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In this paper, we prove that there are no conformally flat real hypersurfaces in nonflat 
complex space forms of complex dimension two provided that the structure vector field 
is an eigenvector field of the Ricci operator. This extends some recent results by Cho 
(Conformally flat normal almost contact 3-manifolds, Honam Math. J. 38 (2016) 59–69) 
and Kon (3-dimensional real hypersurfaces with η-harmonic curvature, in: Hermitian–
Grassmannian Submanifolds, Springer, Singapore, 2017, pp. 155–164).
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r é s u m é

Dans cette note, nous démontrons qu’il n’existe pas d’hypersurface réelle conformément 
plate dans les espaces de formes complexes de dimension deux, non plats, pourvu que le 
champ de vecteurs structurel soit champ de vecteur propre de l’opérateur de Ricci. Ceci 
étend des résultats récents de Cho (Conformally flat normal almost contact 3-manifolds, 
Honam Math. J. 38 (2016) 59–69) et Kron (3-dimensional real hypersurfaces with 
η-harmonic curvature, in : Hermitian–Grassmannian Submanifolds, Springer, Singapore, 
2017, pp. 155–164).

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A complex n-dimensional Kählerian manifold with constant holomorphic sectional curvature c is said to be a complex 
space form and is denoted by Mn(c). A complete and simply connected complex space form is complex analytically isometric 
to a complex projective space CPn(c), a complex Euclidean space Cn or a complex hyperbolic space CHn(c) according to 
c > 0, c = 0 or c < 0, respectively. Let M be a real hypersurface in a complex space form Mn(c), c �= 0, whose Kähler metric 
and complex structure are denoted by g and J , respectively. On M there exists an almost contact metric structure (φ, ξ, η, g)

induced from g and J (see Section 2), where ξ is called a structure vector field. Let D be the distribution determined by 
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tangent vectors orthogonal to ξ at each point of M . Let A be the shape operator of M in Mn(c). If the structure vector 
field ξ is principal, that is, Aξ = αξ , where α = η(Aξ), then M is called a Hopf hypersurface and α is called Hopf principal 
curvature.

Let us recall some known results regarding the Weyl conformal tensor on real hypersurfaces. The Riemannian curvature 
tensor R is harmonic (i.e. divR = 0) if and only if the associated Ricci operator Q is of Codazzi type, i.e.

(∇X Q )Y = (∇Y Q )X

for any vector fields X, Y . The parallelism of the Ricci tensor implies naturally the harmonicity, but the converse is not 
necessarily true (see [5]).

Theorem 1.1 ([10,15]). There are no real hypersurfaces with harmonic curvature tensor in a nonflat complex space form Mn(c), n ≥ 2, 
on which ξ is principal.

Theorem 1.1 extends Kimura [11, Theorem 2], who says that there are no real hypersurfaces in CPn(c) with parallel Ricci 
tensor on which ξ is principal. Such conclusion is still true even when the condition “ξ is principal” is removed and the 
ambient space is generalized to any nonflat space from (see [6, Theorem A]). The curvature tensor is said to be η-harmonic 
if it satisfies g((∇X Q )Y − (∇Y Q )X, Z) = 0 for any vector fields X, Y and Z in D (see [7]). In fact, the η-harmonicity of 
the curvature tensor on a real hypersurface in complex planes implies η-parallelism of the Ricci tensor under some other 
restrictions (see Kon [14, Theorem 1]). We remark that the conclusion of Theorem 1.1 is still true if the condition “ξ is 
principal” is weakened to “ξ is an eigenvector field of the Ricci operator” for dimension three.

Theorem 1.2 ([14]). There are no real hypersurfaces with harmonic curvature tensor in a nonflat complex space form M2(c) of complex 
dimension two on which the Ricci operator Q satisfies Q ξ = βξ , where β is a function.

The Weyl conformal tensor W on a Riemannian manifold of dimension greater than three is harmonic (i.e. divW = 0) 
if the associated Ricci operator satisfies (∇X Q )Y − (∇Y Q )X = 1

2(n−1)
(X(r)Y − Y (r)X) for any vector fields X, Y , where r

denotes the scalar curvature. Therefore, the harmonicity of the Riemannian curvature tensor can be viewed as a special 
case of that of the Weyl tensor. Such two notions are the same, under condition that the scalar curvature is a constant. 
Notice that there are Riemannian manifolds on which the Weyl tensor is harmonic but the curvature tensor is not harmonic 
(see [1]). We observe that Theorem 1.1 was generalized to the following one for dimensions greater than three.

