simulated
Gaussian noise at a false-alarm rate (FAR) of one per month. In contrast,
for real noise, the leading machine learning search achieved 70%. For higher
FARs the differences in sensitive distance shrink to the point where select
machine learning submissions outperform traditional search algorithms at
FARs ≥ 200 per month on some datasets. Our results show that current ma-
chine learning search algorithms may already be sensitive enough in limited
parameter regions to be useful for some production settings. To improve the
state-of-the-art, machine learning algorithms need to reduce the false-alarm
rates at which they are capable of detecting signals and extend their validity
to regions of parameter space where modeled searches are computationally
expensive to run. Based on our findings we compile a list of research areas
that we believe are the most important to elevate machine learning searches
to an invaluable tool in gravitational-wave signal detection.
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8.1 Introduction

The first gravitational-wave (GW) observation on September 14, 2015 [13]
achieved by the LIGO and Virgo Collaboration [6, 7] started the era of GW
astronomy. During the first observing run (O1) two more GWs from coalesc-
ing binary black holes (BBHs) were detected. The second observing run (O2)
saw O(10) additional confident BBH detections as well as the first detection
of a binary neutron star (BNS) merger [24, 150, 151, 212, 346, 383]. The
third observing run (O3) was split into two parts, O3a and O3b. During O3a
a further O(40) BBHs as well as a second BNS merger were reported [206,
356, 384]. O3b added another O(40) BBH events as well as finding the first
two confident detections where the component masses are consistent with
the merger of a neutron star black hole system (NSBH) [14, 15]. The fourth
observing run (O4) is scheduled to begin in early 2023 and is expected to
significantly increase the volume from which sources can be detected [194,
275].

GW signals are commonly identified in the background noise of the de-
tectors using matched filtering [14, 59, 161, 343]. Matched filtering compares
pre-computed models of expected signals, known as templates, with the data
from the detectors [30]. When a model matches the data to a pre-defined
degree and data-quality requirements are met, a candidate detection is re-
ported. Loosely modelled searches [37–39], which look for coherent excess
power in multiple detectors, are also employed by the LIGO-Virgo-KAGRA
collaboration (LVK) to find potential signals.

The rate of detections has drastically increased from O1 to O3. This
increase was enabled by continued detector upgrades at the two advanced
LIGO observatories in Hanford and Livingston [6], as well as sensitivity im-
provements for the advanced Virgo detector [7]. With the entry into service
of Kagra [8] a fourth observatory joined the network of ground based GW-
detectors towards the end of O3. The rate of detections is expected to further
increase during O4 as the sensitivity of the detectors improves and the volume
from which sources can be detected grows.

With an increasing rate of detections, it is likely that systems with unex-
pected physical properties will be observed more frequently in the future. Op-
timally searching for these is a challenge for matched filtering based searches,
where the computational cost scales linearly with the number of templates
used. The inclusion of effects such as precession, eccentricity, or higher or-
der modes requires millions of templates to not miss potential signals [40,
41, 44] and thus are computationally prohibitive, especially when real-time
alerts should be issued. Loosely modeled searches are inherently capable of
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detecting arbitrary sources at a fixed computational cost but are prone to
miss more signals due to their lower sensitivity in parameter regions where
accurate models exist.

In recent years, machine learning has been applied in many scientific fields
to enable or improve research into computationally expensive topics [231].
Some examples include the prediction of protein structure used in pharma-
ceutical studies [232], improvements to material composition and synthe-
sis [234], or event reconstruction at the Large Hadron Collider [235]. There
is also ongoing research into using neural networks to discover closed form
expressions from raw data [385] or optimizing machine learning algorithms to
take advantage of physical symmetries of the underlying problem [386–388].

More relevant to this work, machine learning algorithms have also started
to be explored as alternative algorithms for many GW data-analysis tasks.
These include detector glitch classification [190, 281, 389], parameter estima-
tion [311, 312, 315, 390, 391], continuous GW detection [302–305, 392–394],
enhancements for existing pipelines [167, 296, 298, 300, 309, 317, 395, 396],
surrogate waveform models [397–399], as well as various signal detection al-
gorithms [55–57, 61, 63, 64, 287–289, 291, 307, 308, 359, 373, 374, 400–405].
For a summary of many methods we refer the reader to [48, 360]. In this
work we focus solely on detection algorithms for BBH GW signals, which
have been the most commonly observed type of sources to date [206, 356,
384]. These signals are the easiest to detect for machine learning algorithms
due to their short duration.

Many of the works considering the usage of machine learning for GW sig-
nal detection are difficult to cross-compare. Most algorithms target different
datasets and derived metrics are often motivated more by machine learn-
ing practices than by state-of-the-art GW searches. It is, therefore, hard to
pinpoint exactly how capable machine learning search algorithms currently
are and where the main difficulties arise. To achieve the goal of an objec-
tive characterization of machine learning GW search capabilities, a common
ground for comparison is required.

Here we present the results of the first Machine Learning Gravitational-
Wave Search Mock Data Challenge (MLGWSC-1). In an attempt to provide
a common ground of comparison for different algorithms and in preparation
of O4, we have calculated sensitive distances from 6 different submissions
calculated on datasets of one month duration to collect and compare a suite
of searches. We want to motivate the utilization of machine learning based
searches in a production setting by providing a definitive resource to allow for
easy comparison between different algorithms, be it machine learning based,
matched filtering based, or completely unmodeled. This challenge is the first
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of its kind1 and hopefully more will be held in the future, expanding to more
difficult scenarios.

The mock data used in this challenge consists of 4 datasets containing
noise of increasing realism and signals with increasing complexity for the
two detectors LIGO Hanford and LIGO Livingston [6]. The final dataset
challenges participants to identify GWs from spinning BBHs with a duration
of up to 20 s added to real detector noise from O3a. The signals also take
precession effects and higher order modes into account.

Submissions are evaluated on mock data of one month duration for each
of the four datasets. We calculate sensitive distances for each algorithm and
estimate the computational efficiency based on the runtime. The final dataset
should provide an accurate picture of the possible real-world performance
these algorithms can achieve. However, we note that direct comparison of the
runtime performance of the different algorithms is complicated by differing
hardware usage and optimization.

We find that machine learning algorithms are already competitive with
state-of-the-art searches on simulated data containing injections drawn from
the limited parameter space covered by this challenge. The most sensitive
machine learning algorithm manages to retain≥ 93% of the sensitive distance
measured for the PyCBC pipeline [15] on Gaussian background data down
to a false-alarm rate (FAR) of 1 per month. For higher FARs the separation
between the approaches generally shrinks.

Most machine learning searches, as tested here, are less sensitive on real
noise than on simulated data. The traditional algorithms handle this transi-
tion better. As a consequence, the most sensitive machine learning algorithm
retains ≥ 70% of the sensitive distance of the PyCBC search down to a FAR
of 1 per month. However, the sensitivity achieved of machine learning algo-
rithms on real data is still substantial and shows that they are capable of
rejecting non-Gaussian noise artifacts without any hand-tuned glitch classi-
fication.

From the evaluation of the different datasets we conclude that the main
difficulties for current machine learning algorithms are the ability to analyze
the consistency of detected signals between detectors and the maximum du-
ration of signals that can be detected. Solving these issues would allow for
better performance at FARs < 1 per month and enable a fast detection of
potentially electromagnetic bright sources such as BNS or NSBH mergers.

All code used in this challenge is open source and available at [407].
Therein we also collect the individual submissions by groups that have given

1There has previously been a public Kaggle challenge [406]. First in the sense of this
paper refers to our setup of providing continuous data.
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their consent, provide the analysis results, and make available all plots used
in this paper for all submissions.

This paper is structured as follows. In section 8.2 we provide the details on
the challenge, the datasets, as well as the evaluation process. All submissions
are briefly introduced in section 8.3. The results of the challenge and a brief
discussion can be found in section 8.5. We conclude and give an outlook into
possible future work in section 8.6.

8.2 Methods

All submissions described in section 8.3 are evaluated on the same datasets,
and all machine learning submissions are evaluated under the same con-
ditions. Below we describe the provided material from the challenge, the
requirements for the submitted algorithms, as well as the evaluation process.

8.2.1 Challenge Resources

In this challenge participants are asked to identify GW signals submerged
in detector noise. To provide grounds of comparison, all submissions are
evaluated on the same datasets. To allow for optimization of the submitted
algorithms for the task at hand, participants had access to code that allowed
them to generate arbitrary amounts of data equivalent to that used during
the final evaluation of this challenge. All code used for data generation and
algorithm evaluation is open source and can be found at [407].

In particular, participants had access to the code that was used to gen-
erate the final challenge sets, but not the specific seed that was used. The
specifics of the datasets are described in subsection 8.2.2. They were also
provided with the code that was used to generate the metrics we provide in
this paper. Details on the metrics can be found in subsection 8.2.3.

8.2.2 Test Data

The challenge provides a script to generate semi-continuous raw test data
for any of the four datasets described below. It allows the user to choose a
specific seed and a total duration of the output data. The code subsequently
generates up to three files; the first containing pure noise, the second con-
taining the same noise with injected GW signals, and the third containing
the parameters of the injected signals.

The files containing the pure noise and the noise with additive signals are
of the same structure. They are HDF5 [408] files with two groups named “H1”
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and “L1” containing data from the two detectors LIGO Hanford and LIGO
Livingston, respectively. Each group consists of N HDF5-datasets, each
holding the detector data of a single segment, as well as information on the
GPS starting time of the segment, and its sampling rate. Each segment has
a minimum duration of 2 h, is sampled at 2048 Hz, and contains continuous
data. The files also contain information on the meta-data used to create the
file. This meta-data is removed in the final challenge sets.

We chose to split data into smaller segments of uncorrelated noise for two
reasons. First, real detectors are not equally sensitive for months at a time
and data quality differs to an extent where certain data cannot be used for
analyses. As such, any algorithm should be able to handle gaps in the data.
Second, the noise characteristic varies over time. Segmenting simulated data
allows us to easily incorporate different models for the power spectrum over
the duration of the data. Subsequently, the noise model can be increased in
complexity for the four datasets.

Minimal pre-processing is done on the data that is handed to the submit-
ted algorithms. We only apply a low-frequency cutoff of 15 Hz which is used
to enable a reduction in file size for real-detector data that has to be down-
loaded. The low-frequency cutoff reduces the dynamic range of the data,
which allows us to scale the data and cast it to lower numerical precision.
Any other pre-processing is left to the algorithms and is factored into the
performance evaluation. The scaling is inverted during data loading.

A larger index of the dataset signifies a greater complexity and realism
of the dataset. Participants may choose to optimize for any of the 4 datasets
but are only allowed to submit a single algorithm, which is subsequently
tested with all 4 datasets. We do this to test the ability of the search to
generalize to slightly varying conditions.

Many parameters of the injected signals are drawn from the same distri-
butions irrespective of the dataset. A summary of these distributions can
be found in Table 8.1. All signals are generated using the waveform model
IMRPhenomXPHM [133] with a lower frequency cutoff of 20 Hz. The waveform
model was chosen for its ability to simulate both precession and higher-order
modes. This setup assures that at least 33% of injected signals have an op-
timal network SNR < 4 and can thus not be detected. The merger times of
two subsequent signals are seperated by a random time between 24 s to 30 s
to avoid any overlap. We apply a taper to the start of each waveform.

In Figure 8.1 we show an overview of the intrinsic parameters used in this
challenge and compare it to the parameter space searched by state of the art
searches [14, 15].
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Parameter Uniform distribu-
tion

Coalescence phase Φ0 ∈ (0, 2π)
Polarization Ψ ∈ (0, 2π)
Inclination cos ι ∈ (−1, 1)
Declination sin θ ∈ (−1, 1)
Right ascension ϕ ∈ (−π, π)
Chirp-Distance d2

c ∈ (1302, 3502) Mpc2

Table 8.1: A summary of the distributions shared between all datasets from
which parameters are drawn.
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Figure 8.1: An illustration of the range for the intrinsic parameters covered
by this challenge. The left panel (a) shows a typical range for the component
masses used by state of the art searches [15]. The color indicates the dura-
tion of the waveform from 20 Hz. The triangles show the parameter regions
covered by this challenge. The right panel (b) shows the component-spin χi
distribution of the different datasets in this challenge.
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Dataset 1

The noise from the first dataset is purely Gaussian and simulated from the
PSD model aLIGOZeroDetHighPower [319] for both detectors. This means
that the PSD used to generate the data contains no sharp peaks originating
from factors such as the power grid, is the same for all segments, and is
known to the participants.

Injected signals are non-spinning and no higher-order modes are simu-
lated. The component masses are uniformly drawn from 10 M� to 50 M�.
We enforce the condition that the primary mass has to be equal or larger
than the secondary mass. With this mass range, at a lower frequency cutoff
of 20 Hz, and for non-spinning systems the signal duration is on the order of
1 s.

The first dataset represents a solved problem, as it has already been
excessively studied in the past [55, 56, 64]. It is meant as a starting point
where people new to the field can refer to existing literature to get off the
ground initially. We expected many of the algorithms to perform equally
well on this set.

The final challenge set for dataset 1 was generated with the seed 1 068 209 514
and a start time of 0.

Dataset 2

The noise for the second dataset is also purely Gaussian and simulated.
However, in contrast to the first dataset the PSDs were derived from real
data from O3a and as such contain power peaks at certain frequencies and
are noisy. We generated a total of 20 PSDs for each detector. The PSDs
used to generate the noise are randomly chosen from these lists and as such
are unknown to the search algorithm. The lists themselves are known to the
participants. The PSDs in both detectors are independent of each other but
do not change over time.

Signals are now allowed to have a spin aligned with the orbital angular
momentum with a magnitude between −0.99 and 0.99. Additionally, the
mass range is adjusted to draw component masses from the range 7 M� to
50 M�. This change increases the maximum duration of the signals at a lower
frequency cutoff of 20 Hz to ≈ 20 s. No higher-order modes are simulated for
this dataset and due to the aligned spin requirement no precession effects are
present in the waveform.

The second dataset was intended to pose a considerable increase in diffi-
culty to the first dataset. Using an unknown PSD which was derived from
real data requires participants to estimate it during the analysis, if the algo-
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rithm requires it. However, we expected that increasing the signal duration
to up to 20 s would be the more prominent reason for an increase in difficulty
as many previous machine learning algorithms have had trouble when deal-
ing with large inputs [61, 213, 303, 312]. Finally, we did not expect a large
increase in the difficulty of the dataset due to the inclusion of aligned spins.

The final challenge set for dataset 2 was generated with the seed 2 743 406 703
and a start time of 0.

Dataset 3

The noise for the third dataset is also simulated and purely Gaussian. The
increase in difficulty of the noise comes from varying the PSDs over time.
Instead of choosing a single random PSD from the list of 20 PSDs per detector
described in Figure 8.2.2 and generating all noise with that one PSD, the PSD
for dataset 3 is randomly chosen for each segment.

