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Bostan and Namah (Remarks on bounded solutions of steady Hamilton–Jacobi equations, 
C. R. Acad. Sci. Paris, Ser. I 347(15–16) (2009) 873–878) proved that constant functions are 
the only bounded solutions to H(Du) = H(0) when H is superlinear and strictly convex. 
In this short note, we present a proof other than that of Bostan and Namah for equations 
that can be easily applied to some types of possibly degenerate parabolic systems. Our 
proof applies for periodic subsolutions instead of bounded solutions like that of Bostan 
and Namah; however, we need periodic subsolutions, which is quite restrictive. We do not 
consider Hopf–Lax’s formula in our proof, so we can relax some restrictions on H . We 
also present an application to the large-time behavior of solutions to degenerate parabolic 
systems.
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Bostan et Namah (Remarks on bounded solutions of steady Hamilton–Jacobi equations, 
C. R. Acad. Sci. Paris, Ser. I 347(15–16) (2009) 873–878) ont montré que les solutions 
bornées de l’équation H(Du) = H(0), où H est superlinéaire et strictement convexe, sont 
les constantes. Dans cette note, on présente une autre preuve qui peut être appliquée 
facilement à des systèmes d’équations paraboliques dégénérées. Notre preuve s’applique 
à des sous-solutions périodiques au lieu des solutions bornées examinées par Bostan et 
Namah. Comme nous n’utilisons pas la formule d’Hopf–Lax dans la preuve, nous pouvons 
affaiblir un peu certaines régularités des hamiltoniens. Finalement, nous présentons une 
application au comportement asymptotique des solutions pour des systèmes d’équations 
paraboliques dégénérées.
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1. Introduction

We address in this paper the following problem studied in Bostan–Namah [2]. The authors consider the equation

H(Du) = H(0), x ∈ RN , (1.1)

and ask under which hypotheses the constant functions are the only bounded solutions to (1.1) (in viscosity sense).
H is said to be superlinear if H(p)

|p| is coercive. Their result is stated as follows.

Theorem 1.1. Assume that H is convex, superlinear, and such that its conjugate function is C1 and strictly convex in a neighborhood
of its minimum point. Then constants are the only bounded viscosity solutions to (1.1).

Our starting point is to understand what happens with the same question for the system:

Hi(Dui) +
m∑

j=1

diju j = ci, x ∈RN , i = 1, . . . ,m. (1.2)

The system (1.2) does not always have a viscosity solution. Indeed, one can show that there exists a so-called ergodic 
constant c ∈ R such that the system (1.2), where on the right-hand side ci = c for any i = 1, . . . , m, admits a viscosity 
solution, see [9], [4], [10] for details.

To prove Theorem 1.1, the author uses Hopf–Lax’s formula to extract information from the solutions. This formula in case 
of systems involving random jumps from one equation to another and hence is quite complicated to extract information. So 
we look for another proof as that of Bostan–Namah for equations that can be applied to systems. With this approach, we 
get the same result as in Bostan–Namah for periodic subsolutions. As we do not consider the conjugate of Hamiltonians in 
our proof, we do not need H to be superlinear as well as its conjugate is C1. The new relaxed assumptions cannot be used 
with the approach using the Hopf–Lax formula (which only applies for solutions and superlinear Hamiltonians).

The proof of Bostan–Namah does not need the solutions to be periodic and this is the limit of our result. However, our 
result works for subsolutions, requires less regularities on H , and can be extended easily to second-order systems. We also 
present an application to the large-time behavior of solutions to second-order systems.

The notion of solution that we use in this article is the viscosity solution, see [6] and references therein.

2. Preliminary and main results

For a square matrix D = (dij)1≤i, j≤m , we define

inf(D) = inf
i∈{1,··· ,m}

m∑
j=1

dij, sup(D) = sup
i∈{1,··· ,m}

m∑
j=1

dij . (2.1)

We introduce some common definitions of weakly coupled systems.
The coupling is called monotone if

dii ≥ 0, dij ≤ 0 for i �= j, (2.2)

and degenerate if

dii ≥ 0, dij ≤ 0 for i �= j, and inf(D) = sup(D) = 0. (2.3)

Finally, we need the irreducibility of the coupling (which means essentially that the system is not separated into smaller 
ones).

