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r é s u m é

Nous montrons que les fers à cheval hyperboliques non uniformes de Palis et Yoccoz 
apparaissent dans la famille standard des difféomorphismes du tore de dimension 2
préservant l’aire.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In their tour-de-force work about the dynamics of surface diffeomorphisms, Palis and Yoccoz [2] proved that the so-called 
non-uniformly hyperbolic horseshoes are very frequent in the generic unfolding of a first heteroclinic tangency associated with 
periodic orbits in a horseshoe with Hausdorff dimension slightly bigger than one.

In the same article, Palis and Yoccoz gave an ad hoc example of a 1-parameter family of diffeomorphisms of the two-
sphere fitting the setting of their main results, and thus exhibiting non-uniformly hyperbolic horseshoes: see page 3 (and, 
in particular, Figure 1) of [2].

In this note, we show that the standard family fk : T2 → T
2, k ∈R,

fk(x, y) := (−y + 2x + k sin(2πx), x)

of area-preserving diffeomorphisms of the two-torus T2 = R
2/Z2 displays non-uniformly hyperbolic horseshoes.

More precisely, our main theorem is:

Theorem 1.1. There exists k0 > 0 such that, for all |k| > k0 , the subset of parameters r ∈ R such that |r − k| < 4/k1/3 and fr exhibits 
a non-uniformly hyperbolic horseshoe (in the sense of Palis–Yoccoz [2]) has positive Lebesgue measure.
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The remainder of this text is divided into three sections: in Section 2, we briefly recall the context of Palis–Yoccoz work 
[2]; in Section 3, we revisit some elements of Duarte’s construction [1] of tangencies associated with certain (uniformly 
hyperbolic) horseshoes of fk; finally, we establish Theorem 1.1 in Section 4 by modifying Duarte’s constructions (from 
Section 3) in order to apply the Palis–Yoccoz results (from Section 2).

2. Non-uniformly hyperbolic horseshoes

Suppose that F is a smooth diffeomorphism of a compact surface M displaying a first heteroclinic tangency associated 
with periodic points of a horseshoe K , that is:

• ps, pu ∈ K belong to distinct periodic orbits of F ;
• W s(ps) and W u(pu) have a quadratic tangency at a point q ∈ M \ K ;
• for some neighborhoods U of K and V of the orbit O(q), the maximal invariant set of U ∪ V is precisely K ∪O(q).

Assume that K is slightly thick in the sense that its stable and unstable dimensions ds and du satisfy ds + du > 1 and

(ds + du)2 + max(ds,du)2 < ds + du + max(ds,du)

Remark 2.1. Since the stable and unstable dimensions of a horseshoe of an area-preserving diffeomorphism F always coin-
cide, a slightly thick horseshoe K of an area-preserving diffeomorphism F has stable and unstable dimensions:

0.5 < ds = du < 0.6

In this setting, the results proved by Palis and Yoccoz [2] imply the following statement.

Theorem 2.2 (Palis–Yoccoz). Given a 1-parameter family (Ft)|t|<t0 with F0 = F and generically unfolding the heteroclinic tangency 
at q, the subset of parameters t ∈ (−t0, t0) such that Ft has a non-uniformly hyperbolic horseshoe1 has positive Lebesgue measure.

3. Horseshoes and tangencies in the standard family

The standard family fk generically unfolds tangencies associated with very thick horseshoes �k : this phenomenon was 
studied in details by Duarte [1] during his proof of the almost denseness of elliptic islands of fk for large generic parame-
ters k.

In the sequel, we review some facts from Duarte’s article about �k and its tangencies (for later use in the proof of our 
Theorem 1.1).

For technical reasons, it is convenient to work with the standard family fk and their singular perturbations

gk(x, y) = (−y + 2x + k sin(2πx) + ρk(x), x),

where ρk is defined in Section 4 of [1]. Here, it is worth to recall that the key features of ρk are:

• ρk has poles at the critical points ν± = ±1/4 + O (1/k) of the function 2x + k sin(2πx);
• ρk vanishes outside |x ± 1

4 | ≤ 2
k1/3 .