The mass range from 7 M� to 50 M� and subsequently the maximum
signal duration of 20 s is unchanged compared to Figure 8.2.2. However,
instead of requiring the spins to be aligned with the orbital angular momen-
tum, their orientation is isotropically distributed with a magnitude between
0 and 0.99. As a consequence, precession effects are now present in the wave-
forms. Additionally, we also model all higher-order (l,m)-modes available
in IMRPhenomXPHM, which are: (2, 2), (2,−2), (2, 1), (2,−1), (3, 3), (3,−3),
(3, 2), (3,−2), (4, 4), (4,−4) [133].

The main challenge of this dataset was intended to be the inclusion of pre-
cession effects. While these are not as impactful for short duration, high mass
systems, they can substantially alter the signal morphology for lower mass
systems. Adding higher-order modes can also substantially increase signal
complexity. Both of these effects are currently not modeled in any produc-
tion search relying on accurate signal models, as their inclusion requires an
increase in size of the filter bank to include millions of templates [40, 41]. As
such, we expected many if not all of the submitted algorithms to struggle
with this dataset. On the other hand, any machine learning based algo-
rithm that operates successfully on this dataset may motivate the utilization
of machine learning in production searches in the future by extending the
searchable parameter space.

The final challenge set for dataset 3 was generated with the seed 470 182 217
and a start time of 0.
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Dataset 4

Dataset 4 is the only dataset that contains real detector noise obtained from
the Gravitational Wave Open Science Center (GWOSC) [149]. All noise was
sampled from parts of O3a that had the “data” quality flag and none of the
flags “CBC CAT1”, “CBC CAT2”, “CBC HW INJ”, or “BURST HW INJ”
were active. We consider only segments where the data from both LIGO
Hanford and LIGO Livingston clear the above conditions and excluded 10 s
around any detection listed in GWTC-2 [356]. Afterwards we discarded any
segments shorter in duration than 2 h. To allow for different noise realiza-
tions, we shift the data from LIGO Livingston by a random time from 0 s
to 240 s while keeping the data from LIGO Hanford fixed. The time shifts
are independent for each segment and to avoid any possible overlap between
neighbouring segments, we consider each segment on its own.

To reduce the amount of data that has to be downloaded by participants
we pre-selected the suitable parts of the O3a data. We then applied a low fre-
quency cutoff of 15 Hz to reduce the dynamic range of the data and multiplied
the numerical values by a factor of ≈ 269 to allow a lossless conversion to sin-
gle precision. Finally, the data was converted to single precision and stored in
a compressed format. This allowed us to provide a download link to a single
file of 94 GB size containing enough data to generate up to 7 024 699 s≈81 d
of coincident real noise for both detectors. The data was scaled by the con-
stant factor to avoid the loss of dynamic range due to the conversion from
double precision to single precision. When generating test data, the data
is converted back to double precision and the scaling is inverted. The code
used to downsample the data is also open source and available at [407].

The signals are generated equivalently to the signals in dataset 3, i.e.
masses are uniformly drawn from 7 M� to 50 M�, spins are isotropically dis-
tributed with a magnitude from 0 to 0.99, and all higher-order modes avail-
able in IMRPhenomXPHM are generated. Consequently, precession effects are
simulated.

This dataset is intended to be indicative of a real-world application of the
search in parameter regions which are currently sparsely searched. Given that
many machine learning searches have proven to generalize well from Gaussian
noise to real detector noise at higher FARs in the past [57, 288, 289, 359] we
expected that machine learning algorithms that do well on dataset 3 will also
be competitive for dataset 4. However, it was expected that handling short
glitches may prove difficult for certain searches, especially those focusing
most on the merger and ringdown.

The final challenge set for dataset 4 was generated with the seed 2 514 409 456
and a start time of 0.
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8.2.3 Evaluation

All submissions are evaluated on the challenge sets, which are generated
with a seed unknown to the participants at the time of submission. The
evaluation is run on the Atlas computing cluster at the Albert-Einstein-
Institut (AEI), Hannover. Groups that submitted an algorithm had no direct
access to the evaluation stage2 and final results presented in this work were
only communicated back to the groups after the submission deadline had
passed.

We compute two metrics for every submission and dataset. These are
the wall-clock time required by the algorithm at hand to analyze one month
of data as well as the sensitive distance of the search as a function of the
false-alarm rate. In essence, the sensitivity as a function of the false-alarm
rate is a receiver operating characteristic (ROC) curve that factors in the
varying signal strengths of the injected GWs. It is a common measure of
search sensitivity for production GW-searches [60] and thus allows for easy
comparisons. We do not compute the ROC curve directly, for two reasons.
First, it requires the number of a negative samples in the data. Since our
data is continuous and the evaluation is left to the groups, defining a negative
sample is not possible. Second, the ROC curve can be changed by choosing
a different signal population. For instance, the ROC curve can be driven
to zero by choosing a population of signals that are excessively far from
the detectors. The sensitive distance normalizes the data by the injected
population.

For the calculation of the sensitive distances we use two challenge sets for
each of the 4 datasets. The first contains pure noise and we will call it the
background set from here on out. The second contains the same noise as the
background set but adds GW signals into it. This second set will be called the
foreground set from here on out. As described in subsection 8.2.4 any search
algorithm is expected to process these files and return lists of events, where
an event is a combination of a GPS time, a ranking statistic-like quantity,
and a value for the timing accuracy. We will call these events background
or foreground events when they have been derived from the background or
foreground set, respectively. For the remainder of this section we will refer
to the ranking statistic-like quantity simply as ranking statistic, to simplify
our statements.

To calculate the sensitivity as a function of the false-alarm rate, we need
to determine the false-alarm rate as a function of the ranking statistic. Next

2This excludes submissions by the organization group. However, no member of the
organization group accessed the challenge-data before the submission deadline or altered
their algorithm after the submission deadline.
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we can also determine the sensitivity as a function of the ranking statistic.
Finally, we can combine the two, by evaluating both at the same values of
the ranking statistic.

We use the ranking statistic of all background events as points where both
the FAR as well as the sensitivity is evaluated. Each of these is certain to be
a false positive and thus ensures that the FAR is unique at each threshold,
as long as the search does not return identical ranking statistics for multiple
background events.

To calculate the FAR at a given ranking statistic we count the number
of background events with a ranking statistic greater than this threshold.
We, subsequently, turn that into a rate by dividing the number of false-
positives by the duration of the background data, i.e. 2 592 000 s. With
NFP,R the number of false-positives at a given ranking statistic R and T the
time spanned by the background set, the FAR F can be calculated by

F =
NFP,R

T
. (8.1)

The sensitive volume of a search at FAR F can be calculated by [60]

V (F) =

∫
dxdΛ ε (F ;x,Λ)φ (x,Λ) , (8.2)

where x are the spatial coordinates of the injection, Λ are the injection
parameters, ε (F ;x,Λ) is the efficiency of the search at FAR F , and φ (x,Λ)
is the distribution of the injection parameters x and Λ.

When injections are performed uniformly in volume up to a maximum
distance dmax, Equation 8.2 can be approximated by [60]

V (F) ≈ V (dmax)
NI,F

NI

, (8.3)

where V (dmax) is the volume of a sphere with radius dmax, NI,F is the number
of found injections at a FAR of F , and NI is the total number of injections
performed. An injection is found if there is at least one foreground event that
is within ±∆t of the injection, where ∆t is the time variance assigned to the
event by the search algorithm. The number of found injections at a given FAR
considers only those foreground events where the ranking statistic assigned
to the specified event is greater than the ranking statistic corresponding to
the FAR. In machine learning terms Equation 8.3 is the recall at a given
threshold on the network output multiplied by the volume of a sphere with
radius dmax, assuming that each injection corresponds to exactly one true
positive.
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However, the injections in the datasets are not performed uniformly in
volume, as we sample over the chirp-distance instead of the luminosity dis-
tance. The chirp-distance is given by [409]

dc = d

(Mc,0

Mc

)5/6

, (8.4)

where d is the luminosity distance, Mc = (m1m2)3/5/(m1 +m2)1/5 is the
chirp mass, and Mc,0 =1.4/21/5 M� is a fiducial chirp mass used as a basis
for calculation. Note that in contrast to [409] we use the luminosity distance
instead of the effective distance as our basis.

When sampling the injections from the distributions defined in Table 8.1
using the chirp-distance, effectively the maximum luminosity distance d is
selected based on the chirp mass; the smaller the chirp mass, the smaller the
maximum luminosity distance at which injections are placed. This allows us
to increase the number of detectable low mass systems and, subsequently,
make statistically meaningful statements about the sensitivity for these sys-
tems without requiring a large increase in the amount of data that needs
to be analyzed. However, when considering a fixed chirp mass, injections
are still placed uniformly within that sphere of the adjusted maximum lumi-
nosity distance. In Equation 8.3 we assumed that each injection was placed
uniformly within the volume spanned by the sphere with volume V (dmax).
To adjust it for sampling over luminosity distance we have to factor in that
the probed distance depends on the selected chirp mass. We, therefore, find

V (F) ≈ V (dmax)

NI

NI,F∑
i=1

V

(
dc,max

(
Mc,i

Mc,0

)5/6
)

V

(
dc,max

(
Mc,max

Mc,0

)5/6
) , (8.5)

where Mc,i is the chirp mass of the i-th found injection, dc,max is the upper
limit on the injected chirp distances, and Mc,max is the upper limit on the
injected chirp masses. This expression can be simplified to yield

V (F) ≈ V (dmax)

NI

NI,F∑
i=1

( Mc,i

Mc,max

)5/2

, (8.6)

which is the formula we use to estimate the sensitive volume of a search
algorithm. Instead of quoting the volume directly we convert it to the radius
of a sphere with the corresponding volume and quote that instead.

We also measure the time the algorithm requires to evaluate an entire
month of test data. Since all machine learning search algorithms are running
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Hardware type Specification
CPU 2× Intel Xeon Silver 4215, 8(16)

cores(threads) at 2.5 GHz
GPU 8× NVIDIA RTX 2070 Super

(8 GB VRAM)
RAM 192 GB

Table 8.2: Main hardware specifications available to each search algorithm
during final testing.

on the same hardware these values can be used to compare the speed of the
different analyses on the given hardware. For a summary of the available
hardware resources please refer to Table 8.2. However, we expect the com-
putational time to be dominated by pre-processing steps, which can in theory
be heavily optimized. For this challenge, though, we did not expect many
submissions to invest resources into optimizing their pre-processing and thus
advise the reader to not overemphasize the provided numbers.

All runtimes are measured twice; once for the foreground set and once
for the background set. In both cases the wall-time that has passed between
calling the executable and it returning is measured.

8.2.4 Submission Requirements

All submissions are provided with the path to a single file containing the input
data they have to process. In particular they have to be able to read HDF5
files, the structure of which is detailed in subsection 8.2.2. Importantly, no
pre-processing other than the introduction of a low frequency cutoff of 15 Hz
has been applied to the data. All other pre-processing has to be performed
by the algorithms themselves. In addition to the path to the input data, each
algorithm is provided with a second path at which it is expected to store a
single HDF5 file. This file has to contain three one-dimensional datasets of
equal size named “time”, “stat”, and “var”.

The “time” dataset is expected to contain the GPS times at which the
algorithm predicts a GW signal to be present. These are compared to the
injection times to determine which injections were found, which were missed,
and how many false positives the analysis produced.

The “stat” dataset is expected to contain a ranking-statistic like quan-
tity for every GPS time in the “time” dataset. Here, ranking-statistic like
quantity means a value where larger numbers indicate a higher degree of be-
lieve for the search to have found a GW signal. Having a ranking-statistic
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Python package Version
bilby 1.1.3
pycbc efeaeb6
tensorflow-gpu 2.6.0
tensorflow-
probability

0.14.0

torch 1.9.1+cu11

Table 8.3: A selective list of the core Python packages available to algorithms
during evaluation. A complete list is given at [407].

like quantity associated to all candidate detections enables us to assign a
statistical significance to any event.

The “var” dataset is expected to contain the estimated timing accuracy
of the search algorithm for all GPS times in the “time” dataset. This value
determines the window around the GPS time returned by the search within
which an injection has had to be made in order to consider the detection
a true positive and the injection to be found. This value may be constant
for all times at which the search expects to have seen a signal. We allowed
searches to specify this value themselves, as we felt it to be unsuitable for
a signal detection challenge to require a fixed timing accuracy. In principle,
this freedom can be abused by choosing an accessively high value of ∆t
and claiming all events as true positives. However, all groups have chosen
values on similar scales and more importantly far shorter than the average
separation of two injections.

Throughout the paper, we will refer to events returned by the search. By
that we mean a single tuple (t,R,∆t) contained in the “time”, “stat”, and
“var” datasets, respectively.

To be able to execute all algorithms without major problems, we ask
participants to either provide a single executable that can be run on the
Linux command-line utilizing only the provided software stack or to provide
a singularity image that we can execute. In both cases the algorithms have
to accept two positional command line arguments; the path to the input data
file and the path at which the output file should be stored. The main Python
packages available to submitted executables are listed in Table 8.3, for a full
list refer to [407].

Each algorithm is executed by hand and closely monitored by the orga-
nization team of the challenge. Participants are not allowed to directly tune
or influence the final evaluation.

To ensure that participants have submitted the correct version of their
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algorithm and to make sure that their algorithm behaves as expected on
the evaluation hardware and software, all algorithms are first evaluated on
a validation set which is generated equivalently to the final test set. The
results on this validation set are then communicated back to the submitting
group. Once the group has approved that their algorithm performs within
the expected margin of error, the algorithm is applied to the real challenge
sets. These challenge sets are the same for all participants and were kept
secret until the deadline for final submissions had passed.

Since multiple members of the organization team have submitted algo-
rithms to this challenge, the challenge datasets were only generated after the
submission deadline had passed. The script to generate test data provides
an option to use a random seed. This option was used to generate the fi-
nal challenge datasets and ensures that no submission had knowledge of the
challenge set prior to the submission deadline.

We allowed all participants to retract their submissions at any point prior
to the final publication of our results. This means that participants were
allowed to retract their submissions even after they were informed about the
performance of their algorithm on the final challenge sets and after they have
seen the performance of other entries. No group made use of this freedom
and retracted their submission after results were internally published.

8.3 Submissions

In this section we briefly introduce the different algorithms. For more details
on the individual submissions we refer the reader to the original works cited
within each subsection. The subsections are titled by the group name and
are given in order of registration to the challenge.

