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1. Introduction

The classical Liouville theorem on the Monge–Ampère equation

detD2u = 1 in Rn

shows that any classical convex solution is a quadratic polynomial (cf. Jörgens [15] as n = 2,
Calabi [8] as n ≤ 5 and Pogorelov [22] as n ≥ 2). This theorem has also been got via different
approaches such as Cheng-Yau [9] and Jost-Xin [16], etc. In [6], Caffarelli proved that above
theorem holds for viscosity solutions as well.

The asymptotic behavior under several kinds of perturbations has been studied extensively in
the last decades. Caffarelli–Li [7] considered the perturbation of right hand term f (x) only occur-
ring in bounded domains. They proved that u converges to some quadratic polynomial at infinity
(if n ≥ 3), or to some quadratic polynomial plus multiple of log |x| at infinity (if n = 2).
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For n = 2, the same result has been obtained by using complex variable methods (cf. [10, 11]).
Bao-Li-Zhang [5] extended the asymptotic behavior result in [7] and considered the pertur-
bation of right hand term f (x) occurring in Rn . They also deduced that, under proper decay
rate of f (x) at infinity, u must converge at infinity with corresponding convergent rate. Simi-
lar arguments for other equations have been widely discussed by many researchers such as k-
Hessian equations [4, 18], special Lagrangian equations [17, 19, 20], parabolic Monge-Ampère
equations [26–28], maximal hypersurfaces equation [12], general fully nonlinear equations [14],
etc.

The Liouville theorem on the Monge–Ampère equation{
detD2u(x) = 1 in Rn+,

u(x) = 1
2 |x|2 on {xn = 0} ,

states that any convex viscosity solution satisfying quadratic growth condition must be a qua-
dratic polynomial(cf. [21,24]). Under fixed perturbation on boundary conditions, the asymptotic
behavior on the Monge–Ampère equation in half spaces was considered by Jia–Li [13]. In details,
they studied the asymptotic behavior at infinity of convex (viscosity) solution of the following
Monge–Ampère equation{

detD2u(x) = 1 in Rn+\B
+
1 ,

u(x) = 1
2 |x|2 +d log

√
xT Qx on

{|x ′| > 1, xn = 0
}

.
(1)

where the dimension n ≥ 2, Q is a n×n symmetric positive definite matrix and for some % ∈ (0,1]
and non-zero constant d ,

• %|x|2 ≤ xT Qx ≤ %−1|x|2, ∀ x ∈Rn ,
• 1

2 |x|2 +d log
√

xT Qx is strictly convex on {|x ′| > 1, xn = 0}.

The principal result stated that if u solves (1) and satisfies the quadratical growth condition

µ|x|2 ≤ u(x) ≤µ−1|x|2 in R
n
+\B+

1 (2)

for some 0 < µ≤ 1
2 , then u tends to a quadratic polynomial plus an implicit function, which can

be controlled by log |x| at infinity. Note here that the existence of an implicit function was caused
by the perturbation of the boundary value.

Natural and interesting questions arise here: How about the asymptotic behavior at infinity if
the perturbation of the boundary value is worse than log |x|? And does it have better asymptotic
behavior at infinity if the perturbation is better than log |x|?

To answer the above questions, in this paper, we mainly study the asymptotic behavior of
Monge–Ampère equations with more general boundary conditions as below{

detD2u(x) = f (x) in Rn+,

u(x) = 1
2 |x ′|2 + g (x ′) on {xn = 0} ,

(3)

where the dimension n ≥ 2, f (x) satisfies

support ( f −1) ⊂ B+
1 (0), 0 <λ≤ f (x) ≤Λ<∞ (4)

for constants λ,Λ, and g (x ′) ∈C m(Rn−1) satisfies∣∣∣Dk g (x ′)
∣∣∣≤ |x ′|θ−k in Rn−1\B1 for all 0 ≤ k ≤ m (5)

for some integer m ≥ 3, constant θ < min{ 1
n , 1

3 } and

1

2
|x ′|2 + g (x ′) is strictly convex in Rn−1. (6)
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Note that, by (5), one can define the Poisson integral

P [g ](x) = 2xn

ωn

∫
Rn−1

g (y ′)
|x − y ′|d y ′. (7)

It is clear that P [g ] is harmonic and continuous up to the boundary of Rn+ (cf. [2, 25]).
The main result of this paper is the following.

