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Abstract. We study a finite volume scheme for the approximation of the solution to convection diffusion
equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpreta-
tion of such a continuous equation as the hydrodynamic limit of some simple exclusion jump process. We
show that the scheme admits a unique discrete solution, that the natural bounds on the solution are pre-
served, and that it encodes the second principle of thermodynamics in the sense that some free energy is
dissipated along time. The convergence of the scheme is then rigorously established thanks to compactness
arguments. Numerical simulations are finally provided, highlighting the overall good behavior of the scheme.
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1. Presentation of the problem

1.1. The governing equations

In this paper, we focus on the simple yet already interesting nonlinear Fokker–Planck equation

∂tρ+∇·F = 0, (1a)
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F +η(ρ)∇φ+∇ρ = 0, (1b)

set on a connected bounded open subset Ω of Rd , which is further assumed to be polyhedral in
what follows, and for positive times t ≥ 0. Its (finite) Lebesgue measure is denoted by mΩ. While
diffusion is linear, convection is not since one considers a degenerate mobility function η of the
form

η(ρ) = ρ(1−ρ) (2)

accounting for volume-filling to enforce 0 ≤ ρ ≤ 1. In (1), the potential φ ∈ W 1,∞(Ω) (referred as
the electric potential in what follows) is assumed to be given, and nonnegative without loss of
generality: φ ≥ 0. Our purpose can be extended to the case of a self-consistent electric potential
φ related to the charge density ρ through a Poisson equation without other difficulties than those
that are already addressed in the literature, see for instance [8].

The system we consider is not isolated as in [7], but rather in interaction with a surrounding
environment through its boundary Γ = ∂Ω. More precisely, we assume that there exist α,β ∈
W 1,∞(Γ) with α(x) >β(x) > 0 for all x ∈ Γ such that

F ·ν=αρ−β onR+×Γ, (3)

where ν denotes the normal to Γ outward w.r.t. Ω. The system is complemented by an initial
condition ρ0 compatible with the volume-filling constraint:

ρ|t=0 = ρ0 ∈ L∞(Ω; [0,1]). (4)

Our goal is to provide some provably convergent approximation of the problem (1)–(4). The
stability of our numerical method, to be detailed in Section 2, mimics some stability features
of the continuous problem inherited from thermodynamics.

1.2. Energy dissipation structure

The system (1)–(4) under consideration inherits some key property from thermodynamics. Defin-
ing its free energy by

F (ρ) =
∫
Ω

(
h(ρ)+ρφ)

, h(ρ) = ρ log(ρ)+ (1−ρ) log(1−ρ)+ log(2) ≥ 0,

then it is dissipated within Ω, but energy coming from the surrounding environment can enter
the system thanks to the boundary flux (3).

Introducing the chemical and electrochemical potentials µ and ξ respectively defined by

µ= h′(ρ) = log
ρ

1−ρ , ξ=µ+φ= δF

δρ
(ρ), 0 < ρ < 1, (5)

the chain rule ∇ρ = η(ρ)∇µ allows to reformulate the flux

F =−η(ρ)∇(φ+µ) =−η(ρ)∇ξ. (6)

On the other hand, setting

ξΓ =φ− log(α/β−1) ∈W 1,∞(Γ) and κ=
√
β(α−β) ∈W 1,∞(Γ), (7)

the boundary flux (3) can be expressed by the mean of a Butler–Volmer type formula:

F ·ν= κ
(
ρe

1
2

(
φ−ξΓ)

− (1−ρ)e−
1
2

(
φ−ξΓ))

= 2κ
√
ρ(1−ρ)sinh

(
1

2

(
ξ−ξΓ)) . (8)

The quantity ξΓ has to be thought as an electrochemical potential associated to the surrounding
environment. When a quantity nΓ = ∫

ΓF ·ν of the chemical species of interest enters (resp. leaves)
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Ω, the income (resp. loss) in free energy is equal to nΓξΓ. Therefore, the total free energy defined
(up to an additive constant) by

Ftot(t ) =F (ρ(t ))+
∫ t

0

∫
Γ
ξΓF ·ν, t ≥ 0, (9)

corresponds to the whole isolated system made of Ω and its surrounding environment. As the
following proposition shows, it is decaying along time.

Proposition 1. Let ρ be a strong solution to (1)–(4), then

Ftot(t ) ≤Ftot(s) ≤F
(
ρ0)≤ (∥φ∥∞+ log(2)

)
mΩ, t ≥ s ≥ 0. (10)

Moreover, there exists C1 depending on Γ,α,β and φ such that

Ftot(t ) ≥−C1t , t ≥ 0. (11)

Proof. On first remarks that thanks to its definition (9), the initial total free energy coincides with
the free energy contained inΩ, i.e. Ftot(0) =F (ρ0) thanks to (4). The bound on the initial energy
F (ρ0) is readily deduced from 0 ≤ ρ0 ≤ 1 and 0 ≤ h(ρ0) ≤ log(2). Let us now check that Ftot is
decaying along time. To this end, let us compute

dFtot

d t
(t ) =

∫
Ω
ξ∂tρ+

∫
Γ
ξΓF ·ν=

∫
Ω

F ·∇ξ+
∫
Γ

(
ξΓ−ξ)F ·ν. (12)

Both terms on the right-hand side are nonpositive respectively because of (6) and (8), so that (10)
holds true.

To establish (11), one only has to notice that F (ρ(t )) is nonnegative for all t ≥ 0, so that

Ftot(t ) =F (ρ(t ))+
∫ t

0

∫
ξΓF ·ν≥

∫ t

0

∫
ξΓF ·ν≥−t

∥∥ξΓ∥∥∞ ∥F ·ν∥∞ , t ≥ 0.

Uniform bounds on ξΓ and on F ·ν easily follow from their expressions (7) and (3) together with
0 ≤ ρ ≤ 1. □

The estimates highlighted in Proposition 1 encode some strong stability in the system (1)–
(4). The precise quantification of the dissipation rate of the total free energy even provides
sufficiently compactness to establish the existence of weak solutions to (1)–(4). The numerical
method we introduce in the next section satisfies similar energy dissipation estimates, on which
the numerical analysis we propose relies.

Definition 2. A function ρ is said to be a weak solution to (1)–(4) if:

(i) ρ belongs to L∞(R+×Ω; [0,1])∩L2
loc(R+; H 1(Ω)), hence its trace γρ on R+×Γ belongs to

L∞ (R+×Γ; [0,1])∩L2
loc

(
R+; H 1/2(Γ)

)
;

(ii) for all ϕ ∈C∞
c ([0,T )×Ω), the following equality holds:Ï

R+×Ω
ρ∂tϕ+

∫
Ω
ρ0ϕ(0, ·)−

Ï
R+×Ω

(
η(ρ)∇φ+∇ρ) ·∇ϕ−

Ï
R+×Γ

(
αγρ+β)

ϕ= 0. (13)

1.3. Goal and positioning of the paper

The goal of this paper is to propose a seemingly new scheme to approximate nonlinear drift
diffusion equations of the form (1). Such nonlinear drift diffusion problem arises in many
contexts that are often more complex than the simple one prescribed by (1). We could for instance
think about systems involving several species, coupled either via cross-diffusion [7], or via a self-
consistent electric potential [9]. We claim that a large part of our work (in practice all excepted
what is related to uniqueness) can be transposed to the more complex setting of [9]. To enlighten
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the presentation, we rather adopt here a simpler setting, where the potential φ is given, but still
with boundary conditions of Butler–Volmer type.

Even though this scheme has a very natural probabilistic interpretation in terms of jump
process, its use with a deterministic approach to compute solutions to (1) has not been explored
so far up to our knowledge. The scheme can be thought as an extension to the case of a nonlinear
mobility function η defined by (2) of the approach proposed by [26] and studied in [21], even
though the method proposed therein is mesh-less and yields non-explicit diffusion tensors at the
limit we avoid here.