All algorithm preparation was performed by the individual groups using
their own available hardware resources. This crucially includes training of
machine learning algorithms, for which no resources were provided by the
organizers of this challenge. There were no strict requirements to submit al-
gorithms that are based on machine learning techniques. We even encouraged
the submission of a few traditional algorithms to quote a point of reference.
However, the available resources detailed in subsection 8.2.3 for evaluation
of the test sets are tailored to suit the needs of machine learning algorithms.
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8.3.1 MFCNN

3 The submission of the MFCNN group is based on the works from He et
al. [290]. The authors of [290] refer to the model as matched-filtering convo-
lutional neural network (MFCNN). MFCNN is a semi-coherent search model.
The basic idea of the model is to use waveform templates as learnable weights
in neural network layers. Analogously to the standard coincident matched-
filtering searches the output of each matched-filtering layer is maximized and
normalized in the unit of matched-filtering SNRs for each GW detector. How-
ever, triggers are not generated on a single detector. The remaining part of
the neural network is a usual convolutional neural network that is employed
afterwards to jointly analyze the output from all detectors. Finally, a Soft-
Max function is applied to evaluate the confidence score of a GW signal being
present in the GW detector network. The architecture was designed to take
the advantages of both matched-filtering and convolutional neural networks
and combine them to search for real GW events in GWTC-1 [346]. To adapt
to this challenge, the source code [410] of the submission was translated from
the MXNet framework [411] used in the original work to a PyTorch [365]
implementation.

The training data for the model is generated by the code that generates
dataset 4. The training data are input into the model directly with none of
the usual pre-processing such as band-pass or whitening, which is consistent
with the original work [290]. In fact, the model is equipped with a whitening
layer to estimate the power spectrum for each input data. The main mod-
ification used in this challenge is to randomly sample 25 templates in the
first matched-filtering layer from the same parameter space used in dataset
4 of this challenge. It performs significantly better than the original gridded
and fixed template configuration. The subsequent convolution network of
the model is constructed using the current excellent lightweight models Mo-
bileNetV3 [412] which give state-of-the-art results in major computer vision
problems. The submission uses curriculum learning, during which the model
is trained with decreasing multiples of signal amplitude. The multiplicative
factor is lowered from 50 to 1 until convergence. Multiple models were ran-
domly initialized and trained on a NVIDIA Tesla V100 GPU, from which
the best was chosen for this submission.

To search for triggers and evaluate the performance of the model, a slid-
ing window approach is implemented. The evaluation data is divided into
overlapping segments corresponding to the input size of the model. Subse-
quently, all segments are passed through the model resulting in a sequence

3The corresponding authors for the MFCNN submission are He Wang, Shichao Wu,
Zong-Kuan Guo, Zhoujian Cao, and Zhixiang Ren.
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of predictions and a table of SNR peaks from the 25 sorted matched filters.
The step size is 1 second and a threshold of 0.5 is set on the network out-
put as in [290]. The “time”-, “var”- and “stat”- dataset of the output file
described in subsection 8.2.4 are derived from the table of SNR peaks as-
sociated with directly filtering the templates with the data. The GPS time
and time variance of each trigger are designated as the median value and
the interquartile range of SNR peaks from the nearby segments, respectively.
We count the coincident SNR peaks between two detectors to quantify the
ranking-statistic. Other experiments are still in progress and are supposed
to be published alongside further details in a standalone paper.

The final version of the algorithm submitted by the MFCNN group was
provided after the submission deadline had past. A vital flaw in their original
contribution was discovered and was allowed to be fixed.

8.3.2 PyCBC

4 The PyCBC submission is based on a standard configuration of the PyCBC-
based archival search for compact-binary mergers [15]. The search infras-
tructure was used, in addition to cWB, for the first detection of gravitational
waves, GW159014 [13], in production analyses by multiple groups to produce
gravitational-wave catalogs [14, 15] and targeted analyses [358]. A similar
low-latency PyCBC-Live analysis is also based around the same toolkit [58,
343]. The analysis uses matched filtering to identify candidate observations
in combination with a bank of predetermined waveform templates that cor-
respond to the expected gravitational-wave signals [30]. Matched filtering
is known to be the optimal linear filter for stationary, Gaussian noise. To
account for the potential non-Gaussian noise transients [371, 413, 414], each
candidate and the surrounding data are checked for consistency with the ex-
pected signal [189, 209]. In addition, the properties of candidates, such as
their time of arrival, amplitude, and phases in each detector are checked for
consistency with an astrophysical population [163].

The empirically measured noise distribution and the consistency with
the expected gravitational-wave signal are combined to calculate a ranking
statistic for each potential candidate [163, 164]; this ranking statistic is used
as the “stat” value of dataset output, along with its associate trigger time
in “time”. The “var” dataset is set to a constant of 0.25 s. Two template
banks are used for the submitted results. For dataset 1, a template bank
of non-spinning waveform templates, using the IMRPhenomD [129] model,
is created using stochastic placement. Datasets 2, 3, and 4 were evaluated

4The corresponding author for the PyCBC submission is Alexander H. Nitz.
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with a common template bank that includes templates that account for spin
which is aligned with the orbital angular momentum. Furthermore, only the
dominant mode of the gravitational-wave signal was used and effects such as
precession were not accounted for. In both cases, the mass boundaries of the
template bank conform to the challenge set parameters.

The final version of the algorithm submitted by the PyCBC group was
provided after the submission deadline had past. A vital flaw in their original
contribution was discovered and was allowed to be fixed. Furthermore, the
PyCBC submission strictly speaking uses a different algorithm for dataset
1 than for all other datasets, as the template banks are not the same. The
change in template banks was accepted, as this work does not focus on a
runtime analysis.

8.3.3 CNN-Coinc

5 This submission is based on the works from Gabbard et al. [56] and Schäfer
et al. [64]. It utilizes the network architecture presented in [56] with a
prepended batch-normalization layer [271]. As such the network processes
8 192 input samples, which corresponds to 4 s at a sampling rate of 2 kHz.
The network is trained only once and applied to the data from both detectors
individually. Afterwards the outputs are correlated to find coincident events
as detailed in [64]. The source code for training the network and applying
it to test data of the format used in this challenge is open source and can
be found at [415]. The algorithm was designed to enable an easy and effi-
cient estimation of the search background by applying time shifts between
the individual detectors data. While this feature cannot be utilized in this
challenge, the original paper [64] highlights the advantages of this approach.

The network is trained on parts of the real O3a noise from the Han-
ford detector as provided in this challenge. Signals are generated using the
waveform approximant IMRPhenomXPHM [133] from the same parameter distri-
bution used in datasets 3 and 4 in this challenge. Merger times of the signals
are varied between 2.9 s to 3.1 s from the start of the input window of the
network. The signals are pre-whitened by one of the provided Hanford PSDs
used in datasets 2 and 3. Noise samples are non-overlapping parts taken
from the real noise data provided by this challenge, where each segment is
whitenened by an estimate of the PSD on that segment. The network was
trained for 100 epochs using the loss and optimizer settings provided in [64]
on a single NVIDIA RTX 2070. The epoch with the greatest binary accuracy
on a single training run was chosen for this challenge.

5The corresponding author for the CNN-Coinc submission is Marlin B. Schäfer.
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During evaluation the network is applied to the challenge-data using a
sliding window approach. Each data segment is whitened by an estimate of
the PSD of that segment obtained by Welch’s method [30, 187]. All data
is whitened before the network is applied for computational efficiency. Sub-
sequently, the network is applied to the data via a sliding window with a
step size of 204 samples ≈ 0.1 s. Afterwards a threshold of 3.4 is applied on
the unbounded Softmax replacement (USR) output, which was introduced
in [63]. Coincident events are calculated using the same procedure and pa-
rameters as outlined in [64]. The “time”- and “stat”-dataset of the output
file described in subsection 8.2.4 list the coincident event times and ranking
statistic values, respectively. The time variance of the “var”-dataset is set to
a constant value of 0.3 s.

8.3.4 TPI FSU Jena

6 This submission closely followed the method of [63], which is itself based
on [56], with several modifications to adapt to the specifics of the challenge.
The core of the algorithm is a convolutional neural network that accepts a
2 × 2048 input tensor corresponding to 1 second of data from 2 detectors
sampled at 2048 Hz. Its architecture is derived from that of [63] and deviates
from the original network by a larger size of the individual layers and a
doubled number of convolutional layers. These modifications are the result
of a hyperparameter variation experiment which found these settings to be
optimal. A standalone publication on this submission giving further details
on the methodology is in preparation. The final layer of the network is a
Softmax layer over two inputs which is used for training and removed using
the USR [63] during evaluation.

The network is trained on a dataset constructed by whitening a randomly
chosen part of the real noise file and slicing it to produce 1-second noise
samples and injecting whitened IMRPhenomXPHM-generated BBH waveforms
into half the noise samples at SNRs uniformly drawn between 7 and 20. The
waveform parameters are drawn from the same distributions as are used in
dataset 4 of this challenge. The training dataset consists of 106 samples and
the validation set of 2 · 105 samples.

During evaluation, each segment in the input file is whitened separately
using the estimated PSD and sliced into 1-second segments at 0.1-second
spacing. These are fed to the network with the USR applied. First-level
triggers are selected by applying a threshold of -8, which are then clustered

6The corresponding authors for the TPI FSU Jena submission are Ondřej Zelenka,
Bernd Brügmann, and Frank Ohme.
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into events. For each event, the “time” and “stat” in the output file are the
values of the highest ranking statistic first-level trigger of each cluster, and
“var” is set to 0.2 seconds. The algorithm is implemented using the PyTorch
framework [365] and spawns child processes to whiten individual segments.
The network evaluation is performed by the parent process.

8.3.5 Virgo-AUTh

7 This submission is based on a simple per-dataset binary classification
scheme. Interestingly, it was found that training a model only on dataset
2 or only on dataset 4 can yield impressive results on the other datasets
as well. Specifically, training samples from dataset 2 can generalize well
to dataset 3 and 1 and not so well on dataset 4, whereas training samples
from dataset 4 can generalize well on datasets 1, 2 and 3. Thus, training
samples were only generated from dataset 4. An adaptive normalization
mechanism [416] was used instead of batch normalization as the first layer,
to handle non-stationary timeseries. For the neural network architecture a
deep, ResNet-like model [240] with a depth of 54 layers was used.

One week of training data per dataset was generated and the generated
injection parameters were used to construct all corresponding waveforms.
This amounted to about 600k background segments of duration 1.25 s with
a stride of 2 s between, i.e. the next sample starts 0.75 s after the end of
the previous one, and about 580k waveforms, of which 300k were used for
the injections. For validation, one day of data was used, resulting in about
86k noise segments and 3.2k waveforms. The noise segments and waveform
segments are combined online during training, in a static manner, both for
the training and for the validation sets. The input samples are whitened
before feeding them to the classifier. The PSD is computed online per batch
of 4.25 s with a stride of 3.1 s, and each 1.25 s segment inside this duration
is whitened with the same PSD. To increase speed, the Welch method for
computing the PSD was implemented in PyTorch [365] and whitening is
implemented as the first layer of the final detection module. Notably, this
approach of computing the PSD for every 4.25 s and whitening each 1.25 s
segment in a sliding window manner was found to be faster than using a
precomputed PSD for every 1.25 s (about 40% faster for one month of data).
After whitening, the first and last 0.125 s (0.25 s total) are removed from each
sample.

7The corresponding authors for the Virgo-AUTh submission are Paraskevi Nousi, Niko-
laos Stergioulas, Panagiotis Iosif, Alexandra E. Koloniari, Anastasios Tefas, and Nikolaos
Passalis.
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The best results were obtained with a ResNet-52 type network. A Deep
Adaptive Input Normalization (DAIN) layer [416] was used as the first layer
after whitening, to handle distribution shifts that may be present. The final
output is binary, i.e., noise plus waveforms or noise only, and the objective
function used was a regularized binary cross entropy. The “var” parameter
is set to 0.3 s, as the network predictions are high even when the time of
coalescence is slightly outside the preset range. The “stat” parameter is set
to the network confidence, i.e., a value in the [0, 1] interval corresponding to
the probability that a waveform is present. Finally, 0.125 s are added to the
expected time of coalescence to account for the time lost in the whitening
process.

A standalone publication on the methods used in this submission is in
preparation.

8.3.6 cWB

8 Coherent WaveBurst (cWB) is a waveform model-agnostic search pipeline
for GW signals based on the constrained likelihood method [417–419]. The
cWB pipeline has been used for the analysis of scientific data collected by
the LIGO-Virgo detectors, targeting detection of signals from generic GW
sources, including the compact binary mergers [14].

The cWB algorithm identifies the excess-power events in the time-frequency
domain representation of strain data from multiple detectors [38, 165]. For
each event, the cWB pipeline reconstructs the GW waveforms and estimates
summary statistics which describe generic properties of the events like the co-
herence across the detector network, signal strength, and the time-frequency
structure.

Recently, a boosted decision-tree algorithm, eXtreme-Gradient Boost (XG-
Boost) [301], was adopted and implemented within the cWB framework to
automate the signal-noise classification of the cWB events [300]. Two types
of input data are used for the supervised training: signal events (from simu-
lations) and noise events (from background estimations). For each of those,
a subset of cWB summary statistics is fed to XGBoost as input features
to train a signal-noise model. As in [300], the detection statistic for the
machine learning-enhanced cWB algorithm is defined by:

ηr = η0 ·WXGB, (8.7)

where, η0 is cWBs ranking statistic, andWXGB is the penalty factor calculated
by XGBoost ranging between 0 (noise) and 1 (signal).

8The corresponding authors for the cWB submission are Francesco Salemi, Gabriele
Vedovato, Sergey Klimenko, and Tanmaya Mishra.
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This methodology has been recently used in the full reanalysis of publicly
available strain data from Advanced LIGO’s Hanford and Livingston third
observational run [167]: the machine learning-enhanced cWB outperforms
the standard human-tuned signal-noise classification used for detection of
the compact binary coalescences in the O3 run.

For this study, we chose to use machine learning-enhanced cWB; however,
cWB typically rejects weak candidate triggers (i.e., with FAR � 1 per year)
at early production stages. Moreover, the whole workflow is optimized for a
trigger production which saturates at FAR ≈ 30 to 50 per month. Therefore,
we modified cWB to increase the event production rate by almost 2 orders
of magnitude: the result is a cWB with sub-threshold capabilities, able to
speed up computation and reduce memory allocations.

While trying to provide the most “generic” result for this study, it was
decided to re-use the XGBoost model which was developed for [167]: it
should be noted that the model was trained on noise and signal events sets
that differ substantially from those adopted for the data sets prepared for
MLGWSC-1. The noise backgrounds for dataset 3 and dataset 4 appear to
be significantly quieter than O3. Also, the signals were drawn from a spin-
aligned stellar-mass BBHs population model with different component mass
ranges [420] and with SEOBNRv4 waveforms [118]. The above-mentioned
detection statistic, ηr, is used as the “stat” value of dataset output, along
with its associated trigger peak-time in “time”. The “var” dataset is set to
a constant of 0.25 s.

