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We study the terminate distribution of a martingale whose square function is bounded. We 
obtain sharp estimates for the exponential and p-moments, as well as for the distribution 
function itself. The proofs are based on the elaboration of the Burkholder method and on 
the investigation of certain locally concave functions.
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r é s u m é

Nous étudions la distribution terminée d’une martingale dont la fonction carrée est bornée. 
Nous obtenons les estimations les meilleures possibles pour les p-moments et les moments 
exponentiels. Un développement de la méthode de Burkholder et les études sur des 
fonctions localement infléchies servent de base aux démonstrations.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Square functions and BMO

Let (�, �, P ) be the standard probability space, let F = {Fn}n�0 be a discrete time filtration of finite algebras on it. 
Assume F0 = {�, ∅}. Consider a real-valued martingale ϕ = {ϕn}n adapted to F and define its square function

Sϕ =
( ∞∑

n=0

(ϕn+1 − ϕn)
2
) 1

2
.

How large can ϕ be if Sϕ is uniformly bounded? In the case where F is a uniform dyadic filtration, the famous Chang–
Wilson–Wolff inequality (established in [2]) says that the distribution of ϕ is sub-Gaussian:
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P (ϕ − ϕ0 � λ) � e
− λ2

2‖Sϕ‖2
L∞ .

In a recent paper [5], Ivanisvili and Treil generalized this result to the case where the filtration F has bounded distortion α, 
which means that each atom in Fn has at least α times the mass of its parential atom. In this case,

P (ϕ − ϕ0 � λ) � e
− αλ2

‖Sϕ‖2
L∞ .

We see that the distribution function of an arbitrary martingale ϕ whose square function is bounded may no longer be 
sub-Gaussian. As we will see, this is indeed the case. We start from a simple observation that ϕ ∈ BMOm. The latter space 
called the space of martingales of bounded mean oscillation can be defined as follows

‖ϕ‖2
BMOm = sup

({
E

(
(ϕ∞ − ϕτ )2 | Fτ

) ∣∣∣ τ is a stopping time
})

.

By ϕ∞ we denote the limit value of ϕ . In fact, a simple Hilbert-space computation shows that ‖ϕ‖BMOm � ‖Sϕ‖L∞ . A more 
delicate estimate is true.

Theorem 1.1. The inequality ‖ϕ∗∞‖BMO([0,1]) � ‖Sϕ‖L∞ holds true and is sharp.

By ξ∗ we denote the non-decreasing rearrangement (the inverse function to the distribution function of ξ ) of a vari-
able ξ :

ξ∗(t) = inf{α | P (ξ > α) � t}.
The BMO space on the unit interval is defined by formula

‖ψ‖2
BMO([0,1]) = sup

J is a
subinterval of [0,1]

{ 1

| J |
∫
J

(
ψ(x) − 1

| J |
∫
J

ψ
)2

dx
}
.

Even though Theorem 1.1 says that there is a certain relationship between martingales ϕ whose square function is bounded 
and functions ψ on the unit interval that belong to the BMO space, we warn the reader against the identification of these 
classes of objects, which have different nature and origin. For the sake of clarity, here and in what follows let ϕ denote a 
martingale, and let ψ denote a function on the unit interval.

We also note that the estimate ‖ϕ∗∞‖BMO([0,1]) � ‖ϕ‖BMOm is not true in general for discrete time filtrations (i.e. when a 
martingale is allowed to have jumps).

2. Bellman functions

Though the inequality in Theorem 1.1 is sharp, the set of distributions of functions in the unit ball of BMO([0, 1]) is 
richer than the set of distributions of ϕ∞ such that Sϕ � 1. We want to measure the difference between the two sets. Let f
be a measurable non-negative function on the line. We are going to maximize E f (ϕ∞) with the condition ‖Sϕ‖L∞ � 1
imposed on ϕ . For example, the choice f (t) = |t|p leads to the computation of the optimal value cp such that

‖ϕ∞ − ϕ0‖L p � cp‖Sϕ‖L∞ (1)

holds true. The function f (t) = eμt allows us to estimate Eeμ(ϕ∞−ϕ0) , and the choice f (t) = χ[μ,∞)(t) leads to classical 
weak-type or tail estimates.

To solve the posed extremal problem, consider the Bellman function B:

B(x, y, z) = sup
({

E H f (ϕ, Sϕ2 + z2)

∣∣∣ Eϕ = x,Eϕ2∞ = y
})

, (2)

where

H f (s, t) =
{

−∞, t /∈ [0,1];
f (s), t ∈ [0,1].

The specification of the quantities Eϕ and Eϕ2 allows us to track the dynamics of the martingale. The idea of using 
Bellman functions in the context of Chang–Wilson–Wolf-type inequalities is quite old, see, e.g., [9].
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Lemma 2.1.

