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Abstract. LetΩ be homogeneous of degree zero with mean value zero, P and Q real polynomials on Rn with
Q(0) = 0 and Ω ∈ B0,0

q (Sn−1) for some q > 1. This note extends and improves a classical result of Stein and
Wainger (Ann. Math. Stud. 112, pp. 307-355, (1986)) to the following general form∣∣∣∣p. v.

∫
Rn

ei (P (x)+1/Q(x))Ω(x/|x|)
|x|n d x

∣∣∣∣≤ B ,

where B depend only on ‖Ω‖
B0,0

q (Sn−1)
, n and the degrees of P and Q, but not on their coefficients.
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1. Introduction

Let P be a polynomial on Rn of degree at most d with real coefficients and K be a homogeneous
function of degree −n on Rn , that is,

K (x) = Ω(x/|x|)
|x|n ,

whereΩ is an integrable function on the unit sphere Sn−1 and satisfies
∫

Sn−1Ωdσ= 0.
In [8] Stein showed that ifΩ ∈ L∞(Sn−1), then∣∣∣p. v.

∫
Rn

e i P (x)K (x)d x
∣∣∣≤Cd ,n,K , (1)

where Cd ,n,K is independent of the coefficients of P . The corresponding one-dimensional esti-
mation was obtained by Stein and Wainger in [9], see also [7] for the sharp bound. Subsequently,
Papadimitrakis and Parissis [6], Al-Qassem et al. [1] successively extended the estimate (1) to the
cases of thatΩ ∈ L logL(Sn−1) and H 1(Sn−1), the Hardy space defined on Sn−1. It is natural to ask
the following question.

Question. Can one extend the estimate (1) to phases which are general rational functions?
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In 2003, Folch-Gabayet and Wright [3] showed that for general rational phases, the estimate (1)
is not true. Meanwhile, they considered the rational phases of the form P (x)+1/Q(x), where P and
Q are real polynomials with Q(0) = 0, and forΩ ∈ L logL(Sn−1), obtained the following estimate:∣∣∣∣p. v.

∫
Rn

e i (P (x)+1/Q(x))K (x)d x

∣∣∣∣≤ A, (2)

where A depends on ‖Ω‖L logL(Sn−1), n and the degrees of P and Q, but not otherwise on the
coefficients of P and Q. It is well known that

L∞ (
Sn−1)$ ⋃

r >1
Lr (

Sn−1)$ L logL
(
Sn−1) .

Therefore, the estimate (2) essentially improved and generalized the corresponding results in
[6, 8, 9].

On the other hand, to study the mapping properties of singular integrals with rough kernels
on Lp (Rn), Jiang and Lu introduced the following block spaces B 0,ν

q (Sn−1) for ν > −1 and q > 1
(see [5] for the details of block spaces).

Definition 1 ([5]). A q-block on Sn−1 is an Lq -function b (1 < q ≤∞) that satisfies

supp(b) ⊆Q, (i)

‖b‖Lq (Sn−1) ≤ |Q|1/q−1, (ii)

where Q = Sn−1 ∩ {y ∈Rn : |y −ζ| < ρ for some ζ ∈ Sn−1 and ρ ∈ (0,1]}.

Definition 2 ([5]). For ν>−1 and q > 1, the block spaces B 0,ν
q on Sn−1 are defined by

B 0,ν
q

(
Sn−1)= {

Ω ∈ L1 (
Sn−1) :Ω(y ′) =∑

s
λs bs (y ′), M 0,ν

q ({λs }) <∞
}

.

where each λs is a complex number, each bs is a q-block supported in Qs ,

M 0,ν
q ({λs }) =∑

s
|λs |

{
1+

(
log+

1

|Qs |
)1+ν}

,

and

‖Ω‖B 0,ν
q (Sn−1) = inf

{
M 0,ν

q ({λs }) : Ω(x ′) =∑
s
λs bs (x ′)

}
.

It is easy to check that

B 0,ν1
q

(
Sn−1)$B 0,ν2

q

(
Sn−1) , ∀ ν1 > ν2 >−1.