The results from the cWB group were provided after the submission dead-
line had passed. The group assured that no tuning to the challenge set was
performed.

8.4 Data release

We provide all source code as well as the evaluation results for all submissions
at [407]. The repository contains all code accessible to the participants of the
challenge, which most importantly includes a script to generate data and one
to produce the sensitivity statistics we provide in section 8.5. The repository
also contains code for basic visualization as part of the “contributions” folder.
Adaption of these scripts were used to create the graphics in this paper. The
challenge used the code of release 1.3 of the repository.

Alongside the code provided by the challenge organizers we publish the
source code that was used to run the contributions for the groups PyCBC,
CNN-Coinc, TPI FSU Jena, and Virgo-AUTh in the “submissions” folder of
[407]. The submission code for the MFCNN group can be found at [410].
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All analysis output files for all submissions created by our analysis are
also publicly available and are stored in the “results” folder in [407]. For
each group we make available the raw output on the foreground and the
background for all 4 datasets. Additionally, all timing information is avail-
able. The exception is the cWB group, for which only results on datasets 3
and 4 are available.

The repository [407] also contains plots used in this paper for all groups,
including versions we have not shown here. They can be found in the “plots”
folder.

8.5 Results and discussion

In this section we provide the results of our evaluation process described in
section 8.2 for all 6 submissions. We calculate and discuss sensitive distances,
found-missed plots, and runtimes to provide a quantitative comparison be-
tween the different submissions. We specifically focus on the difference be-
tween machine learning and traditional algorithms and reason where the core
differences in performance arise.

The four datasets we use in this study were chosen to answer different
questions and serve different purposes. Dataset 1 was meant as an entry
point to the challenge that represents a largely solved case [55, 56, 64]. We
expected most submissions to perform very similarly on this dataset. The
second dataset was intended as the first major step in difficulty. We expected
its main challenge to be the longer duration of the injected signals, as many
machine learning algorithms target shorter durations and struggle with large
analysis segments [61, 213]. Dataset 3 includes precession and higher order
mode effects in the injected signals that traditional, modeled searches are
not optimized for9 [40, 41, 44]. We wanted to test if machine learning algo-
rithms could get closer in performance, or even outperform, the traditional
searches in these regions. The intention of dataset 4 was to provide a chal-
lenge that is representative of a realistic search on real detector data and
a limited parameter space. The data contains non-Gaussian noise artifacts,
that can mimic GW signals [125, 421–423], which are strongly suppressed by
sophisticated algorithms in traditional searches [59, 60, 125]. Most machine
learning algorithms that target real noise do not make use of such noise-
mitigation strategies and instead rely solely on the ability of the machine
learning algorithm to identify noise artifacts. This approach was reported
to be effective for higher FARs in the past [57, 288, 289, 359] and we were,

9A full search of the entire O3 data that includes higher order modes has been performed
in [43].
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therefore, expecting relatively minor difference between dataset 3 and dataset
4. Furthermore, most traditional algorithms use matched filtering, which is
only proven to be optimal for signal recovery when the noise is stationary
and Gaussian. Since neither of the two assumptions are true for real detec-
tor data, we were also interested to test if machine learning algorithms can
perform better than these searches by learning a better noise representation.

8.5.1 Sensitivities

In this subsection we discuss the sensitive distances of the different submis-
sions, which are a measure for how many sources can be detected at any
given level of certainty, i.e. at a particular FAR. They are the core metric
to determine the quality of any search. We focus on the low FAR region
and truncate the plot at a FAR of 103 per month. We chose this cutoff
for two reasons. First, to function as a standalone search, algorithms may
only report events with low FARs. State of the art pipelines send out alerts
only when the FAR is smaller than O (1) per month [58]. Second, for high
FARs a non-negligible number of detections originate from false associations.
This means that a large number of triggers that originate from random noise
coincidences are close enough to an injection to be counted as true positives.

Since all machine learning submissions chose to optimize for dataset 4,
results on all prior sets also test the capability of generalizing to different
signal (sub)populations. Dataset 3 is a special case, as it uses the same
distribution to draw the parameters of the injected signals as dataset 4.
It, therefore, differs only in the noise contents and is a good test of the
performance difference of different algorithms between simulated and real
noise.

The results of this challenge are summarized in Figure 8.2 and Table 8.4.
The four individual panels of Figure 8.2 show the sensitive distances as a
function of the FAR for all submissions. The panels contain the results for
dataset 1 to 4 from left to right and top to bottom. The errors on the sensitive
distances estimated from the variance of the Monte-Carlo integration are
smaller than 80 Mpc for all curves. In Table 8.4 we give the numeric values
for the sensitive distances at three selected FAR values of 1, 10, and 100 per
month for all submissions and datasets. We also provide information on the
wall-clock time used to evaluate the different sets. Due to time constraints,
we only show sensitivity curves for dataset 3 and 4 for the submission from
the cWB group. We also note that PyCBC used a different template bank
to analyze dataset 1 than for the remaining three datasets.

We find that the machine learning algorithms from the TPI FSU Jena
group presented in subsection 8.3.4 and the Virgo-AUTh group presented in
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Figure 8.2: The sensitive distances of all submissions and all four datasets
as functions of the FAR. Submissions that made use of a machine learning
algorithm at their core are shown with solid lines, others with dashed lines.
The FAR was calculated on a background set that does not contain any
injections.
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Table 8.4: A summary of the analysis results for all submissions and all
datasets. The columns labeled “Sensitivity” give the values for the sensitive
distance at the three FARs 102 per month, 101 per month, and 100 per
month rounded to the second decimal place. The values lie on the lines in
Figure 8.2. The columns labeled “Runtime” list the time for evaluation of
the foreground and background set in seconds, respectively. The runtime
column labeled “average” lists the mean time obtained from evaluating the
foreground and background data. Entries labeled “N/A” are not available,
because they were not measured. The PyCBC times labeled with ∗ are
only approximations. The analysis did not run on the challenge hardware
but made use of a compute cluster. Shown times are the result of scaling
the computational costs to 16 CPU cores. The PyCBC times labeled with
∗∗ are approximations obtained in the same manner as the approximations
labeled with ∗, but make use of a larger filter bank. The times of the cWB
group marked with ∗∗∗ are approximations derived from dividing the CPU
core-seconds reported by the search by 16 to normalize it to the challenge
hardware.
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subsection 8.3.5 are very close in sensitivity for datasets 1, 2, and 3. The
submission from the TPI FSU Jena group reaches a slightly higher sensitive
distance at all FARs for all of these three datasets. However, the Virgo-AUTh
submission retains ≥ 90% of the sensitive distance achieved by the TPI FSU
Jena submissions for FARs ≥ 2 per month. At lower FARs the gap widens
but the individual sensitivities carry large uncertainties due to low number
statistics. For higher FARs this gap narrows to a separation of roughly 4%
at a FAR of 1000 per month. We suspect that the difference between the two
approaches is on the order that could be explained by different initializations
of the training procedure.

On dataset 4 the submission from the Virgo-AUTh group manages to
maintain a stable sensitivity for the full range of tested FARs. The submission
from TPI FSU Jena, on the other hand, is dominated by background triggers
and seemingly struggles to adjust to the non-Gaussian noise characteristics.
For high FARs the sensitivity is on a similar scale as the submission from the
Virgo-AUTh group and as was observed on previous datasets, backing up
the hypothesis that rejecting background triggers is the main problem. This
is surprising, as both algorithms were optimized on dataset 4 but performed
similarly only on datasets 1 to 3. One reason for this result may be the neural
network architectures used by the different groups. The Virgo-AUTh group
uses a very deep ResNet that may be better suited to represent non-Gaussian
noise artifacts. The architecture from the TPI FSU Jena group is a more
straightforward convolutional architecture that may be limited in its ability
to learn appropriate parameters.

The algorithms from the MFCNN group presented in subsection 8.3.1 and
the CNN-Coinc group presented in subsection 8.3.3 also show similarities in
sensitivity. Both are significantly less sensitive than the leading machine
learning submission on all datasets. For datasets 1, 2, and 3, the MFCNN
contribution achieves 32.5%, 30.8%, and 23.5% of the sensitive distances
of the leading machine learning contribution, respectively. The CNN-Coinc
submission reaches 42%, 25.5%, and 27% of the sensitivity of the leading
machine learning contribution at the point of farthest separation. For dataset
4 the submission from the MFCNN and CNN-Coinc groups do comparatively
better. They retain ≥ 68% and ≥ 50% of the sensitive distance of the leading
machine learning submission down to a FAR of 10 per month, respectively.
At a FAR of 1 per month the CNN-Coinc submission does not detect any
signals, whereas the MFCNN still retains 60% of the sensitivity of the leading
machine learning contribution.

On the first three datasets one can observe a steep gradient of the sensi-
tivity curves at varying FARs for the MFCNN and CNN-Coinc submissions.
At even higher FARs the curves level off again and return to a similar slope
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observed at low FARs. The sudden increase leads to the MFCNN submis-
sion being more sensitive than the modeled PyCBC search by up to 15%
on dataset 3 for FARs > 200 per month. This behavior is not present in
any of the other submissions and we were not able to find a clear explana-
tion. However, we observe that both algorithms have different trigger rates
on the foreground and background set. If the background is estimated from
the foreground data only, the sensitivity of both algorithms drops sharply.
All other algorithms are robust to this change. We show these sensitivity
curves in Figure 8.3. However, it was communicated to the groups before
submission that sensitivities would be calculated using both the foreground
and background data. For this reason, we do not discuss Figure 8.3 any
further but would like to encourage possible future mock data challenges to
drop the background set.

For all datasets we compare the leading machine learning submission to
the submission from PyCBC presented in subsection 8.3.2. We also compare
it to the submission from cWB presented in subsection 8.3.6 for datasets 3
and 4. These two are traditional, state-of-the-art search algorithms that have
already been used successfully in past observation runs [13, 14, 424].

For dataset 1 we find that the machine learning search is able to achieve
between 94% and 99% of the sensitivity obtained with PyCBC. These results
are remarkably close and improve significantly on the findings from [64],
which targeted a very similar dataset. However, the gap between the machine
learning detection algorithm and the PyCBC search widens for lower FARs.
Therefore, we expect that the PyCBC contribution will be able to attribute
a substantially higher significance to many events. This is amplified by the
ability of PyCBC to trivially increase the amount of data that can be used
for background estimation by introducing time-slides between detectors [60,
64].

For dataset 2 the leading machine learning contribution gets even closer
to the traditional algorithm from the PyCBC group. At low FARs ≤ 20
per month it retains ≥ 93.5% of the sensitivity achieved by the PyCBC
submission. For high FARs ≥ 200 per month it even manages to outperform
the PyCBC submission and is up to 1.5% more sensitive.

From dataset 2 to dataset 3 all submissions experience a slight increase
of the measured sensitive distance. This may be surprising at first but can
be explained by the distribution of the effective spin. For dataset 3 the spin
orientations are distributed isotropically, which causes the average effective
spin to be smaller than in dataset 2. This leads to few systems with large
effective spin. The PyCBC search gains up to 3% in sensitivity at low FARs,
although it loses about 1% in sensitivity at high FARs. A similar change
can be observed in the submission from TPI FSU Jena. Since both the

182



8.5. RESULTS AND DISCUSSION

leading machine learning contribution and the PyCBC search gain similar
amounts of sensitivity from dataset 2 to dataset 3 the comparison between
the two does not change substantially. The submission from the TPI FSU
Jena group is now up to 2.5% more sensitive at high FARs and still about
6% less sensitive at low FARs. The Virgo-AUTh, the MFCNN, and the
CNN-Coinc submissions increase their sensitive distance by a larger fraction,
suggesting that they benefit more from the signal population being closer to
the distribution of signals in their training set. Dataset 3 is also the first
dataset for which results from the cWB search are available. We find that
cWB retains ≥ 80% of the sensitive distance obtained by PyCBC over all
tested FARs. Subsequently the leading machine learning submission achieves
a sensitive distance greater by 15% to 23% over the range of tested FARs.

For dataset 4 the leading machine learning contribution now comes from
the Virgo-AUTh group. Compared to PyCBC their algorithm retains ≥ 87%
of the sensitivity down to a FAR of 10 per month. For smaller FARs the
sensitivity gap widens quickly. At a FAR of 1 per month the machine learn-
ing search achieves 70% of the sensitivity of PyCBC. The cWB submission
evolves similarly to PyCBC and retains ≥ 79% of the sensitive distance. At
high FARs the leading machine learning search manages a sensitive distance
up to 27% larger than that of cWB. For low FARs the sensitive distance falls
off quicker than that of cWB. At a FAR of 1 per month the cWB search is
12.5% more sensitive than the Virgo-AUTh submission. For lower FARs we
expect this difference to become larger, as the production level search algo-
rithms are tuned for lower FARs than tested in this work. In comparison to
the sensitivity difference on dataset 3 the machine learning submission from
Virgo-AUTh does not retain as much sensitivity on real noise as the PyCBC
or cWB submissions.

The results on dataset 1 demonstrate that machine learning detection
algorithms are already capable of rivaling traditional search algorithms for
simulated data at FARs ≥ 1 per month. A previous study [64] had identified
the capability of machine learning searches to build an internal representation
of the signal morphology as the main problem to achieve comparable sensitiv-
ities to traditional algorithms. Such a signal representation would allow the
algorithms to compare detections in multiple detectors and require them to
be consistent. The two leading machine learning algorithms in this challenge
seem to have overcome this limitation, at least for high FAR detections.

For dataset 2 we expected machine learning searches to decline in sensitiv-
ity more strongly than traditional searches. This expectation was provoked
by the short duration of data that is processed by most machine learning
searches at each step. As the signals injected into dataset 2 are of longer
duration than those used in dataset 1, the machine learning algorithms in-
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herently lose some amount of sensitivity due to considering only small parts
of the signal. We estimate this loss to account for at most a 1% difference in
sensitivity. However, we observe the opposite effect for the two leading ma-
chine learning algorithms, which get even closer in sensitivity to the PyCBC
submission compared to dataset 1. This may be caused by the distribution of
signals in the training data used for the machine learning algorithms. Since
both algorithms optimized for dataset 4, most signals in the training data
will have non-zero spin. Therefore, the challenge set for dataset 2 is closer in
nature to the training data, which may have introduced a bias that leads to
higher sensitivities for spinning systems or in other words a slightly reduced
sensitivity to non-spinning systems.

Dataset 3 was intended to test if machine learning searches are capable of
outperforming traditional algorithms for precessing systems and signals car-
rying higher order mode information. We do not find substantial evidence
in support of this hypothesis from the sensitivity curves. However, the chal-
lenge set 3 contains only very few signals with strong evidence for precession
and higher order modes, as most signals are still relatively short. The impact
on the overall sensitivity from these signals is, therefore, minor. Surprisingly,
the leading machine learning search is still on par with PyCBC and manages
to be significantly more sensitive even at the lowest tested FARs than the
unmodeled cWB search. It must be noted that the cWB submission was not
optimized for the parameter space used in this challenge. We, thus, expect
this gap to narrow if more effort were to be used to tune the cWB pipeline.