(i) The function B is non-negative on the set

� =
{
(x, y, z) ∈R3

∣∣∣ x2 � y � 1 − z2 + x2
}

and equals −∞ outside it.
(ii) The function B satisfies the boundary condition B(x, x2, z) = f (x) when z ∈ [0, 1].

(iii) The function B satisfies the inequality

B(x, y, z) �
n∑

j=1

α j B(x j, y j, z j),

whenever
n∑

j=1

α j = 1, α j ∈ [0,1];

n∑
j=1

α j x j = x;
n∑

j=1

α j y j = y;

∀ j z2
j = z2 + (x j − x)2.

(3)

(iv) Finally, the function B is pointwise minimal among the functions having these three properties.

This lemma is standard, such type lemmas form the core of the Burkholder method (see [1], [6]). Consider the Bellman 
function bε : ωε →R,

bε(x, y) = sup

{ 1∫
0

f (ψ)

∣∣∣∣
1∫

0

ψ = x,

1∫
0

ψ2 = y, ‖ψ‖BMO([0,1]) � ε

}
,

ωε = {(x, y) ∈R2 | x2 � y � x2 + ε2}.
(4)

By the main theorem of [10], the function bε may be described as the minimal function among locally concave functions on 
the domain ωε that satisfy the boundary condition bε(x, x2) = f (x). Note that the function bε may be computed explicitly 
for any sufficiently regular boundary data f , see [3] and [4]. We start with a simple observation that is the main result of 
this note.

Lemma 2.2. For any triple (x, y, z) ∈ �, the inequality B(x, y, z) � b√
1−z2 (x, y) is true.

Proof. Note that if the point (x, y, z) is split into the points (x j, y j, z j) inside � according to the rule (3), then the convex 
hull of the points (x j, y j) lie in the parabolic strip ω√

1−z2 . In fact, all these points lie below the tangent at (x, x2 + 1 − z2)

to the upper boundary of the said domain. To prove this, take some points (x j, y j, z j) ∈ �, j = 1, 2, . . . , n, and (x, y, z) that 
satisfy (3). Without loss of generality, we may assume x = 0. Then, for any j,

y j � 1 − z2
j + x2

j ,

simply because (x j, y j, z j) ∈ �. Therefore, by the last rule in (3) and the assumption x = 0,

y j � 1 − z2
j + x2

j = 1 − z2,

which exactly means that (x j, y j) lies below the tangent to the parabola y = x2 + 1 − z2 at the point (0, 1 − z2).
With this principle at hand, we write the chain of inequalities:

b√
1−z2(x, y) �

n∑
j=1

α jb√
1−z2(x+, y+) �

n∑
j=1

α jb√
1−z2

j
(x+, y+). (5)

The first inequality in the chain follows from the local concavity of bε and the geometric statement proved in the previous 
paragraph. The second inequality is a consequence of the fact that bε is an increasing function of ε (we maximize over a 
larger set in (4)).

So, the function (x, y, z) �→ b√
1−z2 (x, y) satisfies the first three requirements of Lemma 2.1. Since B is the minimal 

function (by the fourth statement in Lemma 2.1), B(x, y, z) � b√
2 (x, y). �
1−z
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Proof of Theorem 1.1. We recall the notion of an ω1-martingale introduced in [10]. An R2-valued martingale M = {Mn}n∈N
adapted to F is called an ω1-martingale provided it satisfies two properties. The first one is that M has an L1 limit M∞ , 
i.e. Mn → M∞ in L1 as n → ∞, which attains values inside the lower boundary of ω1, that is, the parabola {(x, x2) | x ∈R}
only. The second one is that M is prohibited to jump over the upper boundary of ω1, i.e., for any atom a ∈ Fn , the convex 
hull of the set {Mn+1(z) | z ∈ a} belongs to ω1 entirely.

Assume that Sϕ � 1. Let us show that in this case the R2-valued martingale Mn = (ϕn, E(ϕ2 |Fn)) is an ω1-martingale. 
The first property may be justified by the martingale convergence theorem since ϕ ∈ L2. To verify the second property, we 
consider an R3-valued process μn = (ϕn, E(ϕ2 |Fn), Sϕn), here

Sϕn =
( ∑

m<n

(ϕm+1 − ϕm)2
) 1

2
.

Let a ∈ F be an atom. Then, the points (x, y, z) = μn(a) and (x j, y j, z j) = μn+1(a j), where the a j are all the children of a, 
satisfy (3). Thus, by the geometric observation in the proof of Lemma 2.2, the convex hull of the points Mn+1(a j) lies 
inside ω1. Therefore, M is an ω1 martingale.

The random variable M∞ is vector-valued. Let M1∞ be its first coordinate. We recall Theorem 3.4 from [10], which says 
that ‖(M1∞)∗‖BMO([0,1]) � 1 whenever M is an ω1-martingale. We notice that M1∞ coincides with ϕ∞ and finally obtain the 
inequality

‖ϕ∗∞‖BMO([0,1]) � ‖Sϕ‖L∞ .

