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The purpose of this note is to investigate the stabilization of the wave equation with 
Kelvin–Voigt damping in a bounded domain. Damping is localized via a non-smooth 
coefficient in a suitable subdomain. We prove a polynomial stability result in any space 
dimension, provided that the damping region satisfies some geometric conditions. The 
main novelty of this note is that the geometric situations covered here are richer than 
that considered in [25], [22], [16] and include in particular an example where the damping 
region is not localized in a neighborhood of the whole or a part of the boundary.
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r é s u m é

Nous nous intéressons à l’étude de la stabilisation d’une équation des ondes avec un 
amortissement de type Kelvin–Voigt dans un domaine borné. L’amortissement est localisé 
via un coefficient singulier dans une partie du domaine. Nous montrons un résultat de 
stabilisation polynomiale en toute dimension d’espace dès que la région d’amortissement 
satisfait certaines conditions géométriques. La principale nouveauté de cette note est que 
les situations géométriques couvertes ici sont plus riches que celles considérées dans [25], 
[22], [16] et incluent notamment un exemple où la région d’amortissement n’est pas 
localisée dans un voisinage de la totalité ou d’une partie de la frontière.
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1. Introduction

Local viscoelastic damping is a natural phenomenon of bodies arising from a solid that have one part made of viscoelastic 
material, and the other made of elastic material. Let � ⊂ R

N be a nonempty bounded open set with boundary � of class C2. 
We consider the wave equation with locally distributed Kelvin–Voigt-type damping given in the following equation:⎧⎪⎨⎪⎩

ρ(x)utt(x, t) = div(a(x)∇u + b(x)∇ut) in � ×R
+,

u(x, t) = 0 on � ×R
+ ,

u(x,0) = u0(x), ut(x,0) = u1(x) in �,

(1)

where we assume that the coefficient functions ρ, a, b ∈ L∞(�) and ρ(x) ≥ ρ0 > 0, a(x) ≥ a0 > 0 and b(x) ≥ 0 for all x ∈ �.
In 1988, F. Huang proved that when the Kelvin–Voigt damping div(b(x)∇ut) is globally distributed, i.e. b(x) ≥ b0 > 0 for 

almost every x in �, the corresponding semigroup of system (1) is not only exponentially stable, but also is analytic (see 
[8]). Thus, Kelvin–Voigt damping is stronger than the viscous damping b(x)ut in this case. Indeed, in [10], it was proved 
that the semigroup corresponding to the system of wave equations with global viscous damping is exponentially stable 
but not analytic. However, this result is still true if viscous damping is localized; via a smooth or a non-smooth damping 
coefficient, in a suitable subdomain satisfying the Geometric Control Condition (GCC in short) introduced by C. Bardos, G. 
Lebeau, and J. Rauch in [2] (see also [10]). Nevertheless, when viscoelastic damping is distributed locally, the situation is 
more delicate and such comparison between viscous and viscoelastic damping is not valid anymore. In fact, in 1998, K. Liu 
and Z. Liu considered a one-dimensional wave equation with Kelvin–Voigt damping distributed locally on any subinterval 
of the region occupied by the beam, where the damping coefficient is the characteristic function of the subinterval. They 
proved that the semigroup associated with the equation for the transversal motion of the beam is exponentially stable, 
although the semigroup associated with the equation for the longitudinal motion of the beam is not (see [13]). This shows 
that Kelvin–Voigt damping does not obey the GCC. This surprising result, due to the discontinuity of the materials and the 
unboundedness of viscoelastic damping, motivated the study of elastic systems with local Kelvin–Voigt damping. Later, in the 
one-dimensional case, it was found that the smoothness of the damping coefficient at the interface is a critical factor for the 
stability and the regularity of the solutions (see [7,14,15,17,18,23]). However, there are only a small number of publications 
on the corresponding N-dimensional case. In 2006, K. Liu and B. Rao considered this problem in the N-dimensional space 
where the damping region is a neighborhood (in �) of the entire boundary � (see [16]). They proved that the energy 
of the system goes exponentially to zero as t goes to infinity for all usual initial data by assuming that the damping 
coefficient b satisfies b ∈ C1,1(�), �b ∈ L∞(�) and |∇b(x)|2 ≤ M0b(x) for almost every x in �, where M0 is a positive 
constant. Also in [19], under the same assumption on b, S. Nicaise and C. Pignotti established the exponential stability 
of the wave equation with local Kelvin–Voigt damping localized around a part of the boundary and an extra boundary 
damping with time delay where they added an appropriate geometric condition (section 3.2 (Q4)). Later on, M. Cavalcanti, 
V. Cavalcanti and L. Tebou showed the exponential decay of the energy of a wave equation with two types of locally 
distributed mechanisms; a frictional damping and a Kelvin–Voigt-type damping where the location of each damping is such 
that none of them alone is able to exponentially stabilize the system (see [6]). Under an appropriate geometric condition 
(PMGC) on a subset ω of � ⊂ R