Our study covers several aspects. First, since our scheme is implicit, it yields a nonlinear sys-
tem for which we show well-posedness and the preservation of the L∞ bounds. These properties
follow from the monotonicity of the scheme. Another interesting aspect of the scheme is its free
energy stability: a discrete counterpart to Proposition 1 is established. Schemes encoding the sec-
ond principle of thermodynamics have raised an important interest in the last years. In the case
of a linear mobility η(ρ) = ρ, the Scharfetter–Gummel scheme [13], the SQRA scheme [21], or the
Chang–Cooper scheme [6] are popular solutions since the scheme for solving the resulting lin-
ear Fokker–Planck equation amounts to the resolution of a linear system, in opposition to more
involved strategies building on the Wasserstein gradient flow interpretation of the continuous
problem (with no-flux boundary conditions), see for instance [3, 10, 11, 25, 27]. The Scharfetter–
Gummel scheme has been extended to the context of nonlinear mobilities in [15], where the com-
putation of the numerical flux requires the numerical resolution of some scalar nonlinear prob-
lem. The extension of the SQRA scheme proposed in this paper is more restrictive than the ap-
proach of [15] concerning the nonlinearities involved in the continuous problem, but the result-
ing expression for the numerical fluxes is explicit, making the scheme much cheaper.

Second, we mathematically assess the convergence of the scheme when the discretization
parameters (mesh size and time step) tend to 0. To this end, one needs to properly quantify the
free energy dissipation. This is done thanks to primal and dual dissipation potentials inspired
from [28, 29]. The convergence proof then relies on compactness arguments, following the
strategy of [18]. Our convergence result is not quantitative, since no error estimate has been
derived so far. Then we show in the numerical experiments that the scheme is second order
accurate in space and first order in time. See for instance [22], where error estimates for several
schemes including SQRA finite volumes are derived for steady linear Fokker–Planck equations.
We also highlight the fact that the resolution of the nonlinear system by the Newton–Raphson
method is very efficient, even for large CFL conditions. The only drawback we have noticed so far
for our scheme is its loss of accuracy in the large Péclet regim.

2. The finite volume scheme and main results

Before introducing the so-called square-root approximation (SQRA) scheme, one first needs to
introduce some notation related to space and time discretizations.

2.1. Space and time discretizations of R+×Ω

The SQRA finite volume scheme enters the framework of two-point flux approximation (TPFA)
finite volumes, which are known to yield very efficient schemes but require meshes fulfilling the
well-known orthogonality condition (iii) below, see for instance [17, 20].

Definition 3. An admissible mesh of Ω is a triplet
(
T ,E , (xK )K∈T

)
such that the following

conditions are fulfilled.
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(i) Each control volume (or cell) K ∈ T is non-empty, open, polyhedral and convex. We
assume that

K ∩L =; if K ,L ∈T with K ̸= L, while
⋃

K ∈T

K =Ω.

(ii) Each face σ ∈ E is closed and is contained in a hyperplane of Rd , with positive (d − 1)-
dimensional Hausdorff (or Lebesgue) measure denoted by mσ =H d−1(σ) > 0. We assume
that H d−1(σ∩σ′) = 0 forσ,σ′ ∈ E unlessσ′ =σ. For all K ∈T , we assume that there exists
a subset EK of E such that ∂K =⋃

σ∈EK σ. Moreover, we suppose that
⋃

K ∈T EK = E . Given
two distinct control volumes K ,L ∈T , the intersection K ∩L either reduces to a single face
σ ∈ E denoted by K |L, or its (d −1)-dimensional Hausdorffmeasure is 0.

(iii) The cell-centers (xK )K∈T are two by two distinct points of Ω. If K ,L ∈ T share a face K |L,
then the vector xL −xK is orthogonal to K |L and oriented from K to L.

(iv) For the boundary faces σ ⊂ ∂Ω, we assume that there exists xσ ∈ σ such that xσ − xK is
orthogonal to σ.

In the above definition, we do not suppose that xK belongs to K . We allow for more general
grids, like for instance Delaunay triangulation or Laguerre cells. The condition on the fact that
the xK are two-by-two distinct is not restrictive: if two cell centers xK and xL coincide, one just
has to merge the two cells K and L and to remove K |L from E .

We denote by mK the d-dimensional Lebesgue measure of the control volume K . The set of
the faces is partitioned into two subsets: the set Eint of the interior faces defined by

Eint = {σ ∈ E |σ= K |L for some K ,L ∈T } ,

and the set Eext of the exterior faces defined by

Eext = {σ ∈ E |σ⊂ ∂Ω} .

For a given control volume K ∈T , we also define EK ,int = EK ∩Eint and EK ,ext = EK ∩Eext the sets
of its internal and external faces. We may writeσ= K |L to signify thatσ ∈ EK ,int. For such internal
edges σ= K |L, we denote by xσ the intersection between [xK , xL] and the hyperplane containing
σ. Note that xσ does not necessarily belong to σ.

In what follows, we denote by

dσ =
{
|xK −xL | ifσ= K |L ∈ Eint,

|xK −xσ| ifσ ∈ Eext,
aσ = mσ

dσ
, σ ∈ E .

We also define the signed distance dKσ between xK and σ ∈ EK thanks to the relation

dKσνKσ = xσ−xK , σ ∈ EK , K ∈T ,

where νKσ stands for the normal to σ outward w.r.t. K . Even though dKσ can take negative values
for interior faces, one still has

dKσ+dLσ = dσ > 0 forσ= K |L ∈ Eint,

as well as the geometric relation

mK = 1

d

∑
σ∈EK

mσdKσ, K ∈T .

We further introduce the size δT and the regularity factor ζT of the mesh:

δT = max
K∈T

diam(K ), ζT = max
K∈T

max
σ∈EK

(
diam(K )

dσ
+ dσ

diam(K )

)
. (14)
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Given u = (
(uK )K∈T , (uσ)σ∈Eext

) ∈ RT ∪Eext , then for all K ∈ T , we define the mirror value of uK

w.r.t. σ ∈ EK by

uKσ =
{

uL ifσ= K |L ∈ Eint,

uσ ifσ ∈ Eext.
(15)

Concerning the time discretization, we consider for notation simplicity a uniform time step-
ping. More precisely, a time discretization is given by the choice of a time step τ> 0, from which
we construct discrete times tn = nτ, n ≥ 0. We stress that our study can be extended without any
particular difficulty to the case of non-uniform time discretizations.

2.2. The SQRA finite volume scheme

Given an admissible discretization (T ,E , (xK )K ∈T ) of Ω and a time step τ, let us detail the
scheme to be studied in this paper. First, the initial data ρ0 is discretized into ρ0 = (ρ0

K )K ∈T ∈
[0,1]T by setting

ρ0
K = 1

mK

∫
K
ρ0, K ∈T . (16)

The potential φ is discretized intoφ= ((φK )K ∈T ; (φσ)σ∈Eext ) by setting

φK =φ(xK ) and φσ =φ(xσ), K ∈T , σ ∈ Eext. (17)

As usual in the finite volume context, the conservation law (1a) is discretized into

ρn
K −ρn−1

K

τ
mK + ∑

σ∈EK

mσF n
Kσ = 0, K ∈T , n ≥ 1. (18)

The index n for the numerical flux F n
Kσ across σ outward w.r.t. K in (18) indicates that our time

discretization strategy relies on the backward Euler scheme. The bulk numerical fluxes are then
defined by

F n
Kσ = 1

dσ

[
ρn

K

(
1−ρn

L

)
e

1
2 (φK −φL ) −ρn

L

(
1−ρn

K

)
e

1
2 (φL−φK )

]
forσ= K |L ∈ Eint. (19a)

To preserve the second order accuracy in space, the boundary condition (3) is discretized by
setting

F n
Kσ = 1

dσ

[
ρn

K

(
1−ρn

σ

)
e

1
2 (φK −φσ) −ρn

σ

(
1−ρn

K

)
e

1
2 (φσ−φK )

]
=ασρn

σ−βσ, forσ ∈ Eext, (19b)

where, having set ασ =α(xσ) and βσ =β(xσ),

ρn
σ = dσβσ+ρn

K e
1
2 (φK −φσ)

dσασ+ρn
K e

1
2 (φK −φσ) + (

1−ρn
K

)
e−

1
2 (φK −φσ)

(20)

is the unique value achieving the second equality in (19b). With a slight abuse of notation, we still
denote by ρn = ((ρn

K )K ∈T , (ρn
σ)σ∈Eext ) the discrete density enriched with its boundary edge values

prescribed by (20).
Formula (19a) can be interpreted as a Butler–Volmer law located at the interface between the

cells K and L. The probability that a particle jumps from K to L is proportional to the number
ρn

K of candidates in K for a jump as well as to the number of available sites (1−ρn
L ) to host the

particle in cell L. The driftφK −φL appears in an exponential with balanced prefactors 1/2, which
is natural since K and L play symmetric roles in the formula. The scheme (18) & (19) is then a
simple backward Euler discretisation of the dynamics prescribed by the infinitesimal generator
of a weakly asymmetric simple exclusion process (WASEP), see [23].
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Assume now that ρn ∈ (0,1)T ∪Eext (this will be rigorously established later on, see Lemma 7).
The consistency of formula (19a) with (1b) follows from the identity