Theorem 1. Let u ∈C 0(Rn+\B+
1 ) be a convex viscosity solution of (3) with (2), (4), (5) and (6). Then,

for any α ∈ (0,1), u ∈ C m−1,α(R
n
+\B

+
1 ) and there exist some invertible upper-triangular matrix T

with detT = 1 and constant bn ∈R such that

(i) if n = 2, ∣∣∣∣u(x)−
(

1

2
xT T T T x +bn xn +P [g ](T x)

)∣∣∣∣≤C
x2

|x|2 in R2
+\B+

R ,

where C and R ≥ 1 depend only on µ and θ. Furthermore, for any 1 ≤ k ≤ m −1,

|x|k+1
∣∣∣∣Dk

(
u(x)−

(
1

2
xT T T T x +b2x2 +P [g ](T x)

))∣∣∣∣≤C in R2
+\B+

R ,

where C also depends on k.
(ii) if n ≥ 3, for any δ ∈ (0, 2−2θ

n−1 ) if θ ≥−n−3
2 and for δ= 1 if θ <−n−3

2 , we have∣∣∣∣u(x)−
(

1

2
xT T T T x +bn xn +P [g ](T x)

)∣∣∣∣≤C

(
xn

|x|n
)δ

in Rn
+\B+

R ,

where C and R ≥ 1 depend only on n, µ, δ and θ. Furthermore, for any 1 ≤ k ≤ m −1,

|x|k+(n−1)δ
∣∣∣∣Dk

(
u(x)−

(
1

2
xT T T T x +bn xn +P [g ](T x)

))∣∣∣∣≤C in Rn
+\B+

R ,

where C also depends on k.

Remark 2. In Theorem 1, the case n ≥ 3 implies that of n = 2. In fact, as n = 2, by θ < min{ 1
n , 1

3 }
in (5), it is easy to see that θ < 1

2 =−n−3
2 .

Remark 3. Theorem 1 still holds for the normalized Monge–Ampère equation{
detD2u(x) = 1 in Rn+\B+

1 ,

u(x) = 1
2 |x ′|2 + g (x ′) on

{
xn = 0, |x ′| > 1

}
,

where g (x ′) ∈C m(Rn−1\B+
1 ) satisfies (5) and

1

2
|x ′|2 + g (x ′) is strictly convex in Rn−1\B+

1 .

In fact, by the same arguments in [13], one can construct some new function v such that v = u
in Rn+\B+

1 and v satisfies Theorem 1.

This paper mainly improves the analysis on asymptotic behavior of solutions of Monge–
Ampère equations with different perturbations of boundary value conditions. Our approach
includes two steps: Rough estimate, in which we plan to show that after proper transformation,
u − 1

2 |x|2 = O(|x|5/3) at infinity, and Accurate estimate, in which the precise asymptotic behavior
including optimal decay rate will be given. Note that the Poisson integral method settled the
asymptotic term and improved the method in [13].

Throughout this paper, we always say C and other constants are universal, which means that
they depend only on n, µ and θ. And universal constants may change from line to line.
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2. Proof of Theorem 1

Firstly, one can easily obtain a proof of the regularity result u ∈ C m−1,α(R
n
+\B

+
1 ) by the similar

arguments in [13, Lemma 3.1]. So we omit it here.
In the following, we show our main result in two steps:

(1) Rough estimate: to show that after proper translation, u is near to some quadratic poly-
nomial at infinity. Here we allow that u can be controlled by this quadratic polynomial
plus some function, which does’nt converge to zero at infinity.

(2) Accurate estimate: to find out the most suitable function, such that after subtracting this
function and the quadratic polynomial mentioned in the last step, u converges to zero
with an exact decay rate at infinity.

2.1. Rough estimate

In this subsection, we mainly adopt the method in [13]. To minimize condition of θ as soon as
possible, we should do better estimate, even if we call this rough estimate.