The change in the relative difference in sensitivity between the PyCBC
submission and the leading machine learning contribution, as well as the
change in difference to the cWB submission, from dataset 3 to dataset 4
suggests that many machine learning algorithms currently used by the com-
munity are not yet capable of treating real noise as well as sophisticated tra-
ditional algorithms. We suspect that one major factor may be non-Gaussian
noise artifacts that are misclassified as signals by machine learning algo-
rithms, while the traditional searches excise them from the data or reject
them on other bases. Another reason may be the non-stationary character of
the noise that may lead to different sensitivities at different times. However,
this would have also been a factor in dataset 3, where the PSDs used to
simulate the noise change over the duration of the challenge set. However,
since the leading machine learning search does retain sensitivity at all FARs
it must have learned to reject most non-Gaussian noise artifacts, which is
in line with expectations from studies carried out at higher FARs [288, 289,
291, 359].
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8.5.2 Found and missed injections

We generate found-missed plots for all submissions and show a few selected
ones. The ones not included in this paper can be found in the associated
data release [407]. These plots highlight specific areas in parameter space
where the machine learning searches are already competitive and those where
more work is required. Specifically, we provide plots for chirp mass Mc

versus decisive effective chirp-distance Dc,eff, τ0 versus mass ratio q, and the
effective precession spin χp [180] versus inclination with respect to the line
of sight θjn. To first order τ0 is the time to merger from the lower frequency
cutoff of the waveform [68, 425]. The decisive effective chirp-distance is a
measure for how strong the signal can be observed in the detector that has
the worse sensitivity due to source location and orientation. The effective
chirp-distance is the chirp-distance at which a source with the same intrinsic
parameters and sky location but an optimal orientation would have been
observed from at the same amplitude as the injected signal. The decisive
effective chirp-distance is then the larger of the two effective chirp-distances
from the two detectors. Therefore, the Mc/Dc,eff plot informs about the
ability to detect signals as a function of the SNR in the detector that is less
sensitive to the signal. We also include information on the ranking statistic
like quantity returned for each detected event, to highlight how strongly it
is correlated to the SNR. The τ0 versus q plot highlights how well long and
short duration signals are recovered. It also gives information on the mass
ratio, which is an important parameter for the strength of precession effects.
The main plot used to determine the impact precession effects and higher
order modes have on the detectability of signals is the χp versus θjn plot.

In Figure 8.4 we show the found injections from dataset 1 in the Mc-Dc,eff-
plane for the PyCBC and TPI FSU Jena submissions, respectively. Both
plots clearly show that closer injections are generally attributed a higher
confidence to be a real signal. This indicates that the ranking statistic
like quantities for both algorithms are actually correlated with the signal
strength. Similar correlations can be observed for all submissions. Further-
more, all signals with large Dc,eff are missed by both searches, showing that
sensitivity estimates are not limited by the injected population. From Fig-
ure 8.4 we find that the chirp mass distribution from the TPI FSU Jena
submission favors chirp masses in the region Mc ∈ [20, 35], which is not true
for the PyCBC submission. We attribute this bias to the training set, which
contained signals drawn from the distributions used for dataset 3 and 4. The
probability distribution of the chirp mass for these sets is shaped such that
about 51% of signals are being drawn from the mass range 20 M� to 35 M�.
A similar bias is not so evident for the other machine learning submissions
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but may be masked by other effects. The PyCBC submission uses a uniform
prior on the chirp mass and thus avoids this bias.

In Figure 8.5 we compare the found injections from dataset 2 in the τ0-q-
plane for the PyCBC and TPI FSU Jena submissions. The plots show that
the two searches are competitive in the comparable mass region and identify
similar signals. The main difference between the two searches can be observed
in the τ0 distribution of found signals. Most of the signals with large values
for τ0, i.e. long duration signals, are missed by the TPI FSU Jena submission.
These crucially include many signals that the PyCBC submission identifies
with relatively high confidence. Therefore, the short duration of the input
windows used by the TPI FSU Jena submission still seem to be a limiting
factor for the sensitivity. This limitation will likely be more severe if longer
duration signals from sources like BNS or NSBH systems were considered.

In Figure 8.6 we compare the θjn and χp values of the injections from
dataset 3 that are found by one algorithm but missed by the other. The two
algorithms come from the PyCBC group and the TPI FSU Jena group. If
either algorithm adapted better to signals with strong precession or higher
order modes content, we would expect to see a clustering from that search in
the scatter plot. However, we do not observe this clustering, which backs up
our observation from the sensitivity curves that the machine learning algo-
rithm from the TPI FSU Jena group has not learned a better representation
of precessing systems or signals with higher order mode content than the
modeled PyCBC search, which only includes non-precessing signals in its
template bank. However, the amount of impact precession or higher order
modes have on the detectability of short duration signals used in this study
are small. A real test of this hypothesis would require the analysis of long
duration signals.

8.5.3 Runtimes

All runtimes in this section are given in terms of wall-clock times obtained on
equivalent hardware, which is listed in Table 8.2. The runtimes are largely
independent of the dataset for all submissions. We, therefore, discuss them
only in summary. An overview of the times can be found in Table 8.4. They
were measured by applying each algorithm to the foreground and background
of each challenge set. We report the time between the algorithm call and it
returning. To avoid bottlenecks, all files were transferred to the local storage
of the individual compute nodes before calling the algorithm. The output was
also written to said local storage and transferred back only after the algorithm
returned. It should be noted that the runtimes are heavily dependent on
the amount of optimization of the algorithms. The main objective for this
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challenge was the sensitivity and not the runtime.
The PyCBC and cWB submissions are exceptions as their runtimes were

not measured on the same hardware. Instead they were run on compute
clusters making heavy use of parallelized work over multiple CPUs. The
times reported here are approximations by normalizing the compute time
to 16 CPU cores available in the compute nodes used for this challenge.
Furthermore, for the evaluation of dataset 1 PyCBC used a different template
bank than those for dataset 2 to 4 was used. This bank was substantially
smaller, resulting in faster evaluation. cWB times were reported to us only
on the foreground data in CPU core seconds.

We find that of the machine learning algorithms the submission from the
TPI FSU Jena group is the fastest, evaluating an entire month of archival
data in about 1 h. It utilizes a single GPU when evaluating the network. The
second fastest algorithm is the submission from the Virgo-AUTh group. It
evaluates a month of data in 1.5 h on a single GPU and is thus about 50%
slower than the fastest algorithm. Notably, the two fastest algorithms are
also the two most sensitive machine learning searches. The algorithm from
the CNN-Coinc group requires almost 4 h on a single GPU to evaluate the
same amount of data but is significantly less sensitive. However, none of
these algorithms are limited by the GPU performance. The differences in
execution time can be mainly attributed to the difference in optimization of
the pre-processing steps. The submission from the MFCNN group on the
other hand does not apply any pre-processing directly. They instead use a
neural network to carry out this computation. They operate on all 8 available
GPUs and manage to evaluate the month of data in ≈ 11.5 h.

For dataset 1 the PyCBC submission has a runtime comparable to that of
the submission from the Virgo-AUTh group. On all other datasets it requires
roughly 43 h to evaluate the month of data. The large difference in runtime
between the datasets is caused by the smaller template bank that is used
only for dataset 1. Contrary to the machine learning algorithms, the PyCBC
submission did not utilize GPUs and ran on CPUs only. However, PyCBC is
a production level search pipeline and as such has been optimized to run on
CPUs. It is not limited by the pre-processing but rather by the matched filter
operation. It should be noted that PyCBC is still the most sensitive search
presented here and gains in computational efficiency could be obtained by
reducing the number of templates. This would effectively trade off search
sensitivity for lower computational cost.

The PyCBC submission is implemented on the CPU as a GPU imple-
mentation is inherently more difficult to optimize. GPUs, on the other hand,
are usually far more efficient from a cost to performance and energy to per-
formance standpoint [426]. One advantage of machine learning algorithms
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is that they make use of well optimized libraries such as PyTorch [365] or
TensorFlow [364] that utilize GPUs for their computations. This makes the
implementation of search algorithms on GPUs relatively straightforward and
allows researchers to focus on optimizing the sensitivity of their algorithm
rather than having to spend time on optimizing the algorithmic implemen-
tation.

The runtimes in this challenge are measured under the assumption that
the lowest required FAR is 1 per month. In a real search lower FARs are
beneficial especially for rare signals. Therefore, most traditional searches
are tuned to be most sensitive at FARs well below the level tested in this
challenge. PyCBC for instance can extend its background by introducing
time-slides [60], thereby potentially lowering the FARs of detected events.
This process is a trivial operation that requires a fraction of the computa-
tional cost of the actual filtering stage. If machine learning algorithms are
not specifically designed to allow for a similar approach, lowering the FARs
of detections requires multiple complete re-evaluations of the time-shifted
data. This would in turn lead to a linear increase in the computational cost,
i.e. lowering the potential FAR of an event by an order of magnitude would
lead to an order of magnitude increase in the computational cost.

8.6 Conclusions

In this paper we have presented the results of the first Machine Learning
Gravitational Wave Search Mock Data Challenge (MLGWSC-1). The study
compiled curves showing the sensitive distances from 4 different machine
learning submissions and compared them to 2 state-of-the-art traditional
search algorithms; the modeled PyCBC [60] pipeline and the unmodeled co-
herent wave burst search [38, 165]. We established a common dataset and
means for evaluation. We hope that other researchers will continue to make
use of the resources presented in this work to allow for quantitative com-
parisons between different machine learning approaches and to traditional
filtering techniques. As research continues and machine learning search algo-
rithms become more sensitive, we want to motivate other groups to host new
challenges, focusing on other parts of parameter space or targeting different
observing strategies.

The key observations of this challenge are:

1. Machine learning search algorithms are competitive in sensitivity com-
pared to state-of-the-art searches on simulated data and the limited
parameter space explored in this challenge.
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2. Most of the tested machine learning algorithms struggle to effectively
handle real noise, which is contaminated with non-Gaussian noise ar-
tifacts.

3. Traditional search algorithms are capable of detecting signals at lower
FARs, thus making detections more confident.

4. The tested machine learning searches struggle to identify long duration
signals.

Therefore, the main challenges for current machine learning searches are the
operation on real noise, the confidence in detections due to comparatively
high FARs, and the detection of long duration signals. The last of those
three is a major hurdle to confidently detect signals from BNS and NSBH
systems. Improvements in any of these fields would be beneficial. Specifically,
we identify the following key research areas:

1. Improve the ability to compare signal parameters, or representations
thereof, between detectors to check for consistency and reject noise
artifacts.

2. Improve the ability to calculate large amounts of background, for in-
stance by designing algorithms that can trivially evaluate time-slides
of the input data.

3. Increase the duration of data that is processed by machine learning
algorithms to enable the detection of long duration signals.

This challenge shows the potential of machine learning algorithms to act
as GW detection pipelines. We have shown that these algorithms are compet-
itive in a realistic scenario to state-of-the-art searches today. They operate
at low computational cost and allow for a trivial implementation of the al-
gorithms on highly efficient GPUs, rather than relying on CPUs. We believe
that this work justifies more research on this topic, especially in areas where
machine learning may have a tangible impact on the rapid identification of
GWs.

However, we do acknowledge that the research carried out here operates
on a limited parameter space. Moreover, the targeted parameter space is
not the computationally expensive part of the search space of traditional
searches. About 1% of the total size of the template bank used in [15] is
dedicated to the area this study searches. To have the greatest impact on
real searches machine learning algorithms need to be extended to target either
the low mass region, where signals are long and the computational cost of
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matched filtering rises rapidly, or the high mass region where signals and
noise artifacts are difficult to distinguish.

We also want to mention that we did not receive a submission utilizing one
of the most promising neural network architectures for GW detection of the
recent past. A WaveNet based architecture, that uses dilated convolutions,
has been reported to do well for this kind of task [57, 289, 427]. We also did
not receive submission based on many other neural network architectures
that have been used in the past, such as autoencoders [307, 308, 378, 405],
inception networks [61, 303], or two dimensional convolutions that analyze
time-frequency decompositions [291]. We hope that some of these approaches
will be adopted to the requirements of this challenge and evaluated on the
datasets presented here, to allow for a quantitative comparison.

Future mock data challenges could target longer duration signals, concen-
trating on BNS and NSBH systems. These are potentially EM-bright and
would, therefore, be of particular interest. Furthermore, these signals stem
from regions of parameter space where traditional searches are computation-
ally expensive to run. For even longer signals, sub-solar mass black holes
could be targeted. Existing modeled searches in those regions make use of
several million templates and are computationally limited [173]. Another
avenue may be very massive systems, which can be difficult to distinguish
from noise artifacts. Finally, we recommend that future mock data challenges
drop the notion of a foreground and background set and only provide data
files containing injections. This would eliminate further sources of error and
be more true to a realistic application, where no true GW-free background
exists.
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Figure 8.3: The sensitive distances of all submissions and all four datasets
as functions of the FAR. The sensitive distances are calculated using only
the data from the foreground file. The FAR is determined from the false
positives on that data. Submissions that made use of a machine learning
algorithm at their core are shown with solid lines, others with dashed lines.
This figure differs from Figure 8.2 as the algorithms from MFCNN and CNN-
Coinc behave differently on the foreground and the background.
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Figure 8.4: The injections from dataset 1 identified by the PyCBC and TPI
FSU Jena submissions with a FAR ≤ 103 per month in the chirp mass Mc

versus decisive effective chirp-distance Dc,eff plane. The blue bars in the
histograms show the one dimensional marginal distributions of the found
injections. The gray bars show the distribution of injected signals, including
those missed by the search. The color shows the “stat” value attributed to
the injection by the algorithm. The red lines in the colorbar highlight the
thresholds on the “stat” to achieve different FARs.
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Figure 8.5: The injections from dataset 2 identified by the PyCBC and TPI
FSU Jena submissions with a FAR ≤ 103 per month in the signal duration τ0

versus mass ratio q plane. The scatter plot shows injections that are found
only by one of the two algorithms. Injections that are missed or found by
both are only shown in the 1D marginal distributions.

Figure 8.6: The injections from dataset 3 identified by the PyCBC and TPI
FSU Jena submissions with a FAR ≤ 103 per month in the inclination to
spin axis θjn to χp plane. The scatter plot shows injections that are found
only by one of the two algorithms. Injections that are missed or found by
both are only shown in the 1D marginal distributions.
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This chapter is somewhat independent from the rest of this thesis and
summarizes a voluntary internship I did at Bosch Hildesheim, Germany.
However, many advancements of ML algorithms are developed in the industry
and gaining an insight into their development environment is of great benefit
to academic research. At Bosch I was part of the corporate research depart-
ment focusing on unsupervised pre-training for computer vision (CV) algo-
rithms. Specifically, I was tasked with developing and testing self-supervised
learning algorithms for object detection. Due to the independence of this
chapter from the others, I will give a brief introduction to deep learning ob-
ject detection algorithms and self-supervised pre-training algorithms before
describing my research at Bosch.