F n
Kσ = 2

dσ
ηn
σ sinh

(
ξn

K −ξn
Kσ

2

)
, (21)

with ξn
K = h′(ρn

K )+φK for K ∈T , ξn
σ = h′(ρn

σ)+φσ for σ ∈ Eext, and where ξn
Kσ is the mirror value

of ξn
K in the sense of (15). Moreover, we have set

ηn
σ =

√
ρn

K

(
1−ρn

K

)
ρn

Kσ

(
1−ρn

Kσ

)=√
η

(
ρn

K

)
η

(
ρn

Kσ

)
, (22)

Taylor expanding formula (21), one gets that for each n ≥ 1 and σ ∈ E , there exists r n
σ ∈ (0,1) such

that

F n
Kσ = ηn

σ

dσ

(
2sinh

(
h′ (ρn

K

)−h′ (ρn
Kσ

)
2

)
+ (
φK −φKσ

)
cosh

(
h′ (ρn

K

)−h′ (ρn
Kσ

)
2

)

+
(
φK −φKσ

)2

4
sinh

(
h′ (ρn

K

)−h′ (ρn
Kσ

)+ r n
σ

(
φK −φKσ

)
2

))
.

Then using the identities

ηn
σ sinh

(
h′ (ρn

K

)−h′(ρn
Kσ)

2

)
= ρn

K −ρn
Kσ

2
, (23)

ηn
σ cosh

(
h′ (ρn

K

)−h′ (ρn
Kσ

)
2

)
= η

(
ρn

K

)+η(
ρn

Kσ

)
2

+
(
ρn

K −ρn
Kσ

)2

2
, (24)

and sinh(a +b) = sinh(a)cosh(b)+ sinh(b)cosh(a), we get that

F n
Kσ = ρn

K −ρn
Kσ

dσ
+ η

(
ρn

K

)+η(
ρn

Kσ

)
2

φK −φKσ

dσ
+Rn

σ , (25)

with

Rn
σ = φK −φKσ

2dσ

(
ρn

K −ρn
Kσ

)2 +
(
φK −φKσ

)2

8

ρn
K −ρn

Kσ

dσ
cosh

(
r n
σ

(
φK −φKσ

)
2

)
+

(
φK −φKσ

)2

8dσ

(
η

(
ρn

K

)+η(
ρn

Kσ

)+ (
ρn

K −ρn
Kσ

)2
)

sinh

(
r n
σ

(
φK −φKσ

)
2

)
. (26)

Let ρ :R+×Ω→ (0,1) be a smooth (say C 0,1 in time and C 1,1 in space) function, then for all n ≥ 1,
define ρn

K = ρ(tn , xK ), K ∈T , and

F
n
Kσ = 1

dσ

[
ρn

K

(
1−ρn

L

)
e

1
2 (φK −φL) −ρn

L

(
1−ρn

K

)
e

1
2 (φL−φK )

]
, σ= K |L ∈ Eint.

In the case of a uniform cartesian grid, where xσ = xK +xL
2 is the center of mass ofσ, it results from

the expression (25) of the flux that

F
n
Kσ = 1

mσ

∫
σ

F (tn) ·νKσ+O
(
d 2
σ

)
,

where F =−∇ρ−η(ρ)∇φ is the flux corresponding to ρ. The SQRA scheme, which owes its name
to the choice (22) of a geometric mean for the edge mobilities ηn

σ and to the fact that it extends
to the nonlinear mobility setting the linear SQRA scheme [21, 26], is then expected to be second
order accurate w.r.t. space and first order accurate w.r.t. time since it relies on the backward Euler
scheme. This will be confirmed by the numerical results exhibited in Section 5.
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Remark 4. For general coefficient α and β in (3), the system (1) does not admit any thermal
equilibrium, in the sense that there exists no steady profile ρ∞ such that F ≡ 0 in Ω. Such a
thermal equilibrium exists if and only if there exists some positive function λ : Γ→ (0,+∞) and
some constant z ∈R such that

α=λ(
1+e−φ+z)

, β=λe−φ+z on Γ.

Then one readily checks that

ρ∞ = e−φ+z

1+e−φ+z

is a thermal equilibrium corresponding to a constant electrochemical potential ξ∞ ≡ z.
Define now ρ∞ = (ρ∞

K )K ∈T by setting

ρ∞
K = e−φK +z

1+e−φK +z
, K ∈T , (27)

then ξ∞K = z for all K ∈T . Owing to (21), the inner numerical fluxes all vanish. Moreover,

ρ∞
σ = βσ

ασ
= e−φσ+z

1+e−φσ+z
, σ ∈ Eext,

allows to solve the second equality in (19b), and the corresponding boundary fluxes F∞
Kσ = 0 for all

σ ∈ Eext. In other words, ρ∞ given by (27) is a discrete thermal equilibrium, and the scheme (17)–
(20) is well-balanced.

2.3. Our main results and organisation of the paper

Even though finer results can be found in the Sections 3 and 4 devoted to their proofs, we state
here simple presentations of our main results. The first one, namely Theorem 5, is related to the
characteristics of the scheme given a fixed mesh (T ,E , (xK )K ∈T ) and time step τ. We show in
particular that the scheme is well posed, preserves the L∞ bounds and is free-energy diminishing,
in the sense that the discrete solution satisfies a discrete counterpart of Proposition 1. Then
Theorem 6 states the convergence of the approximate solution provided by the scheme (16)–(19)
towards the weak solution to (1)–(4) as the size of the mesh δT and the time step τ tend to 0. The
convergence analysis strongly relies on the energy stability of the scheme, and more precisely on
the quantification of the free energy dissipation.

Given ρn = (ρn
K )K ∈T ∈ [0,1]T , then we define

FT

(
ρn)= ∑

K ∈T

mK
(
h

(
ρn

K

)+φKρ
n
K

)
, F n

T ,tot =FT

(
ρn)+ ∑

p ≥1
τ

∑
σ∈Eext

mσξ
Γ
σF p

Kσ, (28)

where the external fluxes F p
Kσ are related to ρp through formula (19b), and where, consistently

with (7), we have set

ξΓσ =φσ− log

(
ασ

βσ
−1

)
, σ ∈ Eext. (29)

Initially, both energies coincide: FT (ρ0) = F 0
T ,tot, and is follows from Jensen’s inequality and

from the regularity of φ that

FT

(
ρ0)≤F

(
ρ0)+2∥∇φ∥∞δT mΩ. (30)

In particular, FT (ρ0) is bounded uniformly w.r.t. δT owing to (10) and to δT ≤ diam(Ω).

Theorem 5. Given ρn−1 ∈ [0,1]T , there exists a unique solution ρn ∈ (0,1)T ∪Eext to the nonlinear
system corresponding to the scheme (16)–(20). Moreover,

F n−1
T ,tot ≥F n

T ,tot ≥−C1tn , n ≥ 1, (31)

with C1 as in Proposition 1.
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Theorem 5 is a partial presentation of the results established in Section 3. Interested readers
can find there some precise quantification of the dissipated total free energy we do not mention
here to keep the presentation simple.

Once Theorem 5 and an iterated in time discrete solution
(
ρn

)
n≥0 on hand, one can construct

a piecewise constant in time and space reconstruction ρT ,τ by setting

ρT ,τ(t , x) = ρn
K if (t , x) ∈ (tn−1, tn]×K , n ≥ 1, ρT ,τ(0, x) = ρ0

K if x ∈ K . (32)

Now, let (Tm ,Em , (xK )K ∈Tm )m≥0 and (τm)m≥0 be respectively a sequence of admissible meshes
in the sense of Definition 3 and a sequence of time steps such that

lim
m→∞δTm = lim

m→∞τm = 0 and ζTm ≤ ζ⋆ <+∞, m ≥ 0, (33)

then the corresponding sequence of approximate solutions (ρTm ,τm )m≥1 is bounded in L∞(R+×
Ω) owing to Theorem 5. Therefore, there exists ρ ∈ L∞(R+×Ω) with 0 ≤ ρ ≤ 1 such that, up to a
subsequence,

ρTm ,τm −→
m→∞ ρ in the L∞(R+×Ω) weak-⋆ sense. (34)

The following theorem claim that ρ is the unique weak solution to the continuous problem (1)–
(4), and that the convergence holds in a stronger sense.