In Section 2 of [1], Duarte constructs the stable and unstable foliations Fs and Fu for gk . As it turns out, Fs , resp. 
Fu , is an almost vertical, resp. horizontal, foliation in the sense that it is generated by a vector field (αs(x, y), 1), resp. 
(1, αu(x, y)), satisfying all properties described in Section 2 of Duarte’s paper [1]. In particular, Fs , resp. Fu , describe the 
local stable, resp. unstable, manifolds for the standard map fk at points whose future, resp. past, orbits stay in the region 
{ fk = gk}, resp. { f −1

k = g−1
k }.

In Section 3 of [1], Duarte analyzes the projections πs and πu obtained by thinking the foliations Fs and Fu as fibrations 
over the singular circles Cs = {(x, ν+) ∈ T

2} and Cu = {(ν+, y) ∈ T
2}. Among many things, Duarte shows that the circle map 

�k : S1 → S
1 defined by

(�k(x), ν+) := πs(gk(x, ν+)) or, equivalently, (ν+,�k(y)) = πu(g−1
k (ν+, y))

is singular expansive with small distortion.

1 We are not going to recall the definition of non-uniformly hyperbolic horseshoes here: instead, we refer the reader to the original article [2] for the 
details.
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In Section 4 of [1], Duarte considers a Cantor set

Kk =
⋂

n∈N
�−1

k ( J0 ∪ J1)

of the circle map �k associated with a Markov partition J0 ∪ J1 ⊂ [−1/4, 3/4] with the following properties:

• the extremities of the intervals J0 = [a, b] and J1 = [b′, a′ + 1] satisfy a + 1
4 , 14 − b, − 1

4 − a′, b′ − 1
4 , ∈ ( 3

k1/3 , 4
k1/3 ), so that 

J0 and J1 are contained in the region {ρk = 0};
• �k(a) = a = �k(a′), �k(b) = a′ = �k(b′).

In particular, Duarte uses these features of Kk to prove that

�k = (πs)−1(Kk) ∩ (πu)−1(Kk)

is a horseshoe of both gk and fk .
In Section 5 of [1], Duarte studies the tangencies associated with the invariant foliations of �k . More concretely, denote 

by Gu = ( fk)∗(Fu) the foliation obtained by pushing the almost horizontal foliation Fu by the standard map fk . The vector 
fields (βu(x, y), 1) defining Gu and (αs(x, y), 1) defining Fs coincide along two (almost horizontal) circles of tangencies 
{(x, σ+(x) : x ∈ S

1} ∪ {(x, σ−(x) : x ∈ S
1} (with |σ±(x) − ν±| ≤ 1

270 k5/3 and |σ ′±(x)| ≤ 1
12 k4/3 for all x ∈ S

1). The projections of 
�k along Fs and Gu on the circle of tangencies {(x, σ+(x)) : x ∈ S

1} define two Cantor sets

K s
h = {(x,σ+(x)) : x ∈ S

1} ∩ (πs)−1(Kk)

and

K u
h = {(x,σ+(x)) : x ∈ S

1} ∩ fk((πu)−1(Kk))

whose intersection points x ∈ K s
h ∩ K u

h are points of tangencies between the invariant manifolds of �k . Furthermore, it is 
shown in Propositions 18 and 20 of [1] that these tangencies are quadratic2 and unfold generically3.

4. Proof of Theorem 1.1

After these preliminaries on the works of Palis–Yoccoz and Duarte, we are ready to prove the main result of this note.
The standard map fk has fixed points at ps = (0, 0) ∈ �k and pu = (− 1

12 + O ( 1
k ), − 1

12 + O ( 1
k )) ∈ �k .