N where the dissipation is effective, they proved that the energy of the system decays 
polynomially as type 1

t in the absence of regularity of the Kelvin–Voigt damping coefficient b. However, they established 
exponential stability when this coefficient is smooth. In [1], K. Ammari, F. Hassine, and L. Robbianio considered a wave 
equation with Kelvin–Voigt damping localized in a subdomain ω far away from the boundary without geometric conditions. 
They established a logarithmic energy decay rate for smooth initial data. On the other hand, in [22] L. Tebou studied the 
stabilization of the wave equation with Kelvin–Voigt damping. He established polynomial energy decay of type 1

t provided 
that the damping region is localized in a neighborhood of a part of the boundary and verifies the Piecewise Multiplier 
Geometric Condition (PMGC in short) introduced by K. Liu [12]. Moreover, Q. Zhang in [25] considered the wave equation 
with Kelvin–Voigt damping in a nonempty bounded convex domain � with partition � = �1 ∪ �2 where the viscoelastic 
damping is localized in �1. Under the condition that the damping coefficient b is non-smooth, she established a polynomial 
energy decay rate of type 1

t for smooth initial data in the following two cases: (1) the damping region �1 is a neighborhood 
of the entire boundary � of �; (2) � ⊂ R

N (N = 2 or 3), ∂�1 and ∂�2 are either convex curvilinear polygons or curved 
plane polyhedra, the damping region �1 is a neighborhood of a part �1 	= ∅ of the boundary � and m(x) · ν2 ≤ 0 where 
m(x) = x − x0 for x0 fixed in RN (N = 2, 3) for all x ∈ �2 = � \ �1. So, several important geometric situations are not covered 
by the previous papers (see for instance Fig. 1-c, Fig. 2, Fig. 3) and the problem of the energy decay rate is still open. So, 
our aim is to answer this open problem.

In this note, we consider the stabilization of the wave equation with Kelvin–Voigt damping in a bounded domain � of 
class C2 with non-smooth damping coefficient. The system is given by (1). We establish a polynomial energy decay estimate 
of type 1

t for smooth initial data provided that the damping coefficient b satisfies the localization condition (LA) (see 
below) and the damping region ω satisfies one of the geometric conditions (A1) or (A2) (see below). The frequency domain 
approach and the piecewise multiplier method are used. To our knowledge, the result of Theorem 3.5 is new. Indeed, the 
geometric situations covered by this theorem are richer than that considered in [25], [22], [16] and include in particular an 
example of damping region far away from the boundary.
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2. Well-posedness and strong stability

Let us define the energy space H = H1
0(�) × L2(�) equipped with the following inner product

((u, v), (ũ, ṽ))H =
∫
�

(a∇u·∇ũ + ρv ṽ)dx.

Let (u, ut) be a regular solution to the system (1). Its associated energy is defined by

E(t) =
∫
�

(a|∇u|2 + ρ|ut |2)dx. (2)

A straightforward computation gives that

E ′(t) = −
∫
�

b(x)|∇ut |2 dx ≤ 0. (3)

Consequently, system (1) is dissipative in the sense that its energy is non-increasing with respect to t . Setting U = (u, ut)
ᵀ , 

system (1) may be recast as: U ′ = A U in (0, +∞), U (0) = (u0, u1)
ᵀ , where the unbounded operator A : D(A) −→ H is 

given by

D(A) =
{
(u, v) ∈ H : v ∈ H1

0(�), div(a∇u + b∇v) ∈ L2(�)
}

, A(u, v) =
(

v,
1

ρ
div(a∇u + b∇v)

)
.