Theorem 1.3 ([9]). There are no real hypersurfaces with harmonic Weyl tensor in a nonflat complex space form Mn(c), n ≥ 3.

Generalizing Theorem 1.1, Ki, Kim and Nakagawa in [7] considered a weaker condition named η-harmonicity of the Weyl 
conformal tensor (i.e. g((∇X Q )Y − (∇Y Q )X, Z) = 1

2(n−1)
g(X(r)Y − Y (r)X, Z) for any vector fields X, Y , Z orthogonal to the 

structure vector field ξ , where n is the dimension of the manifold). The authors in [7] also classified real hypersurfaces in a 
nonflat complex space form Mn(c), n ≥ 3, provided that ξ is principal and the Weyl tensor is η-harmonic.

Note that the Weyl tensor vanishes on a 3-dimensional Riemannian manifold M3. Therefore, one always consider another 
conformal invariant, which is named the Cotton tensor and defined by

C(X, Y ) = (∇X Q )Y − (∇Y Q )X − 1

4
{X(r)Y − Y (r)X} (1.1)

for any vector fields X, Y on M3. A Riemannian 3-manifold is conformally flat if and only if the Cotton tensor C vanishes 
identically. From Theorem 1.3, we know there are no conformally flat real hypersurfaces in a nonflat complex space form 
Mn(c), n ≥ 3. Except for the above result, conformally flat hypersurfaces of dimension greater than three in a conformally 
flat Riemannian manifold were investigated in [19]. However, as far as we know, the studies on conformal flatness on 
a three-dimensional real hypersurface in complex planes are few. In this paper, we study this problem and prove the 
following.

Theorem 1.4. There are no conformally flat real hypersurfaces in nonflat complex space forms of complex dimension two provided that 
the structure vector field is an eigenvector field of the Ricci operator.

The condition “ξ is an eigenvector field of the Ricci operator” is rather weak. Such condition was also studied by many 
authors in recent papers (for example, see [8], [12–14] and [16] and references therein).

Our main result extends naturally Theorems 1.1 and 1.2 in [10,14,15] and is a nice complement of Theorem 1.3 in [9] for 
dimension three.
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2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c) and N be a unit normal vector field of M . We 
denote by ∇ the Levi-Civita connection of the metric g of Mn(c) and J the complex structure. Let g and ∇ be the induced 
metric from the ambient space and the Levi-Civita connection of g , respectively. Then the Gauss and Weingarten formulas 
are given respectively as follows:

∇ X Y = ∇X Y + g(A X, Y )N, ∇ X N = −A X (2.1)

for any vector fields X and Y tangent to M , where A denotes the shape operator of M in Mn(c). For any vector field X
tangent to M , we put

J X = φ X + η(X)N, J N = −ξ. (2.2)

We can define on M an almost contact metric structure (φ, ξ, η, g) satisfying

φ2 = −id + η ⊗ ξ, η(ξ) = 1, φξ = 0, (2.3)

g(φ X, φY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(X, ξ) (2.4)

for any vector fields X and Y on M . Moreover, applying the parallelism of the complex structure (i.e. ∇ J = 0) of Mn(c) and 
using (2.1), (2.2), we have

(∇Xφ)Y = η(Y )A X − g(A X, Y )ξ, (2.5)

∇Xξ = φ A X (2.6)

for any vector fields X and Y . We denote by R the Riemannian curvature tensor of M . Since Mn(c) is assumed to be of 
constant holomorphic sectional curvature c, then the Gauss and Codazzi equations of M in Mn(c) are given respectively as 
follows:

R(X, Y )Z = c

4
{g(Y , Z)X − g(X, Z)Y + g(φY , Z)φ X − g(φ X, Z)φY

− 2g(φ X, Y )φ Z} + g(AY , Z)A X − g(A X, Z)AY ,

(2.7)

(∇X A)Y − (∇Y A)X = c

4
{η(X)φY − η(Y )φ X − 2g(φ X, Y )ξ} (2.8)

for any vector fields X, Y on M .
From (2.7) we see that the Ricci operator Q is given by

Q X = c

4
((2n + 1)X − 3η(X)ξ) + mA X − A2 X (2.9)

for any vector field X tangent to the hypersurface, where m := traceA is the mean curvature.
In this paper, all manifolds are assumed to be connected and of class C∞ .

3. Conformally flat real hypersurfaces in CP 2 and CH 2

Let M be a real hypersurface in a complex space form Mn(c). We put

Aξ = αξ + βU , (3.1)

where α = η(Aξ), U a unit vector field orthogonal to ξ and β a smooth function. Applying (2.1) and (2.2), we see that 
βU = −φ∇ξ ξ . We put

� = {p ∈ M |β(p) �= 0}.
Then � is an open subset of M .