Moreover, it follows from [4, 10] that for any q > 1,⋃
r >1

Lr (
Sn−1)$B 0,ν

q

(
Sn−1)⊂ H 1 (

Sn−1)+L
(
log+ L

)1+ν (
Sn−1) , ∀ ν>−1,

and B 0,ν
q (Sn−1)* L log+ L(Sn−1) for any ν ∈ (−1,0), in particular,⋃

r >1
Lr (

Sn−1)$B 0,0
q

(
Sn−1) , L log+ L

(
Sn−1)$ H 1 (

Sn−1) ,

but the relationship between B 0,0
q (Sn−1) and L log+ L(Sn−1) remains open. Therefore, it is interest-

ing to establish the estimate (2) under the assumption of thatΩ ∈ B 0,0
q (Sn−1), and more generally

Ω ∈ H 1(Sn−1).
In this paper, we will establish the estimate (2) provided that Ω ∈ B 0,0

q (Sn−1). As for the case
of that Ω ∈ H 1(Sn−1), which is more interesting, it is still open. Our results can be formulated as
follows.
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Theorem 3. Suppose that K (x) =Ω(x)/|x|n , where Ω ∈ B 0,0
q (Sn−1) is homogeneous of degree zero

with mean value zero and q > 1, P and Q are real polynomials with Q(0) = 0. Then∣∣∣∣p. v.
∫
Rn

e i (P (x)+1/Q(x))K (x)d x

∣∣∣∣≤ B , (3)

where B depends on ‖Ω‖B 0,0
q (Sn−1), n and the degrees of P and Q, but not otherwise on the coefficients

of P and Q.

Remark 4. Employing the arguments in [3, Proposition 1.4], the following result shows that the
requirement Q(0) = 0 in Theorem 3 is most likely not necessary.

Theorem 5. With K and P as in Theorem 3, but now Q(x) = a + v · x, where a ∈R and v ∈Rn∣∣∣∣p.v.
∫
Rn

e i (P (x)+1/Q(x))K (x)d x

∣∣∣∣≤ B , (4)

where B depends on ‖Ω‖B 0,0
q (Sn−1), n and the degree of P but not otherwise on the coefficients of P.

As an immediate consequence of Theorems 3 and 5, we have the following result.

Corollary 6. With K and Q as in Theorem 3 or 5, but now P : Rn → Rm being a polynomial
mapping, convolution with the distribution

L(φ) = p.v.
∫
Rn
φ(P (x))e i /Q(x)K (x)d x, φ ∈S (Rm),

is bounded on L2(Rm).

Employing the arguments in proving [3, Theorem 1.1], the main ingredient of the proof of
Theorem 3 or 5 in the current paper is to establish the following integral estimate, which has an
independent interest.

Proposition 7. Let Ω ∈ B 0,0
q (Sn−1) for some q > 1, P (x) = ∑

|α|=d cαxα be a homogeneous polyno-
mial of degree d on Rn . Write mP =∑

|α|=d |cα|. Then∫
Sn−1

|Ω(ω)| ·
∣∣∣∣log

( |P (ω)|
mP

)∣∣∣∣dσ(ω).Cd‖Ω‖B 0,0
q (Sn−1). (5)

The rest of this paper is organized as follows. In Section 2 we will give some auxiliary lemmas.
The proofs of our main results will be given in Section 3. We remark that some ideas in our
arguments are taken from [3].

Finally, we make some conventions on notation. Throughout this paper, we denote by C a
positive constant which is independent of the main parameters, but it may vary from line to
line. Let A, B be complex-valued quantities. We use A . B or A = O(B) to denote the estimate
|A| ≤ C |B |. We use A ∼ B to denote the estimate A . B . A. For 1 ≤ γ ≤ ∞, γ′ is the conjugate
index of γ, and 1/γ+1/γ′ = 1.

2. Preliminaries

In this section, we recall and establish some auxiliary lemmas, which will be used in our argu-
ments later.