Theorem 6. Let ρ be as in (34), then ρ is the unique weak solution to (1)–(4) in the sense of
Definition 2. Moreover, the whole sequence (ρTm ,τm )m≥0 converges strongly in Lp

loc(R+×Ω) for any
p ∈ [1,+∞).

Proving Theorem 6 is the purpose of Section 4. The proof is based on compactness arguments
that build on some refined version of the discrete energy estimate (31). Numerical evidences of
the convergence will then be provided in Section 5.

3. Numerical analysis at fixed grid

The goal of this section is twofold. First one aims at establishing Theorem 5. Second, one derives
enough estimates to carry out the convergence analysis in Section 4.

3.1. Existence and uniqueness of the discrete solution

We are interested in solutions ρn to the scheme (18)–(20) that are bounded between 0 and 1.
Therefore, changing the definition (19a) of the internal fluxes by

F n
Kσ = 1

dσ

[(
ρn

K

)+ (
1−ρn

L

)+ e
1
2 (φK −φL ) − (

ρn
L

)+ (
1−ρn

K

)+ e
1
2 (φL−φK )

]
forσ= K |L ∈ Eint, (35a)

and the one (19b) of the boundary fluxes by

F n
Kσ =ασρn

σ−βσ with ρn
σ = dσβσ+

(
ρn

K

)+ e
1
2 (φK −φσ)

dσασ+
(
ρn

K

)+ e
1
2 (φK −φσ) + (

1−ρn
K

)+ e−
1
2 (φK −φσ)

∈ (0,1) (35b)

does not affect the value of the solution ρn . After performing this slight modification, one can
establish the following a priori estimate.

Lemma 7. Given ρn−1 ∈ [0,1]T , n ≥ 1, any solution ρn to the modified scheme (18)&(35) belongs
to (0,1)T . In particular, being a solution to (18)&(35) is equivalent to being a solution in (0,1)T

to (18)–(20).
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Proof. We argue by contradiction. Assume that there exists K ∈ T such that ρn
K ≥ 1, then we

deduce from (35) and from ασ >βσ > 0 that F n
Kσ ≥ 0 for all σ ∈ EK , and even that

F n
Kσ > 0 if σ ∈ Eext. (36)

Then we deduce from (18) that

0 ≤ ∑
σ∈EK

mσF n
Kσ = ρn−1

K −ρn
K

τ
mK ≤ 0. (37)

Therefore, ρn
K = 1 and all the fluxes F n

Kσ, σ ∈ EK vanish. This is only possible if ρn
L = 1 for each

neighboring cell L such that σ = K |L ∈ Eint. One can iterate to neighbors of neighbors until
reaching K such that EK ,ext ̸= ;. For such a cell, the first inequality in (37) is strict, leading to
a contradiction, hence ρn

K < 1 for all K ∈T . The bound ρn
K > 0 for all K ∈T can be established in

a similar way. □

Proposition 8. For all n ≥ 1, there exists a unique ρn ∈ (0,1)T solution to (16)–(19).

Proof. The proof splits in two steps. Let us first show that at each time step n ≥ 1, there exists
a solution ρn ∈ (0,1)T to (18) & (19), or equivalently owing to Lemma 7, ρn solution to (18) &
(35). Note that here, ρn

σ is thought as a function of ρn
K , cf. (20), rather than as an independent

unknown.
Let n ≥ 1 be such that ρn−1 ∈ [0,1]n is given (this is the case for n = 1 owing to (16)). For

s ∈ [0,τ], define ρ(s) = (ρ(s)
K )K ∈T as a solution to(
ρ(s)

K −ρn−1
K

)
mK + s

∑
σ∈EK

mσF (s)
Kσ = 0, K ∈T , (38)

with F (s)
Kσ defined by (35) where ρn has been replaced by ρ(s). For s = 0, the above system

can be reformulated as Mρ(0) =Mρn−1, with the matrix M = diag((mK )K ∈T ) having a positive
determinant. The unique solution ρ(0) =ρn−1 belongs to [0,1]T , while any solution ρ(s) for s > 0
belongs to (0,1)T thanks to Lemma 7. A standard topological degree argument (see [14, 24] for
a presentation of the topological gradient, and [1, 16] for applications in a similar context) then
shows that the nonlinear system (38) admits at least one solutionρ(s) for all s > 0. In particular, for
s = τ, this shows the existence of ρn ∈ (0,1)T solution (18) & (19). By a straightforward induction
on n, one gets the existence of ρn ∈ (0,1)T for all n ≥ 1.

The second step of the proof consists in proving uniqueness for the solution in (0,1)T

to (18)&(19). Since 0 ≤ ρn ≤ 1, F n
Kσ is an increasing function of ρn

K and a non-increasing one
of ρn

L for L ̸= K . As a consequence, the nonlinear system corresponding to (18) can be rewritten
as follows:

H n(ρn) =
(
H n

K

(
ρn

K ,
(
ρn

L

)
L ̸=K

))
K ∈T

= 0, (39)

where HK is increasing w.r.t. its first variable and non-decreasing w.r.t. the others. Assume that
the scheme admits another solution ρ̌n ∈ [0,1]T corresponding to the same previous step data
ρn−1:

H n (
ρ̌n)= (

H n
K

(
ρ̌n

K ,
(
ρ̌n

L

)
L ̸=K

))
K ∈T

= 0,

Therefore, denoting by a ∧b = min(a,b) and a ∨b = max(a,b), one has

H n
K

(
ρn

K ,
(
ρn

L ∧ ρ̌n
L

)
L ̸=K

)
≥ 0, H n

K

(
ρ̌n

K ,
(
ρn

L ∧ ρ̌n
L

)
L ̸=K

)
≥ 0,

so that, since ρn
K ∧ ρ̌n

K is either equal to ρn
K or ρ̌n

K ,

H n
K

(
ρn

K ∧ ρ̌n
K ,

(
ρn

L ∧ ρ̌n
L

)
L ̸=K

)
≥ 0, K ∈T . (40)

Similarly, there holds

H n
K

(
ρn

K ∨ ρ̌n
K ,

(
ρn

L ∨ ρ̌n
L

)
L ̸=K

)
≤ 0, K ∈T . (41)
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Subtracting (40) to (41), summing over K ∈T and using the conservativity of the fluxes provides∑
K ∈T

∣∣ρn
K − ρ̌n

K

∣∣
τ

mK + ∑
σ∈Eext

mσασ
∣∣ρn

σ− ρ̌n
σ

∣∣≤ 0,

where ρ̌n
σ is computed thanks to formula (20) with ρ̌n

K instead of ρn
K . We conclude that ρn = ρ̌n ,

completing the proof of Proposition 8. □

3.2. Discrete energy/dissipation estimates

The goal of this section is to show some refined energy estimate implying in particular (31).
We pay attention to precisely quantifying the energy dissipation since this information is key
to derive the compactness results to be used in Section 4. Denote by F n = (F n

Kσ)K ∈T ,σ∈EK the
approximate fluxes at time step n ≥ 1, then taking inspiration in [29, 30], we introduce the primal
dissipation potential by setting

DE

(
ρn ,F n)= ∑

σ∈Eint

aση
n
σΨ

(
dσF n

Kσ

ηn
σ

)
≥ 0, (42)

where Ψ is the continuous nonnegative strictly convex even function vanishing at 0 with super-
linear growth at ∞ defined by

Ψ(z) = 2z log

(
z +

p
z2 +4

2

)
−2

√
z2 +4+4, z ∈R,

and where ηn
σ, which is defined by (22) for σ ∈ Eint and by ηn

σ =
√
η(ρn

K )η(ρn
σ) for σ ∈ Eext, is

positive thanks to Proposition 8.
As highlighted by the notation, the dissipation is associated to the edges E . Yet, the dissipation

potential defined in (42) only corresponds to the dissipation in the bulk even though boundary
fluxes also contribute to the dissipation of the total free energy, as shows (12). This choice is
made for simplicity and is possible since the quantification of the dissipation across the sole bulk
already provides enough compactness to carry out the convergence proof, see Section 4. Note

that each internal edge σ = K |L ∈ Eint appears only once in (42) and that Ψ(
dσF n

Kσ
ηn
σ

) = Ψ(
dσF n

Lσ
ηn
σ

)
sinceΨ is even and since F n

Kσ+F n
Lσ = 0.