Lemma 3.1 ([21, Lemma 1]). Let M be a three-dimensional real hypersurface in a nonflat complex plane M2(c). Then the following 
relations hold:

AU = γ U + δφU + βξ, AφU = δU + μφU ,

∇U ξ = −δU + γ φU , ∇φU ξ = −μU + δφU , ∇ξ ξ = βφU ,

∇U U = κ1φU + δξ, ∇φU U = κ2φU + μξ, ∇ξ U = κ3φU ,

∇ φU = −κ U − γ ξ, ∇ φU = −κ U − δξ, ∇ φU = −κ U − βξ,

(3.2)
U 1 φU 2 ξ 3
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where γ , δ, μ, κi , i = {1, 2, 3}, are smooth functions on M and {ξ, U , φU } is an orthonormal basis of the tangent space of M at a point 
of M.

Applying this lemma, from the Codazzi equation (2.8) for X = U or X = φU and Y = ξ , we have

U (β) − ξ(γ ) = αδ − 2δκ3. (3.3)

ξ(δ) = αγ + βκ1 + δ2 + μκ3 + c

4
− γμ − γ κ3 − β2. (3.4)

U (α) − ξ(β) = −3βδ. (3.5)

ξ(μ) = αδ + βκ2 − 2δκ3. (3.6)

φU (α) = αβ + βκ3 − 3βμ. (3.7)

φU (β) = αμ − 2γμ + 2δ2 + c

2
+ αγ + βκ1. (3.8)

Similarly, from the Codazzi equation for X = U and Y = φU , we have

U (δ) − φU (γ ) = μκ1 − γ κ1 − βγ − 2δκ2 − 2βμ. (3.9)

U (μ) − φU (δ) = γ κ2 + βδ − κ2μ − 2δκ1. (3.10)

Moreover, applying again Lemma 3.1, from the Gauss equation (2.7) and the definition of the Riemannian curvature tensor 
R(X, Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ] Z , we have

U (κ2) − φU (κ1) = 2δ2 − 2γμ − κ2
1 − γ κ3 − κ2

2 − μκ3 − c. (3.11)

φU (κ3) − ξ(κ2) = 2βμ − μκ1 + δκ2 + κ3κ1 + βκ3. (3.12)

The above relations can also be seen in [20,21].

Lemma 3.2. Let M be a real hypersurface in a nonflat complex plane such that ξ is an eigenvector field of the Ricci operator. If the 
Cotton tensor vanishes, then ξ is principal.

Proof. All we need to do is prove that � is empty under the above hypotheses. The applications of (3.1) and (3.2) in (2.9)
give

Q ξ =
(

1

2
c + α(γ + μ) − β2

)
ξ + βμU − βδφU .

Next we suppose that � is nonempty. It follows that μ = δ = 0 because of β �= 0 and the assumption that ξ is an eigenvector 
field of the Ricci operator. Now, (2.9) can be expressed by

Q ξ =
(

1

2
r − c

)
ξ, Q U =

(
1

2
r − 1

4
c

)
U , Q φU = 5

4
cφU (3.13)

with respect to an orthonormal basis {ξ, U , φU }, where r is the scalar curvature. Actually, by (3.1) and (3.2), we have 
r = 3c + 2αγ − 2β2. The application of (3.2) and (3.13) in (1.1) implies

C(ξ, U ) = −1

4
U (r)ξ + 1

4
ξ(r)U +

(
1

2
rκ3 − 3

2
cκ3 − 1

2
rγ + 9

4
cγ

)
φU . (3.14)

C(ξ,φU ) =
(

1

2
rβ − 9

4
βc − 1

4
φU (r)

)
ξ +

(
1

2
r − 3

2
c

)
κ3U − 1

4
ξ(r)φU . (3.15)

C(U , φU ) =
(

1

2
r − 9

4
c

)
γ ξ +

(
1

2
rκ1 − 3

2
cκ1 − 1

4
φU (r)

)
U

+
(

3

2
cκ2 − 1

2
rκ2 − 1

4
U (r)

)
φU .