Lemma 8 ([3]). For any polynomial Q(r ) =∑d
j=1 bk r k on R+, there is a finite collection {G j }M

j=1 of
disjoint intervals, called “gaps”, of R+ with M =O(1) such that

(1) The complement R+\
⋃M

j=1{G j } is the union of M −1 disjoint “dyadic” intervals, that is, the
ratio of the endpoints of such intervals is ∼ 1.

(2) For each G j , there is a k = k j ,1 ≤ k j ≤ d, such that for r ∈G j ,

|Q(r )| ∼
∣∣∣bk j

∣∣∣r k j and |Q ′
(r )| ∼

∣∣∣bk j

∣∣∣r k j −1
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Also if L j and R j denote the left and right endpoints of G j respectively, then

(i) if R j <∞, then R j =Cd [|bl |/|bm |]1/m−l for some 1 ≤ l < m ≤ d and
(ii) if L j > 0, then L j =Cd [|br |/|bs |]1/s−r for some 1 ≤ r < s ≤ d.

Lemma 9 ([8]). Suppose φ is real-valued and smooth on (a,b), and that |φ(k)| ≥ λ > 0 for all
t ∈ (a,b). Then ∣∣∣∣∫ b

a
e iφ(t )d t

∣∣∣∣≤Ckλ
−1/k

when either k ≥ 2, or k = 1 and φ
′
(t ) is monotonic.

Lemma 10. Let γ > 1,Ω ∈ Lγ(Sn−1) and P (x) = ∑
|α|=d cαxα be a homogeneous polynomial of

degree d on Rn . Write mP =∑
|α|=d |cα|. Then∫

Sn−1
|Ω(ω)| ·

∣∣∣∣log

( |P (ω)|
mP

)∣∣∣∣dσ(ω).Cdγ
′‖Ω‖Lγ(Sn−1). (6)

Proof. We may assume mP = 1. By the Hölder inequality,∫
Sn−1

|Ω(ω)| · ∣∣log
(|P (ω)|)∣∣dσ(ω) ≤ ‖Ω‖Lγ(Sn−1)

(∫
Sn−1

∣∣log
(|P (ω)|)∣∣γ′ dσ(ω)

)1/γ
′

.

And(∫
Sn−1

∣∣log
(|P (ω)|)∣∣γ′ dσ(ω)

)1/γ
′

.
(∫ 1

1/2
r n−1

∫
Sn−1

∣∣log
(|P (ω)|)∣∣γ′ dσ(ω)dr

)1/γ
′

.

( ∑
k>0

(
kγ

′)γ′ ∫ 1

1/2
r n−1dr

∫{
ω∈Sn−1 :r d |P (ω)|62−kγ

′ } dσ(ω)

)1/γ
′

6 γ
′
( ∑

k>0
kγ

′ ∫{
1
2 6 |x|61:2−kγ

′ −16 |P (x)|62−kγ
′ } d x

)1/γ
′

6 γ
′
( ∑

k>0
kγ

′ ∣∣∣∣{1

2
6 |x|6 1 : |P (x)|6 2−kγ

′ }∣∣∣∣
)1/γ

′

,

which reduces matters to obtaining uniform sublevel set estimates for P under the normalisation
mP = 1. Using the fact that all norms are equivalent on the space of polynomials of degree at most
d , we can find a derivative ∂α, 0 ≤ |α| ≤ d , such that 1. |∂αP (x)| on |x|6 1. Ifα= 0, then the above
sublevel sets are empty for large k and so we may assumeα> 0. In this case, using the mean value
theorem, one can show that |{|x|6 1 : |P (x)|6 2−kγ′ }|. 2−kγ′/|α| (see e.g. [2]). Thus( ∑

k>1
kγ

′ ∣∣∣∣{1

2
6 |x|6 1 : |P (x)|6 2−kγ

′ }∣∣∣∣
)1/γ

′

6

( ∑
k>1

kγ
′
2−kγ

′
/|α|

)1/γ
′

≤ ∑
k>1

k2−k/d .Cd .