We say that D = (dij)1≤i, j≤m is irreducible if, for any subset I � {1, · · · ,m},
there exist i ∈ I and j /∈ I such that dij �= 0.

(2.4)

We recall some lemmata that will be needed in this paper. We say (x1, . . . , xm) ∈ (R+)m if xi > 0 for all i = 1, . . . , m.

Lemma 2.1. ([4]) Suppose that D satisfies (2.3) and (2.4), then ker(D) = span{(1, · · · , 1)}. Moreover, there exists a positive vector 
� = (�1, . . . , �m) ∈ (R+)m such that D�� = 0.

and

Lemma 2.2. ([11]) For any matrix D ∈ Mm(R) satisfying (2.4), the matrix E ∈ Mm−1(R) obtaining from D after removing the ith 
row and ith column is invertible for any i = 1, . . . , m.
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Theorem 2.5 and Theorem 2.6 are particular cases of the following degenerate systems

−trace(Ai D2ui(x)) + Hi(Dui) +
m∑

j=1

diju j = ci x ∈T N , i = 1, . . . ,m, (2.5)

and its parabolic version⎧⎪⎨
⎪⎩

∂ui

∂t
− trace(Ai D2ui(x)) + Hi(Dui) +

m∑
j=1

diju j = 0 (x, t) ∈T N × (0,+∞),

ui(x,0) = u0i(x) x ∈T N , i = 1, . . . ,m.

(2.6)

Before presenting the main results, we need an explicit calculation of the ergodic constant (c, . . . , c). Recall that c is the 
unique constant such that the system (2.5), where on the right-hand side ci = c for any i = 1, . . . , m, admits a viscosity 
solution.

The proof of the following basic lemma adapts (Lemma 5.2 in [11]) to eikonal first-order systems.

Proposition 2.3. Let

c =
∑m

i=1 �i Hi(0)∑m
i=1 �i

. (2.7)

Then the system (2.5), where on the right-hand side ci = c for any i = 1, . . . , m, admits a constant solution.

Remark 2.4. To see why (2.7) appears naturally, assume a priori that we have a constant solution to

−trace(Ai D2ui(x)) + Hi(Dui) +
m∑

j=1

diju j = c x ∈T N , i = 1, . . . ,m,

i.e.,

Hi(0) +
m∑

j=1

diju j = c x ∈T N , i = 1, . . . ,m.

Multiplying the ith equation with �i , and summing all the equations to obtain

m∑
i=1

�i Hi(0) +
m∑

i=1

(

m∑
j=1

�idi ju j) = (

m∑
i=1

�i)c.

From Lemma 2.1, 
∑m

i=1(
∑m

j=1 �idi ju j) = 0, and (2.7) appears.

Proof of Proposition 2.3. To prove this Lemma, it suffices to find an explicit solution associated with c.
From Lemma 2.2, we can find a constant vector (c1, ..., cm−1) satisfying

m−1∑
j=1

dijc j = c − Hi(0), i = 1, . . . ,m − 1.

Choose cm = 0, we have

m∑
j=1

dijc j = c − Hi(0), i = 1, . . . ,m − 1. (2.8)

We claim that (2.8) also holds for i = m. Let us multiply the ith equation in (2.8) by �i , and sum all the equations to obtain

m−1∑
i=1

(

m∑
j=1

�idi jc j) = (

m−1∑
i=1

�i)c −
m−1∑
i=1

�i Hi(0), i.e.,
m∑

j=1

−�mdmju j = −�m(c − Hm(0)),

where the last inequality follows from Lemma 2.1. This yields

m∑
j=1

dmju j = c − Hm(0).