During my 4 month internship I managed to test a framework originally
presented in [428] on data used internally at Bosch. Additionally, I experi-
mented with multiple new and original ideas targeted at improving the orig-
inal framework for the application at Bosch. My time at Bosch resulted in a
total of 4 invention reports, one of which will be discussed below. The others
are either too far from the core topics of this thesis or are not published yet.
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9.1 Basics of Object Detection

Traditionally, CV challenges like the ILSVRC have mainly focused on image
classification. The task in image classification is to provide a single label to
an image. The famous ImageNet dataset contains more than 21 000 classes
and 14 million images [429]. In object detection the task is to locate and
annotate objects in an image. So rather than providing one global label to
the entire image, the algorithm needs to specify one or multiple regions and
apply a label to every one of them.

Once a good image classifier is available, getting an accurate object de-
tector is in principal not too difficult. Theoretically, the classifier can be
applied to each possible sub-region of the image to get a label. When the
image classifier is setup such that it has a garbage class that is used for all im-
ages that do not contain any object, it would be able to detect and correctly
annotate objects in an image. However, this direct approach is prohibitively
computationally expensive, due to the factorial growth of sub-regions with
the dimensions of the input image. To reduce that cost at the price of ac-
curacy, one can instead use pre-determined regions in the image and classify
those. An alternative is to use a fast algorithm to filter out the majority of
uninteresting regions with low accuracy and only classify the remaining ones.

Before an overview of the evolution of deep learning object detection al-
gorithms is given, a few core concepts have to be defined. First, the output
of an object detector in the context discussed here is a rectangular bounding
box of an object, whose sides are parallel to the edges of the image. Each
bounding box has to be classified into one of N + 1 categories, where N is
the number of object classes. The last class is the background class, that
represents non-detections. To quantify how well a predicted bounding box
aligns with a labeled box, a quantity known as the intersection over union
(IoU) is commonly used. It is defined as the area of the intersection of two
rectangles divided by the area of their union. To quantify the performance
of an object detection algorithm, the most common metric is the mean aver-
age precision (mAP). The precision is the number of true positive detections
divided by the number of total detections. It measures how likely a detec-
tion is to be a true positive and depends on the requirement for how well a
bounding box has to be aligned with the ground truth to be considered a true
positive, i.e. it depends on IoU requirements. The IoU also influences how
likely a ground truth is to be recovered by the algorithm. This is measured
by the recall, which is the number of true positives divided by the number of
ground truths. Since both the precision as well as the recall are a function
of the IoU, they can be plotted against one another. The average precision,
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confusingly, is defined as the area under the precision-recall curve [430]. The
mAP averages the average precision of all classes.

It is common to divide the architecture of an object detection NN into
two parts. Usually, a network pre-trained on image classification data is used
to produce a feature map. This part of the object detection network is known
as the backbone. To adjust the output of the backbone to object detection
and to produce the desired bounding boxes and classifications additional
networks are attached to the backbone. These are known as heads and often
fine tuned on comparatively smaller amounts of object detection data sets.

The first major deep learning based object detection algorithm is known
as R-CNN [263] and selects regions of interest using the traditional algorithm
“selective search” [431]. Afterwards, it crops the proposed regions from the
input image, projects them to a fixed size, and applies the then state-of-the-
art AlexNet [49] to create fixed-size feature maps. In a third step, each feature
map is evaluated by SVMs to find the class for the proposed region, where
one class is a background class. The algorithm is trained, by first training
the AlexNet on an image classification task. In a next step, the network is
fine tuned on an object detection dataset. For this stage of training, the
last layer of the AlexNet is replaced by a N + 1 dimensional dense layer,
where N is the number of object classes and the additional output is used
for background detections. For each image of the training set a selective
search is used to propose regions of interest, which are then compared to
the ground truth boxes. Proposed regions with an IoU ≥ 0.5 with a ground
truth box are defined as positive boxes and the rest are defined as negative
boxes, i.e. background. From the proposed regions 32 positive boxes and
96 negative boxes are sampled, warped, and used as training data for fine
tuning. In a final step, the last layer of the fine tuned network is discarded
and one SVM is trained for each class. The resulting method outperformed
previous existing methods by almost 20% in mAP [263].

The follow-up of R-CNN is Fast R-CNN [268]. It still uses the selective
search algorithm to generate region proposals. However, the network was
upgraded to a VGG16 network [260] that was pre-trained on image classi-
fication data. Instead of applying it to different warped sub-regions of the
image, the image is now processed only once as a whole. The proposed re-
gions are then used to select parts of the resulting feature map, which are
pooled to a fixed size using a process called RoIPooling. It also replaces the
SVMs by a fully connected NN, which has two outputs. One is the previous
classification into N + 1 classes. The other outputs 4 values, which are used
to adjust the bounding box proposed by the selective search. Fine tuning
is a lot easier than for R-CNN, as the entire network can be trained as a
whole using standard deep learning optimizers. It improves over the original
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R-CNN by more than 15% in mAP [268].
The final version of R-CNN I want to briefly discuss here is Faster R-

CNN [50]. It replaces the selective search region proposal algorithm by a
NN, thus making every part of the object detection pipeline a deep learning
model. This NN is called the region proposal network (RPN) and introduces
the concept of anchors. The RPN processes its input to create a feature map,
where each pixel is associated with a region in the input image. The size and
shape of the region is the same for every pixel, but the location shifts such
that the full image is covered. The regions are called anchors. To have an-
chors of different sizes and aspect ratios, the output of the RPN has multiple
channels, where each can be associated with a different anchor size. The
association is only learned and does not necessarily have to resemble the re-
ceptive fields of the pixels. For each anchor, two output values are produced;
one is a binary classification into background/foreground, and the other are
four values that adjust the location and size of the anchor. The remaining ar-
chitecture is equivalent to that of Fast R-CNN [268]. During inference, input
images are processed by a CNN that produces a feature map, which is then
fed to the RPN. All regions that are classified as foreground by the RPN are
cropped from the feature map of the initial CNN using the RoIAlign layer
from Fast R-CNN [268] and fed to a classifier. Training is a more complicated
five step process. First, the backbone is pre-trained on image classification
data. Next, the RPN is trained to find correct region proposals. For this
IoU thresholds are chosen to select positive and negative anchor examples.
The entire network, i.e. backbone and RPN, is trained using a form of SGD.
The resulting RPN is then used to generate region proposals to train a fresh
Fast R-CNN, which uses the original pre-trained backbone weights. Once
the Fast R-CNN is trained, the backbone is extracted, its weights are frozen,
and a new RPN is attached. This RPN is trained again, where only the RPN
weights are optimized. Finally, the weights of the RPN are also frozen, and
the detection heads of the Fast R-CNN trained before are fine tuned using
the new RPN weights. It improves the mAP over Fast R-CNN by about 2%
but more importantly increases evaluation speed. Where previous versions
of R-CNN used multiple seconds to evaluate a single image, mainly limited
by the selective search, Faster R-CNN allows the evaluation of ≈ 5 images
per second.

The different R-CNN variants are known as two stage detectors, as they
propose regions of interest in a first step and classify each region in a second
step. While this is a very accurate method, it is computationally expensive
as each region of interest has to be processed on its own. To speed up
object detection, single stage algorithms have been developed. Instead of
only classifying regions of interest, they classify all of a set of pre-defined
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regions simultaneously.
One of the first major single stage object detectors that allowed to do ob-

ject detection in real time and with accuracy comparable to Fast R-CNN was
named You Only Look Once (YOLO) [264]. The network divides the input
images into S×S cells. For each cell the network predicts B bounding boxes
and for all bounding boxes a confidence score is predicted. The confidence
score gives an estimate of how likely it is that the box contains an object and
how accurate the box is. Each cell is also associated with a probability score
for all object classes, conditional on the predicted probability that the cell
contains an object. The network architecture is also built up of a backbone
with additional layers attached to handle object detection. The backbone
is pre-trained on image classification data. To fine tune the architecture to
object detection, ground truths are assigned to the grid cells which contain
the center of the ground truth. The model can then be trained end-to-end,
meaning that it is a single training loop. Since YOLO was introduced multi-
ple improvements have been made and at the time of writing seven versions
were released, of which only the first three are associated with the original
authors [292, 410, 432–435].

Another single stage object detector, which many modern object detec-
tors are based on, is the single shot multibox detector (SSD) presented in
[265]. A variant of its architecture known as RetinaNet [272] was used in
the experiments presented below. The core idea of SSD is to adjust the ar-
chitecture of the network to simultaneously process different object scales.
The backbone of an object detector usually reduces the size of the feature
map and increases the number of channels as the data passes through the
network. The SSD architecture attaches heads to intermediate layers of the
backbone. The pixels from the output of the heads are then interpreted as
belonging to anchor boxes in the original image in the same way Faster R-
CNN did. The area covered by the anchor boxes is determined by the layer of
the backbone at which the head was attached. Different channels in the out-
put correspond to different aspect ratios of the anchor boxes. The training
targets are created from the labeled data by IoU requirements of the ground
truth boxes with the anchor boxes. Since the model is a one stage detector,
it can be trained end-to-end. When it was released, it improved the mAP
over Faster R-CNN by almost 3% while simultaneously being substantially
faster to evaluate.

The SSD architecture was improved over the years. The Retinanet [272]
used a Resnet50 [240] as backbone and attached a feature pyramid network
(FPN) [273]. The FPN takes the different feature map scales used by SSD
and introduces additional connections that allow smaller scale features to be
informed by larger scale features. For FPNs a naming convention is used
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Figure 9.1: High-level overview of the structure of a FPN. It shows a typical
FPN with levels P3 to P7, where P6 and P7 are built on top of P5. Arrows
indicate connections, that can be of varying kind. Connections from P5 to
P4 and P4 to P5 involve upsampling. This figure was taken from figure 2 in
[438].

to specify how it is built. The different levels of the backbone from which
features are extracted are called C1, C2, and so on. Once they have been
processed by the FPN, the outputs are called P1, P2, and so on, depend-
ing on which C-level they represent. Additionally, some FPNs have a larger
number of P-levels than C-levels. If that is the case, one can either build
them on the output of the C-levels or the P-levels. See Figure 9.1 for a visu-
alization. Another popular detector is called EfficientDet [436], which uses
an EfficientNet [437] backbone and introduces a bi-directional FPN allowing
for information to flow from small scales to large scales.

9.2 Self-Supervised Pre-Training

In this section I will introduce the concept of self-supervised learning (SSL),
focusing on a framework known as contrastive learning. The goal of SSL is to
extract general information from raw data without labels. In the context of
object detection, this data are images without any labeled objects. The hope
is that the network will learn a general representation of images, which can
then be fine tuned on comparatively few labeled training examples. This has
the advantage of being computationally less expensive than full supervised
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learning, as plenty of raw data exists but labeling them is costly. Contrastive
learning uses positive and negative pairs, where in the context of CV positive
pairs are usually different augmentations of the same image and negative
pairs are augmentations of different images. The loss in this framework then
encourages positive pairs to be similar and negative pairs to be dissimilar.
Below I will give a brief overview of a few recent works in this field.

A framework known as SimCLR (simple framework for contrastive learnong
of visual representations) was introduced in [439]. It consists of two networks
f and g that operate on images x. The network f is the core network that
after fine tuning is supposed to be an image classifier, network g translates
the output of f into a latent representation z. For each input two different
augmentations x̃ and x̃′ are constructed and the latent representations z and
z′ are generated. For a batch of size N we define ẑ2i = zi and ẑ2i+1 = z′. The
networks are then trained as one using the loss function

L =
1

2N

N∑
k=1

[l(2k, 2k + 1) + l(2k + 1, 2k)] (9.1)

where,

l(i, j) = − log

[
exp (si,j/τ)∑2N

k=1 (1− δki) exp (si,k/τ)

]
(9.2)

and

si,j =
ẑi · ẑj
||zi||||zj||

. (9.3)

The numerator in (9.2) represents the positive pairs, whereas the denomi-
nator represents the negative pairs. The loss is minimized, when the cosine
similarity (9.3) for the positive pairs is minimized and for the negative pairs
is maximized. The authors of [439] find that strong augmentations of the im-
ages improve their framework substantially and that large batch sizes (≥ 256)
are useful. After fine tuning the network, they achieve performance almost
equal to a full supervised training on ImageNet data. In a follow-up paper
the authors improve on the results by utilizing very large networks [440] and
noticing that the larger the pre-trained model the less impactful the number
of labeled images for fine tuning.

The authors of [441] improve on the performance of SimCLR by intro-
ducing two branches of the same architecture. They call their approach
Bootstrap Your Own Latent (BYOL) and its main advantage is that the loss
does not contain any negative examples. This greatly reduces the compu-
tational cost during training, as fewer computations are required per batch
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sample. Instead of feeding two augmentations of the image to the same net-
work, they introduce a second network, which is identical in architecture the
first, to process the second augmentation. This setup can be understood as a
teacher-student setup. Only the student is optimized directly through gradi-
ent descent, the teacher is updated by an exponential moving average of the
student parameters. This procedure is also known as applying a stop-gradient
to the teacher. Finally, a third network φ is introduced that is hypothesized
to project the output of the student to the output of the teacher. The teacher
and student produce two outputs z and z′ for every input image and its dif-
ferent augmentations x and x′, i.e. z = gT(fT(x)), z′ = φS(gS(fS(x′))), where
the subscripts T and S refer to the teacher and student, respectively. The
networks f and g serve the same roles as for SimCLR. The loss is given by a
MSE

L = ||gT(fT(x))− φS(gS(fS(x′)))||2 + ||gT(fT(x′))− φS(gS(fS(x)))||2. (9.4)

In [442] the authors present the SimSiam framework, which combines
the advantages of SimCLR with those of BYOL. Their approach trains on
positive pairs only and uses a stop gradient as BYOL, but does not require an
exponential moving average for the teacher. They also remove the network
g from both approaches and are left with the network f and the projector φ.
This greatly simplifies the overall setup for SSL training and as a consequence
greatly reduces the required batch sizes. While their final performance after
fine tuning is weaker than that of BYOL, they manage to use less resources,
which makes SimSiam viable even on modest hardware. As loss they use a
negative cosine similarity.