This implies the desired conclusion and completes the proof of Lemma 10. �

3. Proofs of Main Results

In this section, we present the proofs of Proposition 7 and Theorem 3.
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Proof of Proposition 7. SinceΩ ∈ B 0,0
q (Sn−1), we know by Definition 2 that there is a decomposi-

tion:Ω(x ′) =∑
s λs bs (x ′), where each bs is a q-block, supported in Qs and∑

s
|λs |

(
1+ log+

1

|Qs |
)
<∞.

Therefore,∫
Sn−1

|Ω(ω)| ·
∣∣∣∣log

( |P (ω)|
mP

)∣∣∣∣dσ(ω) ≤∑
s
|λs |

∫
Sn−1

|bs (ω)| ·
∣∣∣∣log

( |P (ω)|
mP

)∣∣∣∣dσ(ω)

≤
 ∑
|Qs |≥e−q′

+ ∑
|Qs |<e −q′

 |λs |
∫

Sn−1
|bs (ω)| ·

∣∣∣∣log

( |P (ω)|
mP

)∣∣∣∣dσ(ω)

=: I + I I .

Recall that for each bs , supp(bs ) ⊂ Qs and ‖bs‖Lq (Sn−1) ≤ |Qs |1/q−1 = |Qs |−1/q ′
. If |Qs | ≥ e−q ′

, we
take γ= q and obtain

γ′ ‖bs‖Lγ(Sn−1) ≤ q ′ ‖bs‖Lq (Sn−1) ≤ q ′ |Qs |−1/q ′
. 1;

if |Qs | < e−q ′
, we take γ= log |Qs |/(1+ log |Qs |), then 1 < γ< q , γ′ = log(1/|Qs |) and

γ′ ‖bs‖Lγ(Sn−1) ≤ log
1

|Qs |
‖bs‖Lq (Sn−1) |Qs |1/γ−1/q ≤ log

1

|Qs |
|Qs |−1/γ′ . log

1

|Qs |
.

These, combining with Lemma 10, lead to

I ≤Cd

∑
|Qs |≥e−q′

|λs |q ′ ‖bs‖Lq (Sn−1).Cd

∑
|Qs |≥e−q′

|λs | ,

and for γ= log |Qs |/(1+ log |Qs |),

I I ≤Cd

∑
|Qs |<e−q′

|λs |γ′ ‖bs‖Lγ(Sn−1).Cd

∑
|Qs |>e−q′

|λs | log
1

|Qs |
.

Consequently, ∫
Sn−1

|Ω(ω)| ·
∣∣∣∣log

( |P (ω)|
mP

)∣∣∣∣dσ(ω).Cd

∑
s
|λs |

(
1+ log

1

|Qs |
)

,

which completes the proof of Proposition 7. �

Proof of Theorem 3. The arguments are completely similar to those in proving [3, Theorem 1.1].
The only difference is replacing [3, Lemma 2.2] by Proposition 7 in the current setting. For
completeness, we present the details as follows.

We may assume P (0) = 0. Using polar coordinates write the integral in (3) as

I =
∫

Sn−1
Ω(ω)

∫ ∞

0
e i [Pω(r )+1/Qω(r )] 1

r
dr dσ(ω),

where Q(x) = Qω(r ) = ∑d ′
j=1 q j (ω)r j , P (x) = Pω(r ) = ∑d

k=1 p j (ω)r k and p j , qk are homogeneous
polynomials of degree j and k. Using Lemma 8, we may write I =∑

I j ,k +O(1), where

I j ,k =
∫

Sn−1
Ω(ω)

∫
G j ∩Fk

e i [Pω(r )+1/Qω(r )] 1

r
dr dσ(ω).

Here {G j } and {Fk } are the “gaps” of Qω(r ) and Pω(r ), respectively. Note that although the inner
integral of I j ,k depends on ω in a complicated way, we know the form of the endpoints of G j and
Fk as given by Lemma 8 and so it is at least measurable as a function of ω. It suffices to bound
each I j ,k separately.