Finally, (c1, . . . , cm−1, 0) is a solution to (2.5), where on the right-hand side 0 is replaced by c. �
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We state our first result.

Theorem 2.5. Assume that Hi is coercive and convex for i = 1, . . . , m, D satisfies (2.3) and (2.4). Assume that there exists i ∈
{1, . . . , m} such that Hi is strictly convex at 0. We assume moreover that Ai ≥ 0 are constant matrices, ui is twice differentiable 
a.e. for i = 1, . . . , m. Then constants are the only bounded periodic subsolutions to (2.5), where on the right-hand side ci = c, given 
in (2.7) for any i = 1, . . . , m.

We present an important application of Theorem 2.5 for large-time behavior of solutions.

Theorem 2.6. Assume that Hi is coercive and convex for all i = 1, . . . , m, D satisfies (2.3) and (2.4). Assume that there exists at 
least one Hi that is strictly convex at 0. We assume moreover that Ai ≥ 0 are constant matrices, ui is twice differentiable a.e. for 
i = 1, . . . , m. Let (u1, . . . , um) be a solution to (2.6), then there exists a unique so-called ergodic constant c as given in (2.7), a vector 
(C1, . . . , Cm) ∈Rm such that ui(x, t) + ct → Ci uniformly for all i = 1, . . . , m as t → ∞.

Remark 2.7. The strict convexity of just one Hamiltonian in Theorem 2.5 implies that all ui ’s are constant, and Theorem 2.6
implies that all ui ’s tend to constants.

Theorem 2.6 extends a result of [10] where the authors assumed that Hi(p) = |p + ci |2 − |ci |2, ci ’s being constants and 
Ai = 0 for all i = 1, . . . , m. See [4], [10], [11], [8] and references therein for more discussions on the large-time behavior of 
solutions to systems of first and second order.

Remark 2.8. The question of when we have ui ∈ W 1,∞(T N ) for (2.5) and ui ∈ W 1,∞(T N × [0, ∞)) for (2.6) was systemat-
ically studied in the literature. It holds under much more general assumptions than the ones in our context; we refer the 
readers to [1], [8] and the references therein for more results.

The assumption that ui is twice differentiable a.e. is of course not necessary in first-order systems (i.e. when Ai = 0 for 
all i = 1, . . . , m). The twice differentiability a.e. of the solution is discussed in Proposition 2.10.

Proof of Theorems 2.5 and 2.6. Step 1. Lipschitz regularity of solutions and boundedness of the solution to (2.6) where 0 is replaced 
by c on the right-hand side of (2.6).

An application of [[8], Theorem 3.1] yields that any solution to (2.5) lies in (W 1,∞(T N ))m . Now, [[8], Corollary 3.8] 
claims that, for any initial data lying in (W 1,∞(T N ))m , the solution to (2.6) lies in (W 1,∞(T N × [0, ∞)))m . Once we 
have the result obtained at Step 4, the general case when the initial data is purely continuous can be handled easily by 
approximating continuous functions by W 1,∞(T N ) functions.

Suppose now that the existence of the ergodic constant for (2.5) has been established. Given (u1(x, t), . . . , um(x, t)), the 
solution to (2.6), then the new function (u1(x, t) + ct, . . . , um(x, t) + ct) still satisfies (2.6), where on the right-hand side 
of (2.6), 0 is replaced by c given in (2.7). It is proved quite easily using the comparison principle, see for instance in [[4], 
Proposition 5.2], that the new function is bounded. We still denote the new function (u1(x, t), . . . , um(x, t)).

Step 2. Proof of Theorem 2.5; we claim that any continuous subsolution (u1, . . . , um) to (2.5) (on the right-hand side 0 is replaced 
by c given in (2.7)) is a constant.

Using Lemma 2.1, we have the existence of �i > 0 such that

m∑
i=1

−�i trace(Ai D2ui(x)) +
m∑

i=1

�i Hi(Dui) ≤ (

m∑
i=1

�i)c =
m∑

i=1

�i Hi(0).