The sharpness of this inequality is obtained by considering the martingale ϕ such that ϕ0 = 0 and ϕ1 is ±1 with equal 
probability. �

It appears that for some choices f , the inequality of Lemma 2.2 turns into equality.

Theorem 2.3. Assume that f ′′′ either does not change its sign on the whole line, or changes it once from + to −. Then, B(x, y, z) =
b√

1−z2 (x, y) for all (x, y, z) ∈ �.

The proof of this theorem is more complicated. We will present neither the details nor the main idea of the construction, 
but rather give a plan of the proof. In view of Lemma 2.2, we need to construct a martingale ϕ such that

ϕ0 = x, Eϕ2∞ = y, Sϕ �
√

1 − z2, E f (ϕ∞) = b√
1−z2(x, y). (6)

To do this, we recall Theorem 2.21 in [10], which says that

bε(x, y) = sup
{
E f (M1∞)

∣∣∣ M0 = (x, y), M is an ωε-martingale
}
. (7)

In the proof of Theorem 1.1, we showed that (ϕn, E(ϕ2 | Fn)) is an ω1-martingale provided Sϕ � 1. However, not ev-
ery ω1-martingale may be represented in this form (in the proof of Lemma 2.2, we show that the convex hull of all the 
points (x j, y j) lies under a certain tangent to the upper parabola; this might not be the case for an arbitrary ω1-martingale). 
We use the theory from [4] (in fact, here we may use a simpler version [3]), which, in particular, describes the optimal mar-
tingales in formula (7). In the case where f ′′′ either does not change its sign on the whole line, or changes it once from +
to −, these optimal martingales split either along the tangent to the upper parabola, or along a chord connecting two points 
on the lower boundary. In both cases, the points (x j, y j) lie below the corresponding tangent, and one is able to construct ϕ

such that

Mn = (ϕn,E(ϕ2 | Fn)), Sϕ �
√

1 − z2,

where M is the optimal martingale in (7). This martingale ϕ will satisfy (6).

Corollary 2.4. The optimal constant cp in the inequality (1) equals 1 when 1 � p � 2.

The corresponding Bellman function bε was computed in [8].

Corollary 2.5. The optimal constant C(ε) in the inequality

Eeϕ−ϕ0 � C(ε), Sϕ � ε,

equals e−ε
.
1−ε
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This result follows from Theorem 2.3 applied to the case f (t) = et . In fact, the corresponding Bellman function bε was 
computed in [7]:

bε(x, y) = 1 − √
x2 + ε2 − y

1 − ε
ex−ε+√

x2+ε2−y, f (t) = et .

On the other hand, sometimes the inequality in Lemma 2.2 is strict on a part of �. An example is given by f (t) =
χ[0,∞)(t). In particular, it shows that the set of distributions of functions in the unit ball of BMO([0, 1]) is larger than the 
set of distributions of ϕ∞ such that Sϕ � 1.

The function bε for the case f (t) = χ[0,∞)(t) was computed in [11]. The domain ωε is split into four parts:

Dε
1 = {(x, y) ∈ ωε | y � 2εx, x � ε} ∪ {(x, y) ∈ ωε | y � 2εx};

Dε
2 = {(x, y) ∈ ωε | |x| � ε, y � 2ε|x|};

Dε
3 = {(x, y) ∈ ωε | y � −2εx};

Dε
4 = {(x, y) ∈ ωε | x � −ε, y � −2εx},

and the function bε is given by cases:

bε(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, (x, y) ∈ Dε
1;

1 − y−2εx
8ε2 , (x, y) ∈ Dε

2;
1 − x2

y , (x, y) ∈ Dε
3;

e
2

(
1 −

√
1 − y−x2

ε2

)
e

x
ε +

√
1− y−x2

ε2
, (x, y) ∈ Dε

4.

Theorem 2.6. Let f (t) = χ[0,∞)(t). Whenever (x, y) ∈ D
√

1−z2

j and j = 1, 3, 4, we have B(x, y, z) = b√
1−z2 (x, y). However, for some 

points (x, y) ∈ int D
√

1−z2

2 the strict inequality B(x, y, z) < b√
1−z2 (x, y) holds.

We caution the reader that this result is more interesting for the geometry of Bellman functions itself rather than 
probabilistic inequalities. In fact, after some computations, we can see that though B(x, y, z) �= b√

1−z2 (x, y), the optimal 
constants c and d in the inequalities

P (ϕ∞ − ϕ0 � λ) � c e
− λ

‖Sϕ‖L∞

and

P (ψ − ψ0 � λ) � d e
− λ

‖ψ‖BMO([0,1])

are both equal to e
2 .
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