We have |Qω(r )| ∼ |q jl (ω)|r jl and |Q ′
ω(r )| ∼ |q jl (ω)|r jl−1 on G j , for some 1 ≤ jl ≤ d ′, and

|Pω(r )|∼ |pkm (ω)|r km and |P ′
ω(r )|∼ |pkm (ω)|r km−1 on Fk , for some 1 ≤ km ≤ d .
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Therefore away from where r jl+km ∼ (|pkm (ω)| · |q jl (ω)|)−1 the size of the phase φω(r ) =
Pω(r ) + 1/Qω(r ) and its derivative is understood. In fact, on R j ,k = G j ∩ Fk ∩ [C (|pkm (ω)| ·
|q jl (ω)|)−1/(km+ jl ),∞) (for C large enough), we have∣∣φω(r )

∣∣∼ ∣∣pkm (ω)
∣∣r km and

∣∣φ′
ω(r )

∣∣∼ ∣∣pkm (ω)
∣∣r km−1.

An application of van der Corput’s Lemma 9 shows∣∣∣∣∣
∫
{
r ∈R j ,k :r≥Θ} e iφω(r ) 1

r
dr

∣∣∣∣∣=O(1),

whereΘ= |pkm (ω)|1/km . Since we are applying Lemma 9 with k = 1, we need to first split the inte-
gration of the above integral into O(1) intervals, whereφ′

ω(r ) is monotone. In the complementary
interval, r <Θ, due to the size of φω(r ) on R j ,k , we see that∣∣∣∣∣

∫
{
r ∈R j ,k :r <Θ}

[
e iφω(r ) 1

r
−1

]
dr

∣∣∣∣∣=O(1).

Therefore for the part of I j ,k over R j ,k ,∫
Sn−1

Ω(ω)
∫

R j ,k

e iφω(r ) 1

r
dr dσ(ω) =

∫
Sn−1

Ω(ω)
∫
{
r ∈R j ,k :r<Θ} dr

r
dσ(ω)+O(1).

Similarly for L j ,k =G j ∩Fk ∩(−∞, δ(|pkm (ω)| · |q jl (ω)|)−1/(km+ jl )] (for δ small enough), we have∫
Sn−1

Ω(ω)
∫

L j ,k

e iφω(r ) 1

r
dr dσ(ω) =

∫
Sn−1

Ω(ω)
∫
{
r ∈L j ,k :r ≥Λ} dr

r
dσ(ω)+O(1),

whereΛ= |q jl (ω)|1/ jl . Therefore

I j ,k =
∫

Sn−1
Ω(ω)

∫
G j ∩Fk

e i [Pω(r )+1/Qω(r )] 1

r
dr dσ(ω)

=
∫

Sn−1
Ω(ω)

∫
{
r ∈R j ,k :r ≤Θ} dr

r
dσ(ω)

+
∫

Sn−1
Ω(ω)

∫
{
r ∈L j ,k :r ≥Λ} dr

r
dσ(ω)+O(1)

(7)

and these two last integrals can be shown to be O(1) by repeatedly applying Proposition 7.
In fact, by the structures of R j ,k and L j k , the integrals in (7):∫

Sn−1
Ω(ω)

∫
{
r ∈R j ,k :r ≤Θ} dr

r
dσ(ω), and

∫
Sn−1

Ω(ω)
∫
{
r ∈L j ,k :r ≥Λ} dr

r
dσ(ω)

can be written in the form ∫
Sn−1

Ω(ω)
∫

E(ω)

dr

r
dσ(ω),

where E(ω) is the intersection of O(1) intervals of the form [a(ω), ∞) or (−∞, a(ω)] with

a(ω) ∈
{(∣∣pk1 (ω)

∣∣/
∣∣pk2 (ω)

∣∣)1/(k2−k1) ,
(∣∣q j1 (ω)

∣∣/
∣∣q j2 (ω)

∣∣)1/( j2− j1) ,∣∣pk (ω)
∣∣−1/k ,

∣∣q j (ω)
∣∣−1/ j ,

(∣∣pk (ω)
∣∣ · ∣∣q j (ω)

∣∣)−1/( j+k)
}

.