Given Gn = (
Gn

Kσ

)
K ∈T ,σ∈EK

with Gn
Kσ+Gn

Lσ = 0 for all σ= K |L ∈ Eint, then we define the dual

dissipation potential D∗
E

: (0,1)T ×RE →R+ by

D∗
E

(
ρn ,Gn)= ∑

σ∈Eint

aση
n
σΨ

∗ (
Gn

Kσ

)≥ 0, (43)

whereΨ∗ is the Legendre transform ofΨ, defined by

Ψ∗(s) = 4(cosh(s/2)−1) , s ∈R.

It is continuous, nonnegative, uniformly convex and vanishes at 0.

Proposition 9. Let (ρn)n≥1 ⊂ (0,1)T ∪Eext be the iterated solution to the scheme (16)–(20). For
n ≥ 1, let Gn = (Gn

Kσ)K ∈T ,σ∈EK be defined by

Gn
Kσ = ξn

K −ξn
Kσ =

{
ξn

K −ξn
L ifσ= K |L ∈ Eint,

ξn
K −ξn

σ itσ ∈ Eext,
(44)

then there holds
F n

T ,tot −F n−1
T ,tot

τ
+DE

(
ρn ,F n)+D∗

E

(
ρn ,Gn)≤ 0. (45)



546 Clément Cancès and Juliette Venel

Proof. Since the solution ρn , n ≥ 1, belongs to (0,1)T ∪Eext , the discrete electrochemical poten-
tial ξn = ((ξn

K )K ∈T , (ξn
σ)σ∈Eext ) ∈ RT ∪Eext is well defined. Multiplying the discrete conservation

law (18) by ξn
K and summing over K ∈T leads to

An
T +B n

T +C n
T = 0, (46)

with

An
T = ∑

K ∈T

mK
ρn

K −ρn−1
K

τ
ξn

K , B n
T = ∑

σ∈Eint

mσF n
KσGn

Kσ and C n
T = ∑

σ∈Eext

mσF n
Kσξ

n
σ.

Similarly to what we did in (8) at the continuous level, the external fluxes F n
Kσ given by (19b) can

be rewritten as

F n
Kσ = 2

√
βσ(ασ−βσ)ρn

σ

(
1−ρn

σ

)
sinh

(
1

2

(
ξn
σ−ξΓσ

))
, σ ∈ Eext.

Therefore, F n
Kσ(ξn

σ−ξΓσ) ≥ 0 for all σ ∈ Eext, so that

C n
T ≥ ∑

σ∈Eext

mσF n
Kσξ

Γ
σ. (47)

Concerning the bulk term B n
T

, the writing (21) of the internal edge fluxes and its straightforward
counterpart for boundary edges show that

dσF n
Kσ

ηn
σ

= 2sinh

(
Gn

Kσ

2

)
= (
Ψ∗)′ (Gn

Kσ

)
.

Therefore, we have equality in the Young–Fenchel inequality

dσF n
Kσ

ηn
σ

Gn
Kσ =Ψ

(
dσF n

Kσ

ηn
σ

)
+Ψ∗ (

Gn
Kσ

)
.

As a consequence,

B n
T = ∑

σ∈Eint

aση
n
σ

dσF n
Kσ

ηn
σ

Gn
Kσ =DE

(
ρn ,F n)+D∗

E

(
ρn ,Gn)

. (48)

For the accumulation term An
T

, the convexity of the mixing entropy density h implies that(
ρn

K −ρn−1
K

)
h′ (ρn

K

)≥ h
(
ρn

K

)−h
(
ρn−1

K

)
, K ∈T .

Therefore, it follows from the definition (28) of FT (ρn) that

An
T ≥ FT

(
ρn

)−FT

(
ρn−1

)
τ

. (49)

We recover the discrete energy dissipation estimate (45) by combining (47)–(49) in (46) and by
using the definition (28) of F n

T ,tot. □

Since φ is assumed to be nonnegative, so does FT (ρn). The upper bound we deduce from
Proposition 9 is rather on F n

T ,tot, which is not bounded from below so far. Obtaining a time-
dependent lower-bound for F n

T ,tot is the purpose of the following corollary. Its proof, the details

of which are left to the reader, relies on the fact that both ξΓσ and F n
Kσ are uniformly bounded for

each σ ∈ Eext.

Corollary 10. Let C1 be as in Proposition 1, then

−C1tn ≤F n
T ,tot ≤F n−1

T ,tot ≤FT

(
ρ0) , n ≥ 1.

In particular, (31) holds true.

In Proposition 9, the free energy dissipation is quantified thanks to the non-homogeneous
functionals DE and D∗

E
. The goal of the next lemma is to deduce from this estimate some more

classical discrete L2
loc(R+; H 1(Ω)) estimate on (ρn)n≥1.
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Lemma 11. There exists C2 depending only on C1,Ω and φ such that
n∑

p=1
τ

∑
σ∈Eint

aσ
(
ρ

p
K −ρp

Kσ

)2 ≤C2(1+ tn), ∀ n ≥ 1.

Proof. Combining Proposition 9 with Corollary 10, we obtain that

τ
n∑

p=1
D∗

E

(
ρp ,G p)= n∑

p=1
τ

∑
σ∈Eint

aση
p
σΨ

∗ (
Gp

Kσ

)≤F 0
T ,tot −F n

T ,tot ≤FT

(
ρ0)+C1tn . (50)

It follows from the elementary inequality cosh(a +b) = cosh(a)cosh(b)+ sinh(a)sinh(b) that

η
p
σΨ

∗ (
Gp

Kσ

)= 4ηp
σ

(
cosh

(
φK −φKσ

2

)
cosh

(
h′(ρp

K )−h′ (ρp
Kσ

)
2

)
−1

)

+4ηp
σ sinh

(
φK −φKσ

2

)
sinh

(
h′ (ρp

K

)−h′ (ρp
Kσ

)
2

)
=: Sp

σ+T p
σ , p ≥ 1.

Then using (24), cosh(a) ≥ 1, and the fact that the arithmetic mean is greater than the geometric
one, one gets that

Sp
σ = 2cosh

(
φK −φKσ

2

)((
ρ

p
K −ρp

Kσ

)2 +η(
ρ

p
K

)+η(
ρ

p
Kσ

)−2ηp
σ

)
≥ 2

(
ρ

p
K −ρp

Kσ

)2
.

On the other hand, (23) yields

T p
σ = 2

(
ρ

p
K −ρp

Kσ

)
sinh

(
φK −φKσ

2

)
.

Since ∣∣∣∣2sinh

(
φK −φKσ

2

)∣∣∣∣≤ cosh

(∥φ∥∞
2

)∣∣φK −φKσ
∣∣≤ cosh

(∥φ∥∞
2

)
∥∇φ∥∞dσ,

we deduce from Young’s inequality that

T p
σ ≥−(

ρ
p
K −ρp

Kσ

)2 −cosh2
(∥φ∥∞

2

)
∥∇φ∥2

∞d 2
σ.

All in all, we obtain

τ
n∑

p=1
D∗

E

(
ρp ,G p)≥ n∑

p=1
τ

∑
σ∈Eint

aσ
(
ρ

p
K −ρp

Kσ

)2 −cosh2
(∥φ∥∞

2

)
∥∇φ∥2

∞
n∑

p=1
τ

∑
σ∈E

mσdσ

=
n∑

p=1
τ

∑
σ∈Eint

aσ
(
ρ

p
K −ρp

Kσ

)2 −cosh2
(∥φ∥∞

2

)
∥∇φ∥2

∞dmΩtn ,

which provides the desired result after being combined with (50). □

Next lemma exploits the other part of the dissipation to derive some discrete W 1,1
loc (R+;

W −1,1(Ω)) on (ρn)n≥0.

Lemma 12. Let ϕ ∈ C∞
c ([0,T )×Ω) for some T > 0, with dist(supp ϕ, ∂Ω) ≥ ζ⋆δT , then define

ϕn
K = 1

mK

∫
K ϕ(tn) for all K ∈T and n ≥ 0, then there exists C3 depending only onΩ,α, β,φ, T , and

ζ⋆ such that ∑
n≥1

∑
K ∈T

mK
(
ρn

K −ρn−1
K

)
ϕn

K ≤C3∥∇ϕ∥∞.