For any M >µ−1, let

û(x) = 1

M
u

(
M 1/2x

)
, x ∈O := 1

M 1/2
SM (u). (8)

where SM (u) = {x ∈Rn
+ : u(x) < M }. By the quadratic growth condition (2),

µ1/2B
+
1 ⊂O ⊂µ−1/2B

+
1 . (9)

Obviously, û solves 
detD2û(x) = 1 in O ,

û(x) = 1
2 |x ′|2 + 1

M g
(
M 1/2x ′) on ∂O ∩ {xn = 0},

û(x) = 1 on ∂O ∩ {xn > 0}.

(10)

By the existence results (cf. [1, 3]), there exists a unique viscosity solution of the following
Dirichlet problem 

detD2ξ= 1 in O ,

ξ= 1
2 |x ′|2 on ∂O ∩ {xn = 0} ,

ξ= 1− 1
M P [g ]

(
M 1/2x ′) on ∂O ∩ {xn > 0} ,

(11)

where P [g ] is the Poisson integral given by (7). By [23, Theorem 6.4], there exists universal c0 > 0
such that

|Dξ(x)| ≤ c−1
0 , c0I ≤ [

D2ξ(x)
]≤ c−1

0 I ,
∣∣D3ξ(x)

∣∣≤ c−1
0 in B

+
c0

. (12)

Then one can show the following lemmas:

Lemma 4. There exists universal C > 0 such that for any M ≥ max{µ−1,c−2
0 },

|û −ξ| ≤C M−1/2 in O\B+
M−1/2 .

Proof. In view of the definitions of û and ξ and (5), one can deduce that

|û −ξ| = 1

M

∣∣P [g ]
(
M 1/2x ′)∣∣≤C M−1+ θ

2 on ∂O . (13)

By the quadratical growth condition (2), we have

µM−1 ≤ û ≤µ−1M−1 on ∂B+
M−1/2 ∩ {xn > 0} . (14)

By (12), we have
|ξ(x)| ≤ 2c−1

0 M−1/2 in B
+
M−1/2 . (15)
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By the virtue of (13), (14) and (15), we get

|û −ξ| ≤C M−1/2 on ∂
(
O\B+

M−1/2

)
.

It together with the comparison principle completes the proof of Lemma 4. �

Lemma 5. There exists universal C > 0 such that for any M ≥ max{µ−2,c−2
0 },

|Dξ(0)| ≤C M−1/4.

Proof. By the definition of ξ and (5), it only needs to verify |Dnξ(0)| ≤C M−1/4.
By (12), for any x̃ = (0, x̃n) ∈ B

+
c0

, there exists ϑ ∈ (0,1) such that

ξ (0, x̃n) = ξ(0)+Dnξ(0) · x̃n + 1

2
Dnnξ (ϑx̃) x̃2

n .

It follows that there exists universal C > 0 such that

|Dnξ(0)| ≤ |ξ (0, x̃n)|+C x̃2
n

x̃n
. (16)

Now one can choose x̃n such that û(0, x̃n) = M−1/2. It follows from (2) that

M−1/4µ1/2 ≤ x̃n ≤ M−1/4µ−1/2.

It together with Lemma 4 and (16) implies that

|Dnξ(0)| ≤ |û (0, x̃n)|+C M−1/2 +C x̃2
n

x̃n
≤C M−1/4,

where C > 0 is universal. It completes the proof. �

In order to obtain the Rough estimate and find out the weakest θ as soon as possible, we should
precisely describe the property of cross section of the rescaled function u.

Let

EM =
{

x ∈Rn
+ : xT D2ξ(0)x ≤ 1

}
. (17)

Lemma 6. There exist large universal k0 and C̃ such that for all k ≥ k0, M = 2
4
3 k and M ′ ∈

[2k−1,2k ], (
2M ′

M
− C̃ 2−

1
2 k

)1/2

EM ⊂ SM ′ (u)

M 1/2
⊂

(
2M ′

M
+ C̃ 2−

1
2 k

)1/2

EM . (18)

Proof. By the definition of û, we have

SM ′ (u)

M 1/2
=

{
û < M ′

M

}
.