The final SSL framework I want to introduce is Selective object Con-
trastive learning (SoCo) proposed in [428]. Previous SSL frameworks were
used primarily for image classification tasks and only adapted to object de-
tection by utilizing the pre-trained backbones. SoCo is a SSL framework
specifically designed for object detection, allowing to pre-train the backbone
and heads of a Mask-RCNN [269]. Mask-RCNN is a special Faster-RCNN
that creates a pixel mask for different objects, instead of just generating
bounding boxes. The proposed method is guided by the BYOL paper in the
sense that it uses the three networks fS, gS, and φS for the student branch
and the two networks fT and gT for the teacher, as well as using a stop gradi-
ent for the teacher and an exponential moving average to update the teacher
parameters. What is called “student” here is named “online network” and
what is called “teacher” is named “target network” in [428]. The network
f is a Resnet50 [240] with a FPN attached. The FPN is defined as in [272]
with levels P2 to P5. To adapt the BYOL framework to object detection,
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Figure 9.2: An overview of the SoCo framework. What is called “Online
Network” in the figure was described as student network in this chapter and
what is called “Target Network” in the figure is the teacher network of this
chapter. Different augmentations are used for view 1, 2, and 3. Different
sized bounding boxes from the selective search are assigned different levels
in the FPN. This figure was taken from [428] where it is figure 1.

SoCo produces regions of interest using the selective search algorithm [431].
Based on the size and location of the region proposal a corresponding area in
one of the feature maps is selected and turned into a fixed size output by a
layer named RoIAlign, which was introduced in [269]. It is a special form of
RoIPooling [268] that interpolates its values to better align the input and the
output. The output of the RoIAlign is then processed by the head, before
being fed into the networks g and φ. To induce scale invariance of the object
detector, the augmentation of one image is required to create a crop of the
input image and resize it to the original size. Also, a third augmentation is
processed, which is a downsized version of the augmented image that was
cropped and resized. The loss is the sum of the cosine similarities of the out-
put from the first augmentation with the cropped and resized augmentation
and the first augmentation with the downsized version. See Figure 9.2 for a
visualization of the framework.

9.3 Research at Bosch

At Bosch I was tasked with evaluating the usefulness of the approach called
Selective object Contrastive learning (SoCo) presented in [428] to their ex-
isting object detection networks. The main challenges lay in two distinct
points. First, the paper was mainly targeting two stage detectors, where the
first stage samples possible regions of interest and the second stage classifies
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these regions. For the application that my work was targeting, anchor based
single stage detectors are the prevalent approach, resulting in only portions
of the architecture being able to be pre-trained using [428]. Second, the code
that was published [443] alongside the paper [428] needed to be validated
and adapted for the networks, as well as the data used in the project.

Below I also present an adaption of the framework given in [428] that I
proposed to pre-train most of the single stage object detector architecture and
eliminate the need to run a computationally expensive selective search [431]
before training. At the core it tries to encourage the network to create similar
representations for two different augmentations of the same image. Only
regions in the resulting feature maps that are present in both augmentations
are compared. I evaluate the performance of a network pre-trained with
this adaption, which I call SSDoCo (Single Shot Detector object Contrastive
learning), against the same network pre-trained with the SoCo framework.

9.3.1 Introduction

Training deep learning object detection algorithms is a difficult task. Creat-
ing classified bounding boxes as labels for the training data is far more time
consuming, and therefore expensive, than creating labels that classify the
entire image into a predetermined number of categories. For this reason, the
interest in making un-labeled data usable for training purposes has picked up
a lot of interest in the recent past [439, 441, 442]. One of the most successful
approaches so far has been a concept known as contrastive learning, which
was introduced in 9.2. Most of these algorithms focus on the task of image
classification, where they have shown to improve performance even over full
supervised training [442]. Although these algorithms are focused on image
classification, they can still have a beneficial effect on object detection, as
most object detection networks consist of a general backbone that aims to
create a feature representation and an object detection specific part, like a
feature pyramid network (FPN), that tries to extract information at differ-
ent scales. Afterward, classification and bounding box regression heads are
attached to get the final output.

The backbone has traditionally been taken from state-of-the-art image
classification algorithms [439, 441, 442] and was always trained on image clas-
sification tasks. It is, therefore, reasonable to believe that SSL pre-training
algorithms devised for image classification may improve object detection algo-
rithms, simply by improving the classification performance of the backbone.
On the other hand, object detection datasets are often different from im-
age classification datasets. In image classification one commonly has images
showing only a single object. For object detection training sets, these kinds
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of images are rare, and most images show multiple objects. Furthermore,
additional parts of the object detection architecture, such as FPNs or the
detection heads, cannot be initialized from pure backbone pre-training and
have to be trained from scratch on limited labeled data. To this end, it may
be beneficial to develop pre-training algorithms that are tailored toward ob-
ject detection, for instance by using contrastive loss functions that encourage
similarity only in regions where the same objects are shown.

One of the first works presenting a SSL framework that focuses on object
detection is the SoCo approach given in [428]. Their goal was to pre-train the
full architecture of a Mask-RCNN [269] that learned object level representa-
tions rather than global representations of the image. This means that rather
than learning to produce similar feature maps of two different augmentations
for the entire image, it focusses on producing similar representations only in
regions where objects are likely to be present.

To select regions in which objects are likely to be present, SoCo prepro-
cesses the entire training set using a selective search [431], which is a generic
algorithm that proposes regions of interest. This stage is computationally
expensive but has to be executed only once per dataset. Whenever an image
is used for training, a subset of the proposed regions is randomly selected.

In a next step, the two different augmentations of the input image are
given to the two branches of their network. Both branches have the same
architecture and mainly use a ResNet50 backbone [240] with a FPN [273].
For each selected and proposed region, the feature map that best matches
the scale of the bounding box is selected and the part that corresponds
to the feature map is cropped out. It is then passed to a RoIAlign layer
which was introduced in[269] to create a fixed size feature map. This can
subsequently be processed by a detection head. The output of this detection
head is further processed by additional layers aimed to project the output of
the two branches into the same space. Finally, the output of one branch is
processed by a final prediction module, that tries to translate the output of
one branch to the output of the other branch. Afterward, the outputs of the
two branches are compared by a cosine-similarity loss [428].

The SoCo framework allows to pre-train most of the Mask-RCNN archi-
tecture; backbone, FPN, and classification heads. In fact, it can be easily
adopted to pre-train most two stage detectors. However, adopting it to one
stage detectors is not trivial. One stage detectors do a classification and
bounding box regression for a fixed number of pre-determined locations in
an image. Since all positions must be classified, selecting only a few of them
for comparison has the potential to severely diminish the final performance.

To adapt the SoCo framework to single stage detectors we propose SS-
DoCo (Single Shot Detector object Contrastive learning). Instead of com-
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paring only select regions, SSDoCo compares compatible regions. One of the
core principles of SoCo is that one branch receives a cropped part of the orig-
inal image as input to induce positional and scale invariance. SSDoCo uses
the same concept but changes how the loss is constructed. It sums the cosine
similarity loss of all compatible feature maps by cropping and interpolating
the feature maps at different levels of the feature pyramid. This change al-
lows us to effectively pre-train the entire single shot object detector, aside
from the final layers.

9.3.2 Methods

We use a Retinanet [272] with a ResNet50 [240] as backbone for our single
stage object detector. The feature pyramid contains levels P3 to P7, where
P6 is built from C5. For pre-training we use a single head consisting of 4
stacked convolutional layers with a kernel size of 3, 256 channels, and ReLU
activations. This architecture outputs 5 distinct feature maps of different
scales. For fine-tuning both the classification head and the regression head
are initialized with the weights from the single head during pre-training.

The SSDoCo framework follows the teacher-student model, where only
the student is optimized directly using a gradient based optimizer and the
teacher is updated through an exponential moving average of the student
network parameters. Note that what we call the student is the “online”
network in [428] and what we call teacher is there known as the “target”
network.

Both branches have multiple components. The student is composed of
the model that should be trained, an alignment stage described below, a
projector network, and a predictor network. The teacher is built the same
way but does not contain a predictor network. Both the model as well as
the projector of the teacher are updated by an exponential moving average
of the student model and neither receive gradient updates. See Figure 9.3
for a visualization of the framework.

The two branches receive different augmentations of the same image. We
follow [428] for the choice of augmentations, but do not construct a “View
3”. The exact transformations are listed in Table 9.1. The teacher receives a
random sub-view of the input to the student, the area of which is randomly
selected between 50% and 100%. The sub-view is subsequently resized to
the original image size using bilinear interpolation. To enforce symmetry,
we swap the inputs of the student and teacher after the forward pass and
compute the loss as a sum of both results.

For the loss we use a variant of cosine similarity, which we shift and scale
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Img 1

Img 2

BB

BB

FPN

FPN

Align Proj.

Proj.

Pred.

Contrast
Crop +
Resize

EMA EMA EMA

Aug

Aug

Student

Teacher stop-grad

Figure 9.3: An overview of the SSDoCo framework. “Img 1” is an input im-
age and “Img 2” is constructed from it by cropping and resizing to the original
resolution. Each image subsequently gets its own augmentation “Aug”, be-
fore being passed through the backbone “BB” and the FPN. The “Align”
step selects and interpolates the parts of the feature maps that are visible in
“Img 2”. The networks “Proj.” and “Pred.” are the projection and predic-
tion networks. Finally, the contrastive loss is computed for both branches
and the gradient is propagated back through the student. The parameters
of the teacher are updated as an exponential moving average “EMA” of the
student parameters.
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# Name Description Student Teacher
Params Prob Params Prob

1 Resize Resize smaller side to
224 pixels

− 1 − 1

2 Crop Random crop to
224x224 pixels

− 1 − 1

3 Random
Crop +
Resize

Random square crop
and resize to 224x224
pixels

− 0 scale
from 0.5
to 1

1

4 Horizonal
Flip

Flip image horizon-
tally

− 0.5 − 0.5

5 Color
Jitter

Apply various color
transformations

brightness
0.4
contrast
0.4
saturation
0.2
hue 0.1

0.8 brightness
0.4
contrast
0.4
saturation
0.2
hue 0.1

0.8

6 Grayscale Convert image to
Grayscale

− 0.2 − 0.2

7 Gaussian
Blur

Blur the image sigma
from 0.1
to 2 ker-
nel size
15× 15

1 sigma
from 0.1
to 2 ker-
nel size
15× 15

0.2

8 Solarize Solarize image Threshold
128/255

0.2 − 0

9 Norm Normalize the input
data

Mean:
0.5
Std:
0.225

1 Mean:
0.5
Std:
0.225

1

Table 9.1: The image augmentations used for the SSDoCo training. The
“Prob” columns give the probability of applying the given transformation.
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to return values between 0 and 2. The loss is given by

L(y1, y2) = 2 +
1

n

n∑
i=1

L2
(
yi1, y

i
2

)
, (9.5)

where yx is the output of model x, and yix is output i of model x. The
function L2 is given by

L2(y1, y2) = −2
y1 · y2

||y1|| · ||y2||
. (9.6)

However, naively comparing the five different feature maps would yield incon-
sistent results, as the input images are at different scales and show different
regions of the same image. For this reason, we compare only those feature
maps that are on similar scale and project the feature maps that were de-
rived on the full image onto the sub-region given to the other branch of the
Siamese network.

The feature pyramid in the network is built such that the scale of the
features double at each level. We, therefore, enumerate the five output fea-
ture maps from smallest scale (i.e. largest feature map) to largest scale (i.e.
smallest feature map). We then compare feature map j + i of the unscaled
image with feature map j of the scaled image, where i is given by

i = blog2 (s)c, (9.7)

with 1/s being the scale chosen in the Random Crop + Resize transformation.
The index j ranges from 0 to n− i, where n is the number of feature maps,
i.e. 5. Our settings are chosen such that 1 < s < 2 and, therefore, i = 0.
Consequently, we always compare the same levels of feature maps and only
have to take care of the projection.

For the projection we interpret each pixel of the feature map as if it is
associated to an anchor box in the input image. We then transform the
anchor box-coordinates in the scaled branch to their (sub-pixel) position in
the un-scaled image. This process takes re-scaling, cropping boundaries, and
horizontal flips into account. We then interpolate the feature map of the un-
scaled branch at those transformed coordinates, to obtain a comparable grid.
We use bilinear interpolation. Afterward the feature maps are flattened, and
the cosine similarity loss described above is applied.

9.3.3 Experiments

All pre-training uses a set of 1.6 million diverse unlabeled images taken from
Flickr [444]. The data set was created internally to test the influence of large

209



CHAPTER 9. INTERNSHIP AT BOSCH

data sets which show widely differing scenes that are not specific to the final
domain the network should operate on.

Once the pre-training is finished, all networks are fine tuned on the same
set of labeled data. This set is also sampled from Flickr and contains 5 500
images. For each epoch, 5 000 batches are randomly sampled from the set
and the network is trained for 40 epochs with a batch size of 8 or 80 epochs
with a batch size of 4, depending on memory limitations of the hardware.

To compare the performance, we report the log average miss rate (LAMR)
averaged over all six classes. We use the Caltech protocol given in [445]
to determine true and false positives. The miss rate is averaged over five
different false positive rates, where the false positive rate is given in terms
of false positives per image. The miss rate is the number of false negatives
divided by the number of ground truth boxes. Averaging over multiple false
positive rates gives a more stable estimate of the detector performance. Lower
values of the log average miss rate indicate better performance.

As baseline we fine tuned the network from random initialization. We
found that the minimum LAMR after 40 epochs was ≈ 53%. To find any
improvement, this baseline has to be beaten. Furthermore, we used ImageNet
pre-trained weights as initialization for the backbone only. The FPN and
heads were initialized randomly. In this setup we found a minimal LAMR of
≈ 33%.

SoCo

We adjusted the code published alongside the SoCo paper [443] to use the
Retinanet discussed above. However, we removed the heads from the Reti-
nanet and only replaced the backbone and FPN, as both components differ
to the original implementation only in minor details. The greatest differ-
ence is the inclusion of the levels P6 and P7, which were dropped from
the original work due to the size of the resulting feature maps. Our net-
work uses the outputs {P3,P4,P5,P6,P7}. Consequently, we also had to
adjust the awareness scales. We define object proposals of area within the
range of {0− 482, 492 − 962, 972 − 1922, 1932 − 2082, 2092 − 2242} pixels to
{P3,P4,P5,P6,P7}, respectively. Due to hardware limitations we also had
to lower the batch size to 64 samples.

Before training, we applied the selective search to the entire training set.
To reduce runtime, we resized all images such that the smaller side has a size
of 224 pixels, before applying selective search. Afterward, the boxes were
scaled to match the original image size.

We pre-trained the architecture for 10 epochs with a warmup of 1 epoch
using the same LARS optimizer [446] and settings as given in the SoCo
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repository [443]. We found that the outputs of the network grow during pre-
training. This forced us to not use mixed precision training during fine tuning
and, therefore, reduce the batch size to 4. This fine tuning seemed to be
unstable and only converging occasionally. When the fine tuning converged,
performance was on the order of a randomly initialized network.