(3.16)

In view of C = 0, from (3.15) we acquire (r − 3c)κ3 = 0. If κ3 �= 0 holds on some open subset of �. On this subset, we 
have r = 3c, a constant, and hence the vanishing of the Cotton tensor C implies that the Ricci operator is of Codazzi type. 
However, this is impossible, because Kon [14, Theorem 2] proved that there are no real hypersurfaces in complex planes 
with harmonic curvature tensor and ξ an eigenvector field of the Ricci operator. Therefore, it follows that κ3 = 0, which 
is combined with (3.14) and C = 0 yielding γ = 0 or 2r = 9c. Obviously, the latter case can not occur as discussed before. 
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Applying again C = 0 on (3.14), we obtain ξ(r) = U (r) = 0. Similarly, from (3.16) and C = 0, we have 6c κ2 −2rκ2 − U (r) = 0. 
Because r cannot be a constant, it follows directly that κ2 = 0.

Based on the above analyses, (3.4), (3.8) and (3.11) become

βκ1 + 1

4
c = β2, φU (β) = 1

2
c + βκ1 and φU (κ1) = κ2

1 + c (3.17)

respectively. By virtue of C = 0, from (3.15), we also have 2rβ − 9βc − φU (r) = 0. Recall that now the scalar curvature is 
given by r = 3c − 2β2. Making use of this in the previous relation, together with the second term of (3.17), we obtain

β(4βκ1 − c − 4β2) = 0.

Because of β �= 0, it follows directly that 4βκ1 − c − 4β2 = 0 and, by comparing this with the first term of (3.17), we 
obtain c = 0, a contradiction. This means that M is a Hopf hypersurface. �

Now we are ready to present the proof of our main result.

Proof of Theorem 1.4. According to Lemma 3.2, β = 0, the applications of (3.1) and (3.2) in (2.9) give

Q ξ =
(

1

2
c + α(γ + μ)

)
ξ,

Q U =
(

1

2
r − 1

4
c − αμ

)
U + αδφU ,

Q φU = αδU +
(

1

2
r − 1

4
c − αγ

)
φU ,

(3.18)

where the scalar curvature is given by r = 3c + 2(αγ + αμ + γμ − δ2). Making use of β = 0 in (3.3) and (3.6), we have

ξ(γ ) = δ(2κ3 − α) and ξ(μ) = δ(α − 2κ3), (3.19)

respectively. Moreover, it is known that α on a Hopf real hypersurface is always a constant (see [17, Lemma 2.4] or [18, 
Theorem 2.1]). Thus, the applications of (3.18) and (3.19) in (1.1), together with Lemma 3.1 and β = 0, imply the following 
three equations.

C(ξ, U ) =
(

1

4
U (r) − αU (γ + μ)

)
ξ

+
(

1

4
ξ(r − 4αμ) + δ

(
2αγ + 2αμ − 2ακ3 − 1

2
r + 3

4
c

))
U

+
(
ακ3(γ − μ) + αξ(δ) − αδ2 + γ

(
1

2
r − 2αγ − αμ − 3

4
c

))
φU .

C(ξ,φU ) =
(

1

4
φU (r) − αφU (γ + μ)

)
ξ

+
(
ακ3(γ − μ) + αξ(δ) + αδ2 + μ

(
3

4
c + αγ + 2αμ − 1

2
r

))
U

+
(

1

4
ξ(r − 4αγ ) + δ

(
2ακ3 − 2αγ − 2αμ + 1

2
r − 3

4
c

))
φU .

C(U , φU ) =
(

(γ + μ)

(
3

4
c − 1

2
r

)
+ 2α(δ2 + μ2 + γ 2 + μγ )

)
ξ

+
(
ακ1(γ − μ) + 2αδκ2 − 1

4
φU (r − 4αμ) + αU (δ)

)
U

+
(
ακ2(μ − γ ) + 2αδκ1 + 1

4
U (r − 4αγ ) − αφU (δ)

)
φU .

If M is conformally flat, from the above three relations, we have

U (r) − 4αU (γ + μ) = 0,

ξ(r − 4αμ) + δ(3c + 8αγ + 8αμ − 8ακ3 − 2r) = 0,

4ακ (γ − μ) + 4αξ(δ) − 4αδ2 + γ (2r − 3c − 8αγ − 4αμ) = 0,

(3.20)
3
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φU (r) − 4αφU (γ + μ) = 0,

4ακ3(γ − μ) + 4αξ(δ) + 4αδ2 + μ(3c − 2r + 8αμ + 4αγ ) = 0,

ξ(r − 4αγ ) + δ(8ακ3 − 3c − 8αγ − 8αμ + 2r) = 0,

(3.21)

and

(γ + μ)(3c − 2r) + 8α(δ2 + μ2 + γ 2 + γμ) = 0,

4ακ1(γ − μ) + 8αδκ2 − φU (r − 4αμ) + 4αU (δ) = 0,

4ακ2(μ − γ ) + 8αδκ1 + U (r − 4αγ ) − 4φU (δ) = 0.