It follows that

−
m∑

i=1

�i

∫

T N

trace(Ai D2ui(x))dx +
m∑

i=1

�i

∫

T N

Hi(Dui)dx ≤
m∑

i=1

�i Hi(0). (2.9)

It follows from the periodicity of ui that 
∫
T N trace(Ai D2ui(x)) dx = 0, and hence Jensen’s inequality yields∫

T N Hi(Dui) dx ≥ Hi[
∫
T N Dui dx] = Hi(0) for i = 1, . . . , m.

We derive
m∑

i=1

�i Hi(0) ≥
∫

T N

m∑
i=1

�i Hi(Dui)dx ≥
∫

T N

�1 H1(Du1)dx +
m∑

i=2

�i Hi(0);

this implies

H1(0) ≥
∫

N

H1(Du1)dx.
T
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Since H1 is strictly convex at 0, we have a better estimate for this strictly convex Hamiltonian.

Proposition 2.9. Let H be a convex function satisfying H(0) = 0, and that H is strictly convex at 0. Set

A = { f ∈ W 1,∞(T N)
⋂

C(T N) such that || f ||W 1,∞(T N ) ≤ C, max
T N

f − min
T N

f ≥ 1}.

Then we have, for all f ∈ A,
∫

T N

H(D f )dx ≥ β > 0, where β is independent of f .

We apply Proposition 2.9 to the strictly convex function p 	→ H1(p) − H1(0). If u1 is not a constant, we get a contradic-
tion, since

H1(0) ≥
∫

T N

H1(Du1)dx ≥ H1(0) + β ,β > 0.

It implies that u1 is a constant, let us say C1.

Step 3. Showing that ui = Ci for any i = 2, . . . , m.
Set Mi = maxx∈T N ui(x). By taking 0 as a test function, we have

Hi(0) +
m∑

j=1

dij M j ≤ c, i = 1, . . . ,m.

Multiplying the ith equation with �i , and summing all equations taking into account Lemma (2.1) and (2.7), we deduce 
that

Hi(0) +
m∑

j=1

dij M j = c, i = 1, . . . ,m. (2.10)

Integrating each equation of (2.5) as done in (2.9), we get

Hi(0) +
m∑

j=1

dij

∫

T N

u j dx ≤ c, i = 1, . . . ,m. (2.11)

Repeating the arguments used above to get (2.10), we have

Hi(0) +
m∑

j=1

dij

∫

T N

u j dx = c, i = 1, . . . ,m. (2.12)

From (2.10) and (2.12), we have

m∑
j=1

dij(M j −
∫

T N

u j dx) = 0, i = 1, . . . ,m.

This latter equality implies (M1 −∫
T N u1 dx, . . . , Mm −∫

T N um dx) ∈ ker(D). Lemma 2.1 claims that ker(D)=span{(1, · · · , 1)}; 
as a consequence,

Mi −
∫

T N

ui dx = M1 −
∫

T N

u1 dx = 0 for any i = 2, . . . ,m.

Thanks to the continuities of ui , we conclude that

ui = Mi for any i = 1, . . . ,m.

Step 4. Proof of Theorem 2.6. We show that any solution (u1, . . . , um) of (2.6) satisfies ui → Ci uniformly for all i = 1, . . . , m.
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We reuse many arguments made at Step 3. Set Mi(t) = maxx∈T N ui(x, t), Pi(t) = minx∈T N ui(x, t) and M(t) =
maxi∈{1,...,m} Mi(t), by the comparison principle, M is decreasing and hence M(t) → L as t → ∞. By taking 0 as a test 
function, we have

∂Mi

∂t
+ Hi(0) +

m∑
j=1

dij M j ≤ c, t ∈ (0,+∞),1 ≤ i ≤ m,

and

∂ Pi

∂t
+ Hi(0) +

m∑
j=1

dij P j ≥ c, t ∈ (0,+∞),1 ≤ i ≤ m.