Without loss of the generality, we may say that E(ω) is the intersection of M half infinite inter-
vals such as [a(ω), ∞) or (−∞, a(ω)]. Let us write E(ω) = [a(ω), ∞)∩E ′(ω), where a(ω), say, is
(|pk1 (ω)|/|pk2 (ω)|)1/(k2−k1) and E ′(ω) is the intersection of M −1 half infinite intervals as in E(ω).
We can then use Proposition 7 to write∣∣∣∣∫

Sn−1
Ω(ω)

∫
E(ω)

dr

r
dσ(ω)

∣∣∣∣≤ ∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1,∞)∩E ′(ω)

dr

r
dσ(ω)

∣∣∣∣+O(1),
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where A1 = (mpk1
/mpk2

)1/(k2−k1), which is independent of ω. Indeed,∣∣∣∣∫
Sn−1

Ω(ω)
∫

[a(ω),∞)∩E ′(ω)

dr

r
dσ(ω)

∣∣∣∣≤ ∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1,∞)∩E ′(ω)

dr

r
dσ(ω)

∣∣∣∣
+

∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1, a(ω)]∩E ′(ω)

dr

r
dσ(ω)

∣∣∣∣ ,

and for the second integral, by Lemma 9 and Proposition 7, we have∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1, a(ω)]∩E ′(ω)

dr

r
dσ(ω)

∣∣∣∣
≤

∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1, a(ω)]

dr

r
dσ(ω)

∣∣∣∣
≤ 1

|k2 −k1|

[∫
Sn−1

|Ω(ω)|
∣∣∣∣∣log

( ∣∣pk1 (ω)
∣∣

mpk1

)∣∣∣∣∣dσ(ω)+
∫

Sn−1
|Ω(ω)|

∣∣∣∣∣log

( ∣∣pk2 (ω)
∣∣

mpk2

)∣∣∣∣∣dσ(ω)

]
.O(1).

For the other forms of a(ω), the argument is similar.
Similarly, we have∣∣∣∣∫

Sn−1
Ω(ω)

∫
[A1,∞)∩E ′(ω)

dr

r
dσ(ω)

∣∣∣∣≤ ∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1,∞)∩ [A2,∞)∩E ′′(ω)

dr

r
dσ(ω)

∣∣∣∣+O(1),

or ∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1,∞)∩E ′(ω)

dr

r
dσ(ω)

∣∣∣∣≤ ∣∣∣∣∫
Sn−1

Ω(ω)
∫

[A1,∞)∩ (−∞,A2]∩E ′′(ω)

dr

r
dσ(ω)

∣∣∣∣+O(1),

where A2 is independent of ω, and E ′′(ω) is the intersection of M −2 half infinite intervals as in
E(ω). Continuing this process, after M iterations, we obtain that∣∣∣∣∫

Sn−1
Ω(ω)

∫
E(ω)

dr

r
dσ(ω)

∣∣∣∣≤ ∣∣∣∣∫
Sn−1

Ω(ω)
∫

E

dr

r
dσ(ω)

∣∣∣∣+O(1),

where E is the intersection of M intervals of the form [A,∞) or (−∞, A], where A is independent
of ω. Therefore, by the mean value zero ofΩ on Sn−1, we have∫

Sn−1
Ω(ω)

∫
E

dr

r
dσ(ω) = 0.

This implies that∣∣∣∣∫
Sn−1

Ω(ω)
∫

E(ω)

dr

r
dσ(ω)

∣∣∣∣≤ ∣∣∣∣∫
Sn−1

Ω(ω)
∫

E

dr

r
dσ(ω)

∣∣∣∣+O(1) =O(1),

and completes the proof of Theorem 3. �

Proof of Theorem 5. By replacing [3, Lemma 2.2] by Proposition 7, the proof is similar to the
proof of [3, Proposition 1.4]. We omit the details here. �
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