It then follows from (15) and Lemma 4 that{
ξ< M ′

M
− C

M 1/2

}
⊂ 1

M 1/2
SM ′ (u) ⊂

{
ξ< M ′

M
+ C

M 1/2

}
. (19)

By (12), for any x ∈ B
+
c0

, we have∣∣∣∣ξ(x)−ξ(0)−Dξ(0) · x − 1

2
xT D2ξ(0)x

∣∣∣∣≤C |x|3. (20)

Now we prove (18). Firstly, we show the first relation of (18). For any x ∈ ( 2M ′
M − C̃ 2−

1
2 k )1/2EM ,

by (17), we have
1

2
xT D2ξ(0)x ≤ M ′

M
− C̃ 2−

1
2 k ≤ M ′

M
. (21)
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It together with (12) implies that |x| ≤ C
(

M ′
M

)1/2
for some universal C . Then from Lemma 5, (20)

and (21), we get

ξ(x) ≤ ξ(0)+Dξ(0) · x + 1

2
xT D2ξ(0)x + c−1

0 |x|3

≤C M−1/4
(

M ′

M

)1/2

+ M ′

M
− C̃ 2−

1
2 k +C

(
M ′

M

)3/2

.

One can choose large universal k0 > 0 and C̃ > 0 such that

C M−1/4
(

M ′

M

)1/2

− C̃ 2−
1
2 k +C

(
M ′

M

)3/2

<− C

M 1/2

for any k ≥ k0, which yields that(
2M ′

M
− C̃ 2−

1
2 k

)1/2

EM ⊂
{
ξ< M ′

M
− C

M 1/2

}
.

The first inclusion of (18) then follows from (19).
Next we show the second inclusion of (18). For any x ∈ 1

M 1/2 SM ′ (u), (2) implies

|x| ≤µ−1/2
(

M ′

M

)1/2

.

This together with Lemma 5, (19) and (20) implies

1

2
xT D2ξ(0)x ≤ ξ(x)−ξ(0)−Dξ(0) · x + c−1

0 |x|3

≤ M ′

M
+C M−1/2 +C M−1/4

(
M ′

M

)1/2

+C

(
M ′

M

)3/2

.

Choosing larger universal k0 and C̃ again such that for any k ≥ k0,

1

2
xT D2ξ(0)x ≤ 2M ′

M
+ C̃ 2−

1
2 k ,

we have {
ξ< M ′

M
− C

M 1/2

}
⊂

(
2M ′

M
+ C̃ 2−

1
2 k

)1/2

EM ,

and hence the second inclusion of (18) follows from (19). �

Along the same arguments in [13, Lemma 3.5-3.7], one can deduce the following lemma, which
ends the Rough estimate and brings us some crucial derivatives estimates. See [13] for its proof in
details.

Lemma 7. There exists a real invertible bounded upper-triangular matrix T with detT = 1 such
that if v(x) = u(y) and y = T −1x, then{

detD2v = 1 in Rn+\T B+
1 ,

v(x) = 1
2 |x ′|2 + g (x ′) on {xn = 0}

(22)

and for any 1 ≤ k ≤ m −1, ∣∣∣∣Dk
(

v(x)− 1

2
|x|2

)∣∣∣∣≤C |x| 5
3 −k in R

n
+\B+

R0
,

where R0 ≥ 1 is universal, and C > 0 depends only on n, µ and k.
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2.2. Accurate estimate

In this section, we show the accurate asymptotic behavior of solutions at infinity by using the
Rough estimate obtained in Lemma 7. The asymptotic behavior of solutions at infinity of linear
elliptic equations in half spaces, established in [13, Theorem 2.4], will be employed on many
occasions.
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Lemma 8. Let v be given by Lemma 7. Then

(i) for n = 2, there exists some constant b2 such that∣∣∣∣v(x)− 1

2
|x|2 −b2x2 −P [g ](x)

∣∣∣∣≤C
x2

|x|2 in R
2
+\B+

R , (23)

where P [g ] is given by (7), and C > 0 and R > 1 are universal. Furthermore, for any
1 ≤ k ≤ m −1,

|x|k+1
∣∣∣∣Dk

(
v(x)− 1

2
|x|2 −b2x2 −P [g ](x)

)∣∣∣∣≤C in R
2
+\B+

R , (24)

where C also depends on k.
(ii) for n ≥ 3, there exists some constant bn such that∣∣∣∣v(x)− 1

2
|x|2 −bn xn −P [g ](x)

∣∣∣∣≤C

(
xn

|x|n
)δ

in R
n
+\B+

R , (25)

where δ ∈ (0, 2−2θ
n−1 ) if θ ≥ −n−3

2 and δ = 1 if θ < −n−3
2 , P [g ] is given by (7), and C > 0 and

R > 1 also depend on δ. Furthermore, for any 1 ≤ k ≤ m −1,

|x|k+(n−1)δ
∣∣∣∣Dk

(
v(x)− 1

2
|x|2 −bn xn −P [g ](x)

)∣∣∣∣≤C in R
n
+\B+

R , (26)

where C also depends on k.