We find that

∂(Mi − Pi)

∂t
+

m∑
j=1

dij(M j − P j) ≤ 0, t ∈ (0,+∞),1 ≤ i ≤ m.

By applying [[11], Lemma 3.4], we find that Mi(t) − Pi(t) → l as t → ∞ where l is independent of i.
If l = 0, it is straightforward to see that ui(x, t) → Li as t → ∞ for all i. We now assume that l > 0 and wlog l > 2. Hence 

there exist t0 such that Mi(t) − Pi(t) ≥ 1, for any t ≥ t0. Reusing the arguments from Step 2, we come to

∂

∂t

∫

T N

m∑
i=1

�iui dx ≤ −β < 0, t ≥ t0.

This yields 
∑m

i=1 �iui(x, t) → −∞, which is a contradiction. �
Now, we turn to the proof of Proposition 2.9.

Proof of Proposition 2.9. Note that, by periodicity of f , 
∫
T N D f = 0. Therefore, by using Jensen’s inequality and the period-

icity of f , we always have that 
∫
T N H(D f ) dx ≥ 0.

We now assume by contradiction that such a β does not exist; therefore, we can find a sequence ( fn) ∈ A such that
∫

T N

H(D fn)dx <
1

n
.

Ascoli’s theorem claims, by passing to a subsequence if necessary, the existence of f0 ∈ W1,∞(TN) such that

fn → f0 in C(T N). (2.13)

In particular, f0 is not a constant because maxT N f0 − minT N f0 ≥ 1.
Moreover, since W 1,2(T N ) is a reflexive Banach space, by passing to a subsequence if necessary, we have

fn ⇀ g0 in W 1,2(T N). (2.14)

From (2.13) and (2.14), we obtain

g0 = f0 a.e.

It then follows

0 ≤
∫

T N

H(D f0) ≤ lim inf
n

∫

T N

H(D fn) ≤ 0.

It yields∫

T N

H(D f0) = 0.

We apply Jensen’s inequality to deduce that D f0(x) = 0 a.e., and therefore f0 is constant by continuity. It leads to a contra-
diction. �
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Recall that the semi-concavity yields the twice differentiability a.e. of a function defined on a subset of finite-dimensional 
spaces. We say that g is semi-concave with constant M > 0 if for any y, h ∈RN , we have

g(y + h) − 2g(y) + g(y − h) ≤ M|h|2. (2.15)

We turn to the semi-concavity of solutions for systems of type (2.5). More precisely, we consider the following system⎧⎨
⎩

−trace(Ai D2ui(x)) + Hi(Dui) + ∑m
j=1 diju j = f i(x) (x, t) ∈T N × (0,+∞),

ui(x,0) = u0i(x) x ∈T N .
(2.16)

For more results about the semiconcavity of solutions, we refer the reader to [7], [5], [3] and the references therein.

Proposition 2.10. Let Ai ≥ 0 be constant matrices for i ∈ {1, . . . , m}, D satisfies (2.2) with inf(D) > 0. Assume that (u1, . . . , um)

is a bounded continuous solution to (2.16). If f i is semi-concave with constant Mi, then u is semi-concave with constant M =
max{M1, . . . , Mm}

inf(D)
.

Proof of Proposition (2.10). Step 1. Test function
The goal is to show that, for any y, h ∈RN and i = 1, . . . , m, we have

ui(y + h) − 2ui(y) + ui(y − h) − M|h|2 ≤ 0.

Assume that this is not the case, hence there exist for instance ymax, hmax ∈RN such that

u1(ymax + hmax) − 2u1(ymax) + u1(ymax − hmax) − M|hmax|2 > 0. (2.17)

Consider

�(i, x, y, z) = ui(x) − 2ui(y) + ui(z) − α|x − 2y + z|2
2

− M|x − y|2
2

− M|y − z|2
2

.