Proof. The assumption on the support of ϕ implies that ϕn
K = 0 either if K has a boundary edge

σ ∈ EK ,ext or if n ≥ T /τ. Moreover, it follows from the mean value theorem that for all K ∈T and
all n ≥ 1, there exists yn

K ∈ K such that ϕn
K =ϕ(tn , yn

K ). Then for all σ= K |L ∈ Eint, one has∣∣ϕn
K −ϕn

L

∣∣≤ ∥∇ϕ∥∞
(∣∣yn

K −xK
∣∣+ ∣∣yn

L −xL
∣∣+dσ

)≤C4∥∇ϕ∥∞dσ.
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with C4 = 1 + 2ζT . Therefore, multiplying (18) by τϕn
K and summing over K ∈ T and n ≥ 1

provides ∑
n≥1

∑
K ∈T

mK
(
ρn

K −ρn−1
K

)
ϕn

K = −
⌊T /τ⌋∑
n=1

τ
∑

σ∈Eint

mσF n
Kσ

(
ϕn

K −ϕn
L

)
.

≤C4∥∇ϕ∥∞
⌊T /τ⌋∑
n=1

τ
∑

σ∈Eint

aση
n
σ

dσ
∣∣F n

Kσ

∣∣
ηn
σ

dσ,

so that a Young–Fenchel inequality gives∑
n≥1

∑
K ∈T

mK
(
ρn

K −ρn−1
K

)
ϕn

K ≤C4∥∇ϕ∥∞
⌊T /τ⌋∑
n=1

τ

(
DE

(
ρn ,F n)+ ∑

σ∈Eint

aση
n
σΨ

∗(dσ)

)
. (51)

A Taylor expansion ofΨ∗ around 0 shows that

Ψ∗(dσ) = d 2
σ

2

(
Ψ∗)′′ (cσ) with cσ ∈ (0,dσ) ⊂ [0,diam(Ω)],

whence, since ηn
σ ≤ 1/4,∑

σ∈Eint

aση
n
σΨ

∗(dσ) ≤ 1

8
cosh

(
diam(Ω)

2

) ∑
σ∈Eint

mσdσ ≤ d

8
cosh

(
diam(Ω)

2

)
mΩ. (52)

Then we deduce from Proposition 9 and Corollary 10 that
⌊T /τ⌋∑
n=1

τDE

(
ρn ,F n)≤FT

(
ρ0)−F

⌊T /τ⌋
T ,tot ≤ mΩ

(
log2+∥φ∥∞+2∥∇φ∥∞δT

)+C1T. (53)

The combination of (52)(53) in (51) shows the desired result. □

4. Convergence analysis

The goal of this section is to prove Theorem 6. The proof consists in three steps. First in Sec-
tion 4.1, we establish some compactness results on (ρTm ,τm )m≥0. Then we identify in Section 4.2
any limit value ρ of (ρTm ,τm )m≥0 as a weak solution to the continuous problem. Finally, the
uniqueness of the weak solution is established in Section 4.3, implying by the way the conver-
gence of the whole sequence.

In what follows, we lighten the notation by removing the index m associated to the mesh and
time step. The limit m →+∞ is denoted by δT ,τ→ 0 instead. This limit implicitly supposes that
the regularity factor of the mesh ζT remains uniformly bounded by some ζ⋆ as prescribed by (33).

4.1. Compactness properties

We derived in Section 3.2 all the preliminary material required to use some existing compactness
results. First by combining Lemmas 11 and 12, one can apply the black-box discrete Aubin–Simon
theorem [2, Theorem 3.9], leading to the following compactness result.

Proposition 13. Let ρ be a limit value (34) of ρT ,τ as δT , τ tend to 0, then ρ ∈ L2
loc(R+; H 1(Ω))

and, up to a subsequence,
ρT ,τ −→

δT ,τ→0
ρ in Lp

loc(R+×Ω). (54)

The above proposition shows some strong convergence in the bulk domain R+ ×Ω. To pass
to the limit in the boundary conditions, one also has to get some convergence of the traces
on R+ × ∂Ω. Even though the boundary condition (3) in linear w.r.t. ρ, we establish the strong
convergence of the trace of the approximate solution ρT ,τ towards the trace of ρ.
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Lemma 14. Let ρT ,τ be such that the convergence (54) holds. Denote by γρT ,τ the trace on R+×Γ
of the approximate solution ρT ,τ, i.e.

γρT ,τ(t , x) = ρn
K for (t , x) ∈ (tn−1, tn]×σ, σ ∈ EK ,ext, K ∈T ,

and by γρ ∈ L2
loc(R+; H 1/2(Γ)) the trace of a limit value ρ of ρT ,τ, then

γρT ,τ −→
δT ,τ→0

γρ in Lp
loc(R+×Γ), 1 ≤ p <+∞. (55)

Proof. The proof builds on ideas introduced in [5, Section 4.2]. First, notice that since both
ρT ,τ and ρ remain bounded between 0 and 1, is suffices to establish the convergence (55) in
L2

loc(R+×Γ) to get it all the Lp
loc(R+×Γ) thanks to the dominated convergence theorem.

Since Ω is assumed to be polyhedral, its boundary Γ can be decomposed as Γ = ⋃I
i=1Γi with

Γi included in an hyperplane of Rd and I finite. We assume that the Γi are disjointed one from
another. For ε> 0 and i ∈ {1, . . . , I }, we define

Γi ,ε =
{

x ∈ Γi
∣∣ x −θνi ∈Ω for θ ∈ [0,ε)

}
,

where νi is the outward w.r.t. Ω normal to Γi . Denoting by mΓi ,ε (resp. mΓi ) the (d − 1)-
dimensional Hausdorff (or Lebesgue) measure of Γi ,ε (resp. Γi ), then

mΓi −C5ε≤ mΓi ,ε ≤ mΓ,i , ε> 0, 1 ≤ i ≤ I ,

for some C5 depending only on Ω. Therefore, given an arbitrary final time T > 0 and an arbitrary
ε> 0, then for all i ∈ {1, . . . , I }, there holds∫ T

0

∫
Γi

∣∣γρT ,τ−γρ
∣∣2 ≤

∫ T

0

∫
Γi ,ε

∣∣γρT ,τ−γρ
∣∣2 +C5εT. (56)

Using (a +b + c)2 ≤ 3
(
a2 +b2 + c2

)
, we obtain that∫ T

0

∫
Γi ,ε

∣∣γρT ,τ(t , y)−γρ(t , y)
∣∣2 d yd t ≤ Aε

T ,τ+Bε
T ,τ+Cε, (57)

with

Aε
T ,τ =

3

ε

∫ T

0

∫ ε

0

∫
Γi ,ε

∣∣γρT ,τ(t , y)−ρT ,τ(t , y −θνi )
∣∣2 d ydθd t ,

Bε
T ,τ =

3

ε

∫ T

0

∫ ε

0

∫
Γi ,ε

∣∣ρT ,τ(t , y −θνi )−ρ(t , y −θνi )
∣∣2 d ydθd t ,

Cε = 3

ε

∫ T

0

∫ ε

0

∫
Γi ,ε

∣∣γρ(t , y)−ρ(t , y −θνi )
∣∣2 d ydθd t .

First, applying [5, Lemma 4.8] in combination with Lemma 11 yields

Aε
T ,τ ≤ 3(ε+δT )

⌈T /τ⌉∑
n=1

τ
∑

σ∈Eint

aσ
(
ρn

K −ρn
L

)2 ≤ 3C2(1+T +τ)(ε+δT ). (58)

Second, it results from Proposition 13 that, for any fixed ε> 0, there holds

lim
δT ,τ→0

Bε
T ,τ = 0. (59)

Putting (56)–(59) altogether leads to

limsup
δT ,τ→0

∫ T

0

∫
Γi

∣∣γρT ,τ−γρ
∣∣2 ≤ (C5T +3C2(1+T ))ε+Cε, ∀ ε> 0. (60)

Eventually, one lets ε→ 0 in (60), the right-hand side of which and in particular Cε tend to 0 since
γρ is the trace of ρ. This concludes the proof of Lemma 14. □
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Even though the term trace is slightly abusive, it is natural to introduce the alternative notion
of trace on R+×Γ for the approximate solution ρT ,τ by setting

γ̃ρT ,τ(t , x) = ρn
σ for (t , x) ∈ (tn−1, tn]×σ, σ ∈ Eext.

Lemma 15. Let ρT ,τ be such that the convergence (54) holds, then for all T > 0, there holds∥∥γρT ,τ− γ̃ρT ,τ
∥∥

Lp ((0,T )×Γ) −→
δT ,τ→0

0, 1 ≤ p <+∞. (61)

In particular, γ̃ρT ,τ also tends to γρ in Lp
loc(R+×Γ) for all finite p.