To make sure that the architecture was not a problem, we changed the
backbone and FPN to match those cited in the paper [428]. We also changed
the association of the area of proposals with FPN levels back to the original
implementation. However, pre-training and fine tuning showed the same
problem as before, with the network converging only sometimes. Converged
networks could not beat a random initialization during fine tuning.

When we fine tune the network, we only initialize those parts of the
network that have had pre-training. The remaining weights and biases are
initialized randomly. This means that the P6 and P7 levels are initialized
randomly in our second experiment during fine tuning. In both cases, we
tested initializing both the backbone and the FPN as well as only the back-
bone. Neither option yielded any improvements over the other.

SSDoCo

To evaluate the SSDoCo approach, we tested multiple different ideas aimed
at improving performance. All tests use the same backbone and FPN of
the Retinanet, but the projector and predictor were varied. We also experi-
mented with different optimizers and regularization techniques.

Initially, following the architecture of SimSiam [442], the projectors were
removed and the predictors for the different feature maps were 1 × 1 con-
volutions that only altered the channel dimension. We trained the network
with the Adam [253] optimizer. The transformation aligning the outputs
was placed after the output of the predictor. These experiments showed that
the output was continually growing, the longer we trained. This caused fine
tuning to be unstable and diverge. Consequently, we introduced L2 regu-
larization [447], to reduce the numerical values of the weights and, thereby,
the output. We also switched to the LARS [446] optimizer, following the
recommendations of the SoCo paper.

After these alterations, the network output stayed on average below 1.
However, the loss quickly fell during the first few batches and continued to
grow afterward. This problem was rectified by lowering the initial learning
rate by an order of magnitude. The resulting algorithm trained smoothly
but checking the outputs for different inputs revealed that the output was
constant for different inputs.

We initially tried to force the network to avoid collapsing to constant
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outputs by introducing a new regularization term to the loss. This term
penalizes low weight variance and is given by

L(θ) =
1

N

N∑
i=1

(sVar [θi] + ε)−1, (9.8)

where s is a scale factor, ε is a small constant, and θi are the parameters
of layer i. The function Var calculates the variance of the parameters. Af-
ter some experiments we found that this regularization seems to solve the
problem. However, fine tuning resulted in a network that is on par with a
randomly initialized network.

To align the SSDoCo training more strongly with both the SoCo training
and previous SSL pre-training experience, we introduced a projector using
global average pooling, followed by two dense layers. The predictor was
altered to consist of two dense layers, where the first is a bottleneck, i.e.
having fewer neurons than its input and the subsequent output. We also
moved the transformation aligning the outputs of the teacher and the student
to take place between the Retinanet and the projector. So, the student is
composed of a Retinanet, followed by the output alignment, the projector,
and finally the predictor. The teacher network has the same structure but
drops the predictor. Both the Retinanet and the projector of the teacher are
updated through an exponential moving average of the student.

Aligning the setup with previous experience, the output dropped to ex-
pected small scales. However, fine tuning still did not produce a network
that could beat a random initialization.

We also tried fine tuning all architectures by initializing only the backbone
and FPN of the network with the pre-trained weights. This had proven
helpful in other scenarios. However, this could not improve fine tuning results
either.

We had planned to test the influence of the batch size, the size of the
bottleneck layer, and the influence of different data set sizes on the final per-
formance of the algorithm. Due to a missing baseline, we could not perform
these experiments.

Pre-training was carried out on four NVIDIA A6000 GPUs for a total
batch size of 128. Training for 10 epochs on 1.6 million images required
about 4 days. We used a learning rate of 0.1 and a momentum of 0.9 in
the LARS optimizer. We used the same weight decay implementation and
settings as given in [443].
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9.3.4 Conclusions

We have tested the SoCo framework presented in [428] and a custom exten-
sion of it – named SSDoCo – on a diverse dataset. Our goal was to pre-train
a Retinanet for complex object detection tasks on a large unlabeled dataset
and fine tune it on application specific data. The frameworks allowed to
pre-train both the backbone as well as the FPN, while the SSDoCo approach
was envisioned to also allow pre-training of the detection- and classification-
heads.

We found that neither of the two contrastive pre-training methods man-
aged to produce network parameters that could beat a random initialization
during a fixed fine tuning. Especially, the findings of SoCo could not be re-
produced on our data. We hypothesize that this could be due to two reasons.
First, our datasets contain many objects, compared to MS Coco [448], which
was used in SoCo. This could be challenging for a framework that tries to
align object views. Second, limited hardware resources restricted the batch
size we could use during pre-training to 64 samples. The lowest batch size
results are reported on in [428] is 512; a 8 times increase over our setup.

The SSDoCo setup allowed us to train with a batch size of 128. The
training produced much more stable results, that managed to converge every
time during fine tuning. However, the performance after fine tuning could
not outperform random initialization. Given that the SoCo framework, which
the SSDoCo approach is loosely based on, did not produce positive results
on our datasets, we believe it to be unlikely that SSDoCo will yield tangible
performance benefits. However, other SSL methods have already proven to
be successful, which justifies further research in this area.
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Chapter 10

Conclusions and Outlook

This thesis has analyzed the applicability of ML methods to the problem of
detecting GW signals from CBC sources in comparatively strong noise. It
studied both BNS and BBH signals and introduced novel methods to expand
the capabilities of existing ML algorithms. A core contribution of this thesis
is an objective comparison of sensitivities between ML methods and existing
search pipelines. Several studies highlighted the importance of calculating
sensitivities normalized by the population of GW sources derived from long-
duration continuous data to make representative claims about GW detection
capability.

Each chapter of this thesis has solved select problems of ML based searches
for CBC signals to advance the field from a proof of principle level to actual
applications. Chapter 4 introduced a novel deep learning based search for
BNS signals that outperforms previous ML methods at low FARs. While it
is not yet competitive with matched filter searches, it provides a method to
reduce the number of data samples that need to be processed. This reduc-
tion in data size for BNS signals is crucial for NNs, as they struggle with
large inputs. Chapter 6 introduced a simple modification to the NNs used in
early deep learning BBH search algorithms. This extension enabled the algo-
rithm to operate at FARs O(1) per month and be competitive to a matched
filter baseline. Chapter 7 applied a coincidence strategy to deep learning
searches optimized on a single detector and showed that the background can
be trivially extended to test the algorithm down to FARs O(10−2) per year.
Chapter 8 presents the results of a global mock data challenge organized by
the author of this thesis. The mock data challenge makes the tools and ex-
periences gained from chapters 4 to 7 publicly available by publishing open
source software and reference data sets that can be used to evaluate any
search on the provided parameter space. The evaluation results can be com-
pared to existing literature, as the study includes reference sensitivities from
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current production search pipelines.
The summarized takeaways from the various analyses presented in this

thesis are as follows. NNs are already competitive in sensitivity to matched
filtering when BBH signals are considered. This is highlighted by the results
found in chapter 8. There, the best ML search retains ≥ 70% of the sen-
sitivity achieved by the state-of-the-art matched filter based PyCBC search
pipeline and becomes comparable at FARs > 100 per month, even in real
noise. However, while the most sensitive algorithm requires less time to pro-
cess the data than PyCBC, the probed parameter region is still efficiently
searched by existing methods. In regions of parameter space, where matched
filtering becomes computationally more expensive, deep learning is also lim-
ited in its capability. Especially long duration BNS and NSBH signals are
still challenging to NN searches. This is in line with chapter 4 where we
observed that, while we improve the state-of-the-art for deep learning BNS
searches, our algorithm is handily outperformed by matched filtering. We
also found evidence of the same problem in chapter 8, where even high SNR
long duration signals were missed by all deep learning searches. Further-
more, the results presented in chapter 7 suggest that a major problem for
ML algorithms in the future may be the unavailability of signal consistency
tests to reject many noise artifacts. Typically deep learning searches are used
as binary classifiers that decide only between the presence and absence of a
signal in the parameter region they were trained on. The lack of crude source
parameter estimates in this setting complicates a coincidence analysis, which
greatly decreases the FARs that can be trivially tested.

Challenges for ML based GW search algorithms are plentiful, but should
not be discouraging. Great progress has been made in the last few years
in terms of capability and clarity of results. Their enormous potential, the
rapid development of deep learning methods that can be imported from other
research areas, and the easy utilization of graphics cards are all good reasons
to continue trying to overcome existing problems. Furthermore, some ML al-
gorithms are already invaluable tools in some areas of GW astronomy. These
include glitch classification [190] and improvements to ranking statistics to
reject non-Gaussian noise artifacts [300].

The identified weaknesses of current approaches also provide a clear path
for future research. It is necessary to develop ML algorithms capable of
reliably and rapidly detecting weak, long duration GWs from sources such
as BNS or NSBH mergers. These sources are of special interest as they
potentially emit an EM counterpart, which can be used to extract further
information from the system and constrain stellar models. Their rapid de-
tection can increase the EM observation time, hopefully to a point where the
prompt emission can be observed. It is also desirable to develop ML GW
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searches that operate at low FARs on the order of one per year. A promising
route studied in this thesis is the adoption of a coincidence analysis scheme
as it is used by state-of-the-art production searches. To achieve this goal
and reliably reject non-Gaussian noise artifacts, developing signal consis-
tency checks for deep learning based algorithms is important. Organizing
future mock data challenges would be beneficial to benchmark the progress
of the field accurately. The mock data challenge discussed in chapter 8 has
provided a baseline that can be easily extended to more difficult regions of
parameter space.

Beyond the clear path painted by the challenges of existing methods iden-
tified in this thesis, there are further interesting avenues to apply ML in GW
astronomy. One approach to utilize ML in GW detection that has often been
proposed but never actually been explored beyond an initial study [449] is to
do a hierarchical search. Fast ML algorithms can be used to flag candidate
detections at high FARs, thereby rejecting most of the noise. The candidate
detections can then be checked using matched filtering to reduce computa-
tional costs while preserving the sensitivity of state-of-the-art analyses. The
work in this thesis has already proven that deep learning searches can be
more sensitive than matched filtering at very high FARs and may, therefore,
be great first-stage filters. Another application not explored in this thesis
that has gathered much interest in the recent past is the rapid production of
posteriors to determine the parameters of GW sources [312, 315]. Such de-
velopment could reduce the computational costs by orders of magnitude due
to the long runtimes of existing parameter estimation codes and the trivial
evaluation of their deep learning counterparts.

Future GW observation runs and detectors are expected to provide an
increased rate of detections. The increased number of observations will allow
us to make more reliable statements about the population of astrophysical
objects and hopefully lead to new and exciting insights into the Universe. At
the same time, the large number of expected detections provides a challenge
for data analysts that need to process them in a timely manner. This is where
ML algorithms may be able to provide solutions previous algorithms cannot.
How effective ML algorithms will be applied in broad GW astronomy tasks
and how strongly they will be utilized remains to be seen. However, this
thesis shows that ML has already passed many of the hurdles needed for an
application as a GW search pipeline.

217



CHAPTER 10. CONCLUSIONS AND OUTLOOK

218



Bibliography

[1] William Herschel. “‘The Scientific Papers of Sir William Herschel’ at
100”. In: Astronomy & Geophysics 53.2 (Apr. 2012), pp. 2.13–2.13.
issn: 1366-8781. doi: 10.1111/j.1468-4004.2012.53213.x. eprint:
https://academic.oup.com/astrogeo/article-pdf/53/2/2.13/

19333277/53-2-2.13.pdf. url: https://doi.org/10.1111/j.
1468-4004.2012.53213.x (cit. on p. 1).

[2] A. A. Penzias and R. W. Wilson. “A Measurement of Excess Antenna
Temperature at 4080 Mc/s.” In: The Astrophysical Journal 142 (July
1965), pp. 419–421. doi: 10.1086/148307 (cit. on p. 1).

[3] Jonathan P. Gardner et al. “The James Webb Space Telescope”. In:
Space Sci. Rev. 123 (2006), p. 485. doi: 10.1007/s11214-006-8315-
7. arXiv: astro-ph/0606175 (cit. on p. 1).

[4] John P. Hughes et al. “Nucleosynthesis and Mixing in Cassiopeia A”.
In: The Astrophysical Journal 528.2 (Jan. 2000), pp. L109–L113. doi:
10.1086/312438. url: https://doi.org/10.1086/312438 (cit. on
p. 1).

[5] Ray W. Klebesadel, Ian B. Strong, and Roy A. Olson. “Observations
of Gamma-Ray Bursts of Cosmic Origin”. In: The Astrophysical Jour-
nal Letters 182 (June 1973), p. L85. doi: 10.1086/181225 (cit. on
p. 1).

[6] J. Aasi et al. “Advanced LIGO”. In: Class. Quant. Grav. 32 (2015),
p. 074001. doi: 10.1088/0264-9381/32/7/074001. arXiv: 1411.4547
[gr-qc] (cit. on pp. 1, 2, 27, 28, 30, 32, 36, 94, 106, 132, 155, 157).

[7] F. Acernese et al. “Advanced Virgo: a second-generation interferomet-
ric gravitational wave detector”. In: Class. Quant. Grav. 32.2 (2015),
p. 024001. doi: 10.1088/0264-9381/32/2/024001. arXiv: 1408.3978
[gr-qc] (cit. on pp. 1, 27, 28, 32, 94, 132, 155).

219

https://doi.org/10.1111/j.1468-4004.2012.53213.x
https://academic.oup.com/astrogeo/article-pdf/53/2/2.13/19333277/53-2-2.13.pdf
https://academic.oup.com/astrogeo/article-pdf/53/2/2.13/19333277/53-2-2.13.pdf
https://doi.org/10.1111/j.1468-4004.2012.53213.x
https://doi.org/10.1111/j.1468-4004.2012.53213.x
https://doi.org/10.1086/148307
https://doi.org/10.1007/s11214-006-8315-7
https://doi.org/10.1007/s11214-006-8315-7
https://arxiv.org/abs/astro-ph/0606175
https://doi.org/10.1086/312438
https://doi.org/10.1086/312438
https://doi.org/10.1086/181225
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://arxiv.org/abs/1411.4547
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://arxiv.org/abs/1408.3978


BIBLIOGRAPHY

[8] T. Akutsu et al. “KAGRA: 2.5 Generation Interferometric Gravita-
tional Wave Detector”. In: Nature Astron. 3.1 (2019), pp. 35–40. doi:
10.1038/s41550-018-0658-y. arXiv: 1811.08079 [gr-qc] (cit. on
pp. 1, 2, 27, 28, 29, 35, 94, 132, 155).

[9] Harald Luck et al. “The upgrade of GEO600”. In: J. Phys. Conf. Ser.
228 (2010). Ed. by Zsuzsa Marka and Szabolcs Marka, p. 012012. doi:
10.1088/1742-6596/228/1/012012. arXiv: 1004.0339 [gr-qc] (cit.
on pp. 1, 28).
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