(3.22)

The addition of the second term of (3.20) to the third term of (3.21) implies ξ(r) = 0, where we have applied (3.19) and 
the fact that α is a constant. In this context, using the first term of (3.19) in the third term of (3.21), we acquire

δ(2r − 3c + 4α2 − 8α(γ + μ)) = 0. (3.23)

In view of (3.23), next we first consider the case 2r = 3c − 4α2 + 8α(γ + μ). Recall that the scalar curvature is given by 
r = 3c + 2(αγ + αμ + γμ − δ2) with the aid of β = 0. It follows directly from the previous two equations that

4αγ + 4αμ − 4γμ − 4α2 + 4δ2 − 3c = 0.

On the other hand, making use of β = 0 in (3.8), we get

α(γ + μ) + 1

2
c − 2γμ + 2δ2 = 0.

Subtracting the last equation multiple of two from the previous one, we obtain α(γ + μ) = 2c + 2α2. Now, the scalar 
curvature becomes r = 19

2 c + 6α2, which is a constant. Consequently, the conformal flatness of M means that the curvature 
tensor is harmonic. However, this is impossible because of Theorem 1.2, and we conclude that (3.23) implies only one case, 
i.e. δ = 0.

The application of δ = 0 in the third term of (3.20) and the second term of (3.21) give

4ακ3(γ − μ) + γ (2r − 3c − 8αγ − 4αμ) = 0,

and

4ακ3(γ − μ) + μ(3c + 4αγ + 8αμ − 2r) = 0,

respectively. The addition of one of the above two equations to the other one gives

(γ − μ)(2r − 3c + 8α(κ3 − γ − μ)) = 0. (3.24)

If γ = μ, using δ = β = 0 in (3.8), we have 4αμ − 4μ2 + c = 0. It follows that either μ does not exist or it is a constant. For 
the latter case, we observe that the scalar curvature r = 3c + 2(αγ + αμ + γμ) is still a constant, which is a contradiction.

Finally, by γ �= μ, it follows from (3.24) that

r = 3

2
c − 4ακ3 + 4α(γ + μ). (3.25)

Taking differentiation of (3.25) along U , together with the first term of (3.20), we obtain U (κ3) = 0, where we have applied 
the fact that α is a nonzero constant. Actually, if α = 0, by (3.25), the scalar curvature is a constant, which is a contradiction. 
Similarly, taking differentiation of (3.25) along φU , together with the first term of (3.21), we obtain φU (κ3) = 0. Moreover, 
with the aid of (3.19) and ξ(r) = 0, taking differentiation of (3.25) along ξ , we obtain ξ(κ3) = 0. This means that κ3 is a 
constant. By means of β = δ = 0, now (3.8) becomes

α(γ + μ) + 1

2
c − 2γμ = 0. (3.26)

Recall that the scalar curvature is given by r = 3c + 2(αγ + αμ + γμ). Comparing this with (3.25) gives 4α(γ + μ) =
8ακ3 + 3c + 4γμ. Obviously, substituting this relation in (3.26), we acquire 4γμ = 8ακ3 + 5c, a constant. Thus, it follows 
from (3.26) that γ + μ is a constant and hence by (3.25) the scalar curvature r is also a constant, which is a contradiction. 
This completes the proof. �
Remark 3.1. Let M be an almost contact metric manifold of dimension three such that the Reeb vector field ξ is an eigen-
vector field of the Ricci operator. M can be conformally flat if it is a contact metric manifold (see [2]), an almost Kenmotsu 
manifold (see [22]) or an almost coKähler manifold (see [4,23]). What is interesting is that, however, by Theorem 1.4, as an 
almost contact metric manifold, a real hypersurface in CP 2 or CH2 with ξ an eigenvector field of the Ricci operator cannot 
be conformally flat.
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Remark 3.2. A real hypersurface in a nonflat complex space form is said to be totally η-umbilical if the shape operator is 
given by A = aid + bη ⊗ ξ for some constants a, b and id denotes the identity transformation. Cho in [3, Proposition 5.6]
proved that a totally η-umbilical real hypersurface in a nonflat complex space form of complex dimension two does not 
admit conformally flat structure. Our Theorem 1.4 is an extension of the above result because the total η-umbilication of 
the shape operator A implies that ξ is an eigenvector field of the Ricci operator.
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