Set M(x, y, z) = α|x − 2y + z|2
2

+ M|x − y|2
2

+ M|y − z|2
2

and let (i, xα, yα, zα) ∈ {1, . . . , m} × (T N )3 be the point such 
that �(i, xα, yα, zα) = max( j,x,y,z)∈{1,...,m}×(RN )3 �( j, x, y, z). Now, for any sequence α → ∞, since �(1, y + h, y, y − h) ≤
�(i, xα, yα, zα) for any y, h ∈RN , we then have

0 < u1(ymax + hmax) − 2u1(ymax) + u1(ymax − hmax) − M|hmax|2 ≤ �(i, xα, yα, zα)

≤ ui(xα) − 2ui(yα) + ui(zα) − M|xα − yα |2
2

− M|yα − zα|2
2

. (2.18)

Step 2. Writing viscosity inequalities. Since (u1, . . . , um) is a viscosity solution to (2.16), [[6], Theorem 3.2] claims that, for 
every α > 1, we have the symmetric matrices X , Y , Z such that

(DxM, X) ∈ J
2,+

ui(xα), (−D y M/2,−Y /2) ∈ J
2,−

ui(yα), (2.19)

(Dz M, Z) ∈ J
2,+

ui(zα),

−(α2 + |A|)I ≤
⎛
⎝ X 0 0

0 Y 0
0 0 Z

⎞
⎠ ≤ A+ 1

α2
A2, A = D2M(xα, yα, zα). (2.20)

We have⎧⎪⎪⎨
⎪⎪⎩

−trace(Ai X) + Hi(α(xα − 2yα + zα) + M(xα − yα)) + ∑m
j=1 diju j(xα) ≤ f i(xα),

−trace(Ai Z) + Hi(α(xα − 2yα + zα) + M(zα − yα)) + ∑m
j=1 diju j(zα) ≤ f i(zα),

−trace[Ai
−Y

2 ] + Hi(α(xα − 2yα + zα) + M
2 (xα − yα) + M

2 (zα − yα)) + ∑m
j=1 diju j(yα) ≥ f i(yα).

Adding the three above inequalities and noting that H is convex, we have

m∑
j=1

dij[u j(xα) + u j(zα) − 2u j(yα)] − trace[Ai X + Ai Z + Ai Y ] ≤ f i(xα) + f i(zα) − 2 f i(yα).

Since ui(xα) + ui(zα) − 2ui(yα) ≥ u j(xα) + u j(zα) − 2u j(yα) for any j = 1, . . . , m, it follows
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(

m∑
j=1

dij)[ui(xα) + ui(zα) − 2ui(yα)] − trace[Ai X + Ai Z + Ai Y ] ≤ f i(xα) + f i(zα) − 2 f i(yα).

Since X , Y , Z satisfy (2.20), we have trace(A X + AY + A Z) ≤ 0. Hence we get

inf(D)(ui(xα) + ui(zα) − 2ui(yα)) ≤ f i(xα) + f i(zα) − 2 f i(yα). (2.21)

Now since �(i, xα, yα, zα) ≥ �(i, 0, 0, 0) = 0, we have

α|xα − 2yα + zα|2
2

+ M|xα − yα|2
2

+ M|yα − zα|2
2

≤ C .

By passing to a subsequence if necessary, we can assume that as α → ∞
yα → y0, xα − yα → h0, zα − yα → h0.

Hence,

lim sup
α→∞

�(i, xα, yα, zα) ≤ ui(y0 + h0) − 2ui(y0) + ui(y0 − h0) − c|h0|2 = �(i, y0 + h0, y0, y0 − h0).

This implies

α|xα − 2yα + zα|2
2

→ 0 as α → ∞.

By subtracting 
M inf(D)|xα − yα |2

2
+ M inf(D)|yα − zα |2

2
to both sides of (2.21), we let α → ∞ to have

lim sup
α→∞

(ui(xα) + ui(zα) − 2ui(yα) − M|xα − yα|2
2

− M|yα − zα|2
2

) ≤ 0,

which is in clear contradiction with (2.18). �
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