Proof. By Lemma 7, there exists universal R1 > 1 such that{
detD2v(x) = 1 in Rn+\B

+
R1

,

v(x) = 1
2 |x ′|2 + g (x ′) on {xn = 0} .

Let V (x) = v(x)− 1
2 |x|2. By Lemma 7, there exists universal C > 0 such that

|DV (x)| ≤C |x| 2
3 and

∣∣D2V (x)
∣∣≤C |x|− 1

3 in R
n
+\B+

R1
. (27)

In view of lndet(In +D2V ) = lndet In = 0, we get{
ai j (x)Di j V (x) = 0 in Rn+\B

+
R1

,

V (x) = g (x ′) on {xn = 0},
(28)

where ai j (x) = ∫ 1
0 [sD2V + In]i j (x)d s.

Differentiating lndet(In +D2V ) = 0 with respect to xl , l = 1, · · · ,n −1, we have{
ãi j (x)Di j Vl (x) = 0 in Rn+\B

+
R1

,

Vl (x) = gl (x ′) on {xn = 0} ,

where ãi j (x) = [D2V + In]i j (x), Vl = Dl V and gl = Dl g . This implies that{
ãi j Di j

(
Vl −P [gl ]

)= f̃l in Rn+\B
+
R1

,

Vl −P [gl ] = 0 on {xn = 0} ,
(29)

where
f̃l :=−ãi j (x)Di j P [gl ] =O

(
|x|θ−3

)
as |x|→∞.

By (27), we have ∣∣ai j (x)−δi j
∣∣+ ∣∣ãi j (x)−δi j

∣∣≤C |x|− 1
3 in R

n
+\B+

R1
(30)

and for any l = 1, · · · , n −1, ∣∣D (
Vl −P [gl ]

)∣∣→ 0 as |x|→∞. (31)

By (29),(30), (31) and [13, Theorem 2.4] with t = 1−θ ≤ n −1, we have∣∣Vl −P [gl ]
∣∣≤C

(
xn

|x|n
)δ

in R
n
+\B+

R , (32)
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where δ ∈ (0,min{1, 1−θ
n−1 }), R ≥ R1 and C > 0 are universal.

For any x ∈ {xn = 0, |x| ≥ R +1}, by the Schauder estimates, we get∣∣D (
Vl (x)−P [gl ]

)∣∣≤C

(∥∥Vl −P [gl ]
∥∥

L∞(B+
1 (x)) +‖ f̃l‖C 0,1

(
B
+
1 (x)

))≤C
(
|x|−nδ+|x|θ−3

)
.

Choosing δ ∈ ( 1
n ,min{1, 1−θ

n−1 }) such that −nδ<−1, we have that for any l = 1, · · · , n −1,∣∣Vln(x ′,0)
∣∣≤C |x ′|max{−nδ,θ−2}, x ∈ {|x ′| ≥ R, xn = 0

}
.

Since max{−nδ,θ−2} <−1, there exists some constant bn such that

Vn(x ′,0) → bn as |x ′|→∞.

Let M = max{Vn(x) : x ∈ (∂BR1 ∩ {xn ≥ 0})∪ {xn = 0, |x ′| ≥ R}}. Since for any ε> 0,

ãi j (x)Di j Vn(x) = ãi j (x)Di j (M +εxn) = 0 in Rn
+\B

+
R ,

by (27) and the comparison principle, for any ε> 0 small,

|Vn | ≤ M +εxn in R
n
+\B+

R .

By the arbitrariness of ε, we have

|Vn | ≤ M in R
n
+\B+

R .