Noting that due to the fact that b(x) ≥ 0, the operator A is m-dissipative in H and generates a C0-semigroup of contractions 
etA . So, system (1) is well-posed in H (see [16]).

In addition, if ω 	= ∅ and b satisfies the following localization assumption

∃b0 > 0 : b(x) ≥ b0 ∀x ∈ ω, (LA)

then system (1) is strongly stable (see [1], Theorem 2.2) i.e.

lim
t→+∞‖etA(u0, u1)‖ = 0, ∀ (u0, u1) ∈ H.

So, our aim is to study the energy decay rate.

3. Polynomial energy decay rate

Q. Zhang proved in [24] that system (1) is not uniformly (exponentially) stable in any geometry. So, it is natural to hope 
for a polynomial stability under some considerations that represent the main goal of this note.

Before stating our results, we recall the Geometric Control Condition (GCC in short) introduced by J. Rauch and M. Taylor 
in [21] for manifolds without boundaries and by C. Bardos, G. Lebeau and J. Rauch in [2] (see also [10]) for domains with 
boundaries.

Definition 3.1. For a subset ω of � and T > 0, we shall say that (ω, T ) satisfies the Geometric Control Condition if every 
geodesic traveling at speed one in � meets ω in time t < T .

We also introduce the following geometric condition:

Definition 3.2. For a subset ω of �, we shall say that ω satisfies Strictly the Geometric Control Condition (SGCC in short) if 
there exists an open subset ω̃ included strictly in ω (i.e. ω̃ ⊂ ω) and satisfying the GCC.

For the study of the energy decay rate, we need the following geometric assumptions:

(A1) the open subset ω verifies the GCC and meas(ω ∩ �) > 0,
(A2) the open subset ω verifies the SGCC.

Remark 3.3. It is easy to see that, if ω verifies the SGCC, then it verifies the GCC. The converse of this implication is false 
(see Fig. 1-c).

There are several geometries that verify the previous assumptions. For example:



R. Nasser et al. / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 272–277 275
Fig. 1. Elastic–viscoelastic waves interaction model satisfying the assumption (A1).

Fig. 2. A model satisfying assumption (A2).

Fig. 3. A model satisfying both (A1) and (A2).

Remark 3.4. The PMGC introduced in [12] is a generalization of the �-condition introduced in [11] and is much more 
restrictive than the GCC. For example, in Fig. 1, we consider the case where � is a disk and we draw three different subsets 
in �. The �-condition is only satisfied by ω0. The PMGC is satisfied by ω0 and ω1. However, ω2 does not satisfy either the
PMGC or the �-condition. Finally, the GCC is satisfied by the three different subsets of �.

Now, we are in position to state our main result.

Theorem 3.5 (Polynomial decay rate). Assume that condition (L A) holds. Assume also that assumption (A1) or assumption (A2)

holds. Then, for all initial data U0 ∈ D(A), there exists a constant C > 0 independent of U0 such that the energy of system (1) satisfies 
the following estimation

E(t, U ) ≤ C
1

t
||U0||2D(A), ∀t > 0. (4)

Remark 3.6. i) The result of Theorem 3.5 generalizes that of [16], [22], and [25]. Indeed, the geometric situations covered 
by this theorem are richer than that considered in the previous references. In addition, unlike the result of Theorem 4.1 in 
[25], our result holds for all N ≥ 2 and for non-convex domains.

ii) It is unknown whether the polynomial decay rate obtained in (4) is optimal in the sense that, for any ε > 0, we can 
not expect the decay rate of type 1

t1+ε for all initial data U0 ∈ D(A). From our point of view, the energy decay rate (4) is 
not optimal, and we conjecture an optimal decay of type 1

t2 .