Proof. Once again, the uniform L∞ bounds on γρT ,τ and γ̃ρT ,τ allow to establish (61) for p = 1
only. Then, going back to the definitions of γρT ,τ and γ̃ρT ,τ, Cauchy–Schwarz inequality gives

∥∥γρT ,τ− γ̃ρT ,τ
∥∥2

L1((0,T )×Γ) ≤
(⌈T /τ⌉∑

n=1
τ

∑
K ∈T

∑
σ∈EK ,ext

mσ

∣∣ρn
K −ρn

σ

∣∣)2

≤
(⌈T /τ⌉∑

n=1
τ

∑
K ∈T

∑
σ∈EK ,ext

aσ
(
ρn

K −ρn
σ

)2

)(⌈T /τ⌉∑
n=1

τ
∑

K ∈T

∑
σ∈EK ,ext

mσdσ

)
.

Thanks to Lemma 11, the first term of the right-hand side can be overestimated by
⌈T /τ⌉∑
n=1

τ
∑

K ∈T

∑
σ∈EK ,ext

aσ
(
ρn

K −ρn
σ

)2 ≤
⌈T /τ⌉∑
n=1

τ
∑
σ∈E

aσ
(
ρn

K −ρn
Kσ

)2 ≤C2(1+T +τ).

On the other hand, it follows from the regularity of the mesh that
⌈T /τ⌉∑
n=1

τ
∑

K∈T

∑
σ∈EK ,ext

mσdσ ≤ ζ⋆δT

⌈T /τ⌉∑
n=1

τ
∑

K ∈T

∑
σ∈EK ,ext

mσ ≤ ζ⋆δT (T +τ)mΓ

where mΓ denote the (d − 1)-dimensional Hausdorff (or Lebesgue) measure of Γ. In particular,
(61) holds for p = 1, and thus also for all finite p. The last statement of the lemma, namely the
convergence of γ̃ρT ,τ towards γρ, is then a straightforward consequence of Lemma 14. □

4.2. Identification of the limit

Our goal is here to establish the consistency of the scheme by identifying any limit value ρ of ρT ,τ

as a solution to the continuous problem.

Proposition 16. Let ρ be a limit value of ρT ,τ as δT ,τ tend to 0, then ρ is a weak solution to the
problem (1)–(4) in the sense of Definition 2.

Proof. Letϕ ∈C∞
c (R+×Ω), then defineϕn

K =ϕ(xK , tn) andϕn
σ =ϕ(xσ, tn) for all K ∈T , allσ ∈ Eext

and n ≥ 0. This allows to define the function ϕT ,τ by

ϕT ,τ(t , x) =ϕn−1
K if (t , x) ∈ [tn−1, tn)×K .

Multiplying (18) by τϕn−1
K and summing over K ∈T provides

AT ,τ+BT ,τ = 0, (62)

where we have set

AT ,τ =
∑

n≥1

∑
K ∈T

mK
(
ρn

K −ρn−1
K

)
ϕn−1

K , BT ,τ =
∑

n≥1
τ

∑
K∈T

∑
σ∈EK

mσF n
Kσϕ

n−1
K .

Since ϕn
K = 0 for n large enough, the term AT ,τ can be rewritten as

AT ,τ = − ∑
n≥1

τ
∑

K ∈T

mKρ
n
K

ϕn
K −ϕn−1

K

τ
− ∑

K ∈T

mKρ
0
Kϕ

0
K .
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Then classical arguments (see for instance [18]) allow to show that

lim
δT ,τ→0

AT ,τ =−
Ï
R+×Ω

ρ∂tϕ−
∫
Ω
ρ0ϕ(0). (63)

On the other hand, thanks to the conservativity of the fluxes, the term BT ,τ reformulates as

BT ,τ =
∑

n≥1
τ

∑
σ∈Eint

mσF n
Kσ

(
ϕn−1

K −ϕn−1
Kσ

)+ ∑
n≥1

τ
∑

K ∈T

∑
σ∈EK ,ext

mσF n
Kσϕ

n−1
σ =: B bulk

T ,τ +B ext
T ,τ.

Using the expression of the boundary fluxes (19b) in the term B ext
T ,τ provides

B ext
T ,τ =

Ï
R+×Γ

(
αE γ̃ρT ,τ−βE

)
γ̃ϕT ,τ

where αE and βE are the piecewise constant (per edges σ ∈ Eext) reconstructions on Γ build from
the evaluation of α and β at xσ, and where

γ̃ϕT ,τ(t , x) =ϕn−1
σ if (t , x) ∈ [tn−1, tn)×σ, σ ∈ Eext.

Due to the Lipschitz regularity of α,β and ϕ, their approximations αE , βE and γ̃ϕT ,τ converge
uniformly. One concludes from the convergence of γ̃ρT ,τ stated at Lemma 15 that

lim
δT ,τ→0

B ext
T ,τ =

Ï
R+×Γ

(
αγρ−β)

ϕ. (64)

For the term B bulk
T ,τ , we use the expression (25) of the internal fluxes, leading to

B bulk
T ,τ = B diff

T ,τ+B conv
T ,τ +RT ,τ, (65)

with

B diff
T ,τ =

∑
n≥1

τ
∑

σ∈Eint

aσ
(
ρn

K −ρn
Kσ

)(
ϕn−1

K −ϕn−1
Kσ

)
,

B conv
T ,τ = ∑

n≥1
τ

∑
σ∈Eint

aσ
η

(
ρn

K

)+η(
ρn

Kσ

)
2

(
φK −φKσ

)(
ϕn−1

K −ϕn−1
Kσ

)
,

RT ,τ =
∑

n≥1
τ

∑
σ∈Eint

mσRn
σ

(
ϕn−1

K −ϕn−1
Kσ

)
.

We do not detail the proof of

B diff
T ,τ −→

δT ,τ→0

Ï
R+×Ω

∇ρ ·∇ϕ, B conv
T ,τ −→

δT ,τ→0

Ï
R+×Ω

η(ρ)∇φ ·∇ϕ, (66)

since similar terms have been studied in many contributions, see for instance [8] and references
therein. It remains to show that RT ,τ vanishes at the limit. We deduce from the expression (26),
from the fact that r n

σ ∈ (0,1), and from ∥η∥∞ = 1/4 that

∣∣Rn
σ

∣∣≤ 1

2

∥∥∇φ∥∥∞ (
ρn

K −ρn
Kσ

)2

+ dσ
8

∥∥∇φ∥∥2
∞

(∣∣ρn
K −ρn

Kσ

∣∣cosh
∥∥φ∥∥∞+dσ

∥∥∇φ∥∥∞ (
1

2
+ (
ρn

K −ρn
Kσ

)2
)

1

2
cosh∥φ∥∞

)
.

Therefore, using furthermore Lemma 11, one readily shows that

RT ,τ ≤Cδ2
T −→

δT ,τ→0
0. (67)

Putting (63)–(67) together in (62) concludes the proof of Proposition 16. □
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4.3. Uniqueness of the weak solution

So far, we established the convergence of the scheme towards a weak solution up to a subse-
quence. In order to show that the whole sequence converges, it suffices to show that the limit
value is unique. This is a consequence of the following proposition.

Proposition 17. The weak solution ρ to (1)–(4) in the sense of Definition 2 is unique.

Proof. Let ρ and ρ̌ be two weak solutions corresponding to the same initial data ρ0, and let T be
an arbitrary time horizon, then subtracting their respective weak formulations leads to∫ T

0

〈
∂t (ρ− ρ̌),ϕ

〉
H−1,H 1

0
+

∫ T

0

∫
Ω

((
η(ρ)−η(ρ̌)

)∇φ+∇(ρ− ρ̌)
) ·∇ϕ= 0 (68)

for all ϕ ∈ L2((0,T ); H 1
0 (Ω)). Choose ϕ as the solution to

−∆ϕ(t ) = ρ(t )− ρ̌(t ) inΩ, ϕ(t ) = 0 on Γ, t ∈ [0,T ],

then one readily checks that ∥∇ϕ(t )∥L2(Ω)d = ∥ρ(t )− ρ̌(t )∥H−1(Ω). Moreover, ∂tϕ also belongs to
L2((0,T ); H 1

0 (Ω)) since ∂t (ρ− ρ̌) belongs to L2((0,T ); H−1(Ω)). Therefore,∫ T

0

〈
∂t

(
ρ− ρ̌)

,ϕ
〉

H−1,H 1
0
=

∫ T

0

∫
Ω
∂t∇ϕ ·∇ϕ= 1

2

∥∥∇ϕ(T )
∥∥2

(L2(Ω))d

since ϕ(0) = 0. As a consequence, (68) yields

1

2

∥∥ρ(T )− ρ̌(T )
∥∥2

H−1(Ω) +
∥∥ρ− ρ̌∥∥2

L2((0,T )×Ω) = −
∫ T

0

∫
Ω

(
η(ρ)−η(ρ̌)

)∇φ ·∇ϕ

≤ ∥∇φ∥∞
∫ T

0

∫
Ω

∣∣ρ− ρ̌∣∣ ∣∣∇ϕ∣∣ .