Combining this inequality with

ãi j (x)Di j Vn(x) = 0 in Rn
+\B

+
R1

and [13, Theorem 2.4], we deduce

Vn(x) → bn as |x|→∞. (33)

Applying (28) and (30), we have{
ai j (x)Di j

(
V −bn xn −P [g ]

)= f̂ (x) in Rn+\B
+
R1

,

V −bn xn −P [g ] = 0 on {xn = 0},
(34)

where

f̂ (x) :=−ai j (x)Di j P [g ](x) =∆P [g ]+ (
ai j (x)−δi j

)
Di j P [g ]

=O
(
|x|− 7

3 +θ
)

as |x|→∞.

Then there exists small τ> 0 such that∣∣ f̂
∣∣≤ |x|−2−τ as |x|→∞. (35)

By (32) and (33), we have ∣∣D (
V −bn xn −P [g ]

)∣∣→ 0 as |x|→∞.

Coupling the above estimate, (30), (34), (35) and [13, Theorem 2.4], we get for any δ′ ∈
(0,min{1, τ

n−1 }), there exist R ≥ R1 and C depending only on n, µ and δ′ such that∣∣V −bn xn −P [g ]
∣∣≤C

(
xn

|x|n
)δ′

in R
n
+\B+

R . (36)

Next we improve (36). Indeed, (36) implies that

|V −bn xn | ≤C
∣∣P [g ]

∣∣≤C |x|θ in R
n
+\B+

R .

It then follows from Lemma 7 that∣∣D2 (V −bn xn)
∣∣≤C |x|θ−2 in R

n
+\B+

R .
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By the definition of ai j , we also have∣∣ai j (x)−δi j
∣∣≤C |x|θ−2 in R

n
+\B+

R .

It then follows from the definition of f̂ that

f̂ (x) =O
(
|x|−4+2θ

)
as |x|→∞.

When n = 2, by [13, Theorem 2.4] with t = 2−2θ > 1, we get∣∣V −b2x2 −P [g ]
∣∣≤C

x2

|x|2 in R
2
+\B+

R ,

which establishes (23).
When n ≥ 3, by [13, Theorem 2.4], we have that for any δ ∈ (0,min{1, 2−2θ

n−1 }),∣∣V −bn xn −P [g ]
∣∣≤C

(
xn

|x|n
)δ

in R
n
+\B+

R

for some larger C and R depending also on δ. Especially, if 2−2θ > n −1 (i.e. θ < −n−1
2 ), by [13,

Theorem 2.4], we have ∣∣V −bn xn −P [g ]
∣∣≤C

xn

|x|n in R
n
+\B+

R ,

which establishes (25).
Finally, we show (24) and (26).
For any x ∈Rn

+\B+
2R , let r = |x|. For any y ∈B2 := {B2(0) : x + r

4 y ∈Rn+\B
+
r }, define

V (y) =
(

4

r

)2 {
V

(
x + r

4
y
)
−bn

(
xn + r

4
yn

)
−P [g ]

(
x + r

4
y
)}

.

Then by (34), V solves

ai j (y)V i j (y) = f (y) in B2,

where

ai j (y) = ai j

(
x + r

4
y
)

and f (y) = f̂
(
x + r

4
y
)

.

One can easily deduce that for any 0 ≤ k ≤ m −3 and α ∈ (0,1), f satisfies∥∥∥ f (y)
∥∥∥

C k,α
(
B2

) ≤Cr−4+2θ,

and ∥∥∥V
∥∥∥

L∞
(
B2

) ≤
{

Cr−3 if n = 2,

Cr−2−δ(n−1) if n ≥ 3,

where δ ∈ (0,min{1, 2−2θ
n−1 }). By the Schauder estimates, we have for any 0 ≤ k ≤ m −1,∣∣∣DkV (y)

∣∣∣≤C

(∥∥∥ f (y)
∥∥∥

C k,α
(
B2

)+‖V ‖
L∞

(
B2

))

≤
{

Cr−4+2θ+Cr−3 if n = 2,

Cr−4+2θ+Cr−2−δ(n−1) if n ≥ 3,

≤
{

Cr−3 if n = 2,

Cr−2−δ(n−1) if n ≥ 3,
in y ∈B1 :=

{
B1(0) : x + r

4
y ∈Rn

+\B+
r

}
for any C > 0 depending only on n, µ, δ and k. Then we arrive at the desired estimates (24)
and (26). �

Finally, Lemma 8 implies Theorem 1.
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