Ideas for proving Theorem 3.5 under the assumption (A1). For the proof of Theorem 3.5, we use a frequency-domain 
approach; namely, we use Theorem 2.4 of [5] (see also [3,4,17]) that we partially recall.
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Theorem 3.7. Let (T (t))t≥0 be a bounded C0-semigroup on a Hilbert space H with generator A such that i R ⊂ ρ(A). Then for a fixed 

 > 0 the following conditions are equivalent

‖(i s − A)−1‖ = O (|s|
), s → ∞, (5)

‖T (t)A−1‖ = O (t−1/
), t → ∞. (6)

Since the resolvent of the operator A is not compact in the energy space H (see [16]) and 0 ∈ ρ(A), then to prove 
i R ⊂ ρ(A) is equivalent to prove that (i β I − A) is bijective in the energy space H for all β ∈ R

� . This last is proven in 
[1] according to a unique continuation theorem and Fredholm’s alternative. Then, the proof of Theorem 3.5 is reduced to 
show that condition (5) holds with 
 = 2. This is checked by using a contradiction argument. Indeed, assume that it does 
not hold, then there exist a sequence βn ∈ R and a sequence (un, vn) ∈ D(A) such that

|βn| → +∞, ||(un, vn)||H = 1, (7)

β2
n (iβn I −A)(un, vn) = ( fn, gn) → 0 in H. (8)

Our aim is to show that ||(un, vn)||H → 0. This condition permits to conclude a contradiction with (7). The proof is divided 
into several steps.

Step 1. (Local asymptotic estimation of βn vn). First, using (7) and (8), we have the following estimation∫
�

|βnun|2 dx = O (1). (9)

Multiplying (8) by Un = (un, vn) in H, we get

Re(β2
n (iβn I −A)Un, Un)H = −

∫
�

b|βn∇vn|2 = o(1). (10)

It follows from the localization assumption (LA) that∫
ω

|βn∇vn|2 dx = o(1). (11)

Since assumption (A1) holds, then using Poincaré’s inequality and equation (11), we obtain∫
ω

|βn vn|2 dx = o(1). (12)

The aim of step 1 is achieved.
Now, writing equation (8) in a detailed form:

iβnun − vn = fn

β2
n

→ 0 in H1
0(�), (13)

iβn vn − 1

ρ
div(a ∇un + b ∇vn) = gn

β2
n

→ 0 in L2(�). (14)

Step 2. (Local asymptotic estimation of βnun). Multiplying equation (13) by i βnun , integrating over ω and using estimation 
(12), we get∫

ω

|βnun|2 = o(1). (15)

Step 3. (The multiplier ϕn). Now, for all βn ∈ R, let ϕn ∈ H2(�) ∩ H1
0(�) be the solution to the following system{

ρβ2
n ϕn + div(a∇ϕn) − iβn(1ωb)(x)ϕn = un, in �,

ϕn = 0, on �
(16)

where (un, vn) is solution to (13)–(14). Since ω satisfies the GCC, then the wave equation with local viscous damping 
(1ωb)(x) ϕt is exponentially stable (see [10]) and, following Huang [9] and Pruss [20], the resolvent of its associated operator 
Aaux : D(Aaux) −→ H1(�) × L2(�) defined by:
0
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D(Aaux) = (H2(�) ∩ H1
0(�)) × H1

0(�), Aaux(ϕ,ψ) =
(

ψ,
1

ρ
(div(a∇ϕ) − (1ωb)(x)ψ)

)
is uniformly bounded on the imaginary axis. This implies that there exists M > 0 independent of n such that

||βnϕn||L2(�) + ||∇ϕn||L2(�) ≤ M||un||L2(�). (17)

Step 4. (Global asymptotic estimations). Multiplying equations (13) and (14) by i β3
n ρϕn and β2

n ρϕn respectively, applying 
Green’s formula and adding the resulting equations, we get

−
∫
�

|βnun|2 dx +
∫
ω

iβ3
n bϕnun dx = o(1). (18)

It follows, from (15) and (17), that∫
�

|βnun|2 dx = o(1). (19)

This implies, by using the multiplier un that∫
�

|∇un|2 dx = o(1). (20)

Proof of Theorem 3.5. Adding estimations (19) and (20), we deduce that ||Un||H = o(1), which gives the desired contradic-
tion. The demonstration is thus achieved. �
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