Then we deduce from Young’s inequality that∥∥ρ(T )− ρ̌(T )
∥∥2

H−1(Ω) ≤
∥∇φ∥2∞

2

∥∥ρ− ρ̌∥∥2
L2((0,T );H−1(Ω)) .

The above inequality holds for all T ≥ 0, and we deduce from Gronwall Lemma together and from
the fact that ρ(0) = ρ̌(0) = ρ0 that ∥ρ(T )− ρ̌(T )∥H−1(Ω) = 0 for all T ≥ 0. □

5. Numerical results

Before presenting numerical results, let us comment briefly on some practical details concerning
the effective implementation. Our code in based on Matlab. The resolution of the nonlinear
system (18)–(19), in its compact form (39) is achieved thanks to Newton’s method:(

ρn,ℓ
)
δρn,ℓ =−H n

(
ρn,ℓ

)
, ρn,ℓ+1 =ρn,ℓ+δρn,ℓ, (69)

with J standing for the Jacobian matrix of H n . Note that ρn
σ, σ ∈ Eext is not considered as

an unknown and is deduced from the cell values thanks to (20). We initialize (69) by setting
ρn,0 =ρn−1 and than iterate until ∥δρn,ℓ∥∞/∥ρn,ℓ+1∥∞ ≤ 10−12. Then we set ρn = ρn,ℓ+1.

5.1. Numerical evidence of the convergence

The first numerical test we propose aims at confirming our intuition concerning the second
order accuracy in space of the scheme sketched in Section 2.2. To this end, we consider a one-
dimensional domain Ω= (0,1). We consider a slightly more general case than the one addressed
in the paper by introducing some parameter ϵ> 0 (referred later on as the inverse Péclet number)
in front of the diffusion term in (1b):

F +η(ρ)∂xφ+ϵ∂xρ = 0. (70)
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The bulk numerical flux formula (19a) is tuned into

F n
Kσ = ϵ

dσ

[
ρn

K

(
1−ρn

L

)
e

1
2ϵ (φK −φL) −ρn

L

(
1−ρn

K

)
e

1
2ϵ (φL−φK )

]
forσ= K |L ∈ Eint. (71)

The boundary condition (3) remains unchanged at the continuous level, yet the discrete external
fluxes are modified into

F n
Kσ = ϵ

dσ

[
ρn

K

(
1−ρn

σ

)
e

1
2ϵ (φK −φσ) −ρn

σ

(
1−ρn

K

)
e

1
2ϵ (φσ−φK )

]
=ασρn

σ−βσ, forσ ∈ Eint, (72)

with the updated boundary density value

ρn
σ = dσβσ+ϵρn

K e
1

2ϵ (φK −φσ)

dσασ+ϵρn
K e

1
2ϵ (φK −φσ) +ϵ(1−ρn

K

)
e−

1
2ϵ (φK −φσ)

. (73)

The extension of our analysis to this framework is straightforward for fixed values of ϵ> 0. In our
test case, the functions α and β defined on Γ= {0,1} are chosen constant, with α= 1 and β= 1/2.
Concerning the external potential, we set φ(x) = 1− x, so that the drift ∂xφ is constant. As an
initial data, we choose

ρ0(x) =
{

1 if x < 1/2,

0 otherwise.

The domain Ω is discretized with a successively refined uniform grid. The final time is set to
T = 2, whereas the time step τ= 10−2 remains unchanged, in opposition to the spatial mesh size.
A reference solution is computed on a fine grid made of 51200 cells.
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Figure 1. Evolution L∞((0,T );L1(Ω)) relative errors as a function of the number of cells in
the spatial discretization for various inverse Péclet numbers ϵ.

We illustrate on Figure 1 the second order convergence in space that was expected from the
discussion of Section 2.2. One notices that the error increases when the inverse Péclet number
decreases. To better illustrate this point, we plot on Figure 2 the evolution of the error as a
function of ϵ. Such a behavior is expected since the scheme is not asymptotic preserving in
the sense that the scheme corresponding to the limit ϵ = 0 is not consistent with the limiting
hyperbolic continuous equation.
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Figure 2. Evolution L∞((0,T );L1(Ω)) on different meshes depending on the inverse Péclet
number ϵ.

5.2. Energy stability and long-time behavior

Our second numerical experiment is performed on a 2D Delaunay mesh made of 7374 triangles.
Our goal is here twofold. First, we give a numerical evidence of the fact that the total energy
Ftot decreases along time, while the bulk energy F (ρ) remains bounded. As in Section 5.1, we
introduce the inverse Péclet number ϵ. The energy has to be adapted accordingly by setting

F (ρ) =
∫
Ω

(ϵh(ρ)+ρφ)

with φ(x) = 1−x2 for x = (x1, x2) ∈Ω. As an initial data, we choose ρ0(x) = 1 if x ∈ (0,1/2)× (0,1/2)
and ρ0(x) = 0 otherwise.

Two sets of boundary conditions are considered in this section.

• First, we fix α and β so that there exists some thermal equilibrium. More precisely, we set

α= 1+e−
φ−1/2
ϵ and β= e−

φ−1/2
ϵ . (74)

The corresponding thermal equilibrium is then given by

ρ∞ = e−
φ−1/2
ϵ

1+e−
φ−1/2
ϵ

. (75)

The inverse Péclet number ϵ is set to 0.1.
• Second, we choose generic α and β, for which no thermal equilibrium can be found:

α≡ 1, β(x) = 1

10
+ 4

5

(
cos2

(
3πx2

2

)
+ (2x2 −1)sin(πx1)

)
, x = (x1, x2) ∈Ω. (76)

Here, we set ϵ= 0.01.

Let us first address the equilibrium case (74). Let ρ∞ be the discrete thermal equilibrium as in
Remark 4, i.e.

ρ∞
K = e−

φK −1/2
ϵ

1+e−
φK −1/2

ϵ

, K ∈T ,

and denote by ρ∞
T

the approximate steady state defined by ρ∞
T

(x) = ρ∞
K if x ∈ K . Then Figure 3

exhibits the exponential convergence of ρT ,τ towards ρ∞
T

.
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Figure 3. Evolution of the L2-distance between ρT ,τ(t , ·) and ρ∞
T

as a function of t –
equilibrium case (74).

We now turn to the case of non-equilibrium boundary conditions (76). Snapshots of the
solution are presented on Figure 4.

t = 0.1 t = 0.5 t = 1

t = 2 t = 4 t = 50

Figure 4. Snapshots of the solution at different times – non-equilibrium case (76).
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We plot on Figure 5 the evolution of the bulk and total energies along time. As expected, Ftot

is decreasing with linear decay, while F (ρ) remains bounded along time.
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Figure 5. Evolution of the total energy (left) and of the bulk energy (right) along time – non-
equilibrium case (76).

We make use of a uniform time step τ = 0.1 until we reach the final time T = 200. Then
the steady longtime limit ρ∞ corresponding to t = 104 is computed with larger time step τ =
100. Even though there is no thermal equilibrium for the test-case under consideration, the
numerical solution still exponentially converges towards the steady state, as shows Figure 6. The
nonlinearity of our problem (1)–(4) does not enter the framework proposed in [4], the extension
of which to the discrete setting [12, 19] do not apply directly. The proof of the exponential
convergence of the scheme towards non-equilibrium steady states should be addressed in future
works.
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Figure 6. Evolution of the L2-distance between ρT ,τ(t , ·) and ρ∞
T

as a function of t – non-
equilibrium case (76).

Finally we highlight the good behavior of the numerical scheme when it comes to the effective
resolution of the induced nonlinear system. As expected, the highest number of required Newton
iteration corresponds to the initial time steps where only 17 Newton iterations are required
althoughρ1 significantly differs fromρ0. As time goes, this number decreases. In our test case, the
steady state is not yet reached for T = 50 and still 9 Newton iterations per time step are needed
to solve the nonlinear system. This number can be importantly decreased for less demanding
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stopping criteria. The number of required Newton iterations at each time step is reported on
Figure 7.
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Figure 7. Number of Newton iterations required to solve the nonlinear system at each time
step – non-equilibrium case (76).
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