The local stable leaf Fs(ps) is tangent to some leaf of Gu at a point q. Since Kk is 2
k1/3 -dense in S1 (cf. page 394 of [1]), 

and fk sends the vertical circle f −1
k ({(x, σ+(x)) : x ∈ S

1}) := {(ρ+(x), x) : x ∈ S
1} into the horizontal circle {(x, σ+(x)) : x ∈ S

1}
as a C1-perturbation of size 1

81k2 of a rigid rotation (cf. page 397 of [1]), we can find a point of K u
h in the 7

2 k1/3 -neighborhood 
of the tangency point q ∈ {(x, σ+(x)) : x ∈ S

1}.
Therefore, the fact that the tangency at q unfolds generically (cf. footnote 3) permits to take a parameter |k − k| < 4

k1/3

such that the local stable leaf Fs(ps) is tangent to the unstable manifold of some point of �k .
Because the unstable manifold of the fixed point pu is dense in �k (and the tangencies unfold generically), we can 

replace k by a parameter |r −k| < 4
k1/3 such that the local stable manifold Fs(ps) has a quadratic tangency with the unstable 

manifold of pu at q, which is unfolded generically.
Next, we observe that the right part of a small neighborhood of q in the circle of tangencies is transversal to leaves of 

Fs to the right of ps , and the left part of a small neighborhood of q in the circle of tangencies is transversal to a certain 
(fixed) iterate of the leaves of Fu which are either all above or all below pu . In the former, resp. latter, case, we consider a 
Markov partition I− ∪ I0 ∪ I1 for the singular expansive map �r : S1 → S

1 where:

• I0 has extremities πs(ps) and a ∈ [ 1
8 , 18 + 1

k1/3 ];
• I1 has extremities b ∈ [ 15

32 − 1
k1/3 , 15

32 ] and c ∈ [ 19
32 , 19

32 + 1
k1/3 ];

• I− has extremities πu(pu) and d ∈ [− 1
48 , − 1

48 + 1
k1/3 ], resp. d ∈ [− 7

48 − 1
k1/3 , − 7

48 ];
• �r(c) = πu(pu), �r(b) = c = �r(d) and �r(a) = d, resp. �r(a) = πu(pu), �r(d) = πs(ps), �r(c) = d and �r(b) = c.

This defines a Cantor set

Lr :=
⋂

n∈N
�−n

r (I− ∪ I0 ∪ I1)

2 The difference in curvatures at tangency points is ≥ 4π2k − 3
k1/3 .

3 The leaves of Fs move with speed ≤ 3
2/3 and the leaves of Gu move with speed ≥ 1 − 3

2/3 .

k k
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and a horseshoe

	r := (πs)−1(Lr) ∩ (πu)−1(Lr)

containing ps and pu .
By definition, we can select neighborhoods U of 	r and V of the orbit O(q) of q such that the fr -maximal invariant set 

of U ∪ V is exactly 	r ∪O(q): this happens because our choices were made so that the local stable leafs of 	r approach q
only from the right, while certain (fixed) iterates of the local unstable manifolds of 	r approach q only from the left.

Therefore, we can conclude Theorem 1.1 from the Palis–Yoccoz work (cf. Theorem 2.2) once we verify that 	r is slightly 
thick.

In view of Remark 2.1, our task is reduced to check that the stable and unstable Hausdorff dimensions of 	r are com-
prised between 0.5 and 0.6. In this direction, note that these Hausdorff dimensions coincide with the Hausdorff dimension 
d(r) of Lr . Moreover, the distortion constant C1(r) of �r is small (namely, 0 ≤ C1(k) ≤ 9

k1/3 , cf. page 388 of [1]). Hence, d(r)
is close to the solution κ(r) to the “Bowen’s equation”

(length I−)κ(r) + (length I0)
κ(r) + (length I1)

κ(r) = (length I)κ(r)

where I is the convex hull of I− ∪ I0 ∪ I1. Since length I− = 1
16 + O ( 1

k1/3 ), length I0 = length I1 = 1
8 + O ( 1

k1/3 ),

length I = 19

32
+ 1

12
+ O (

1

k1/3
), resp.

19

32
+ 7

48
+ O (

1

k1/3
)

and

(1/16)0.5809... + (1/8)0.5809... + (1/8)0.5809... = (65/96)0.5809... , resp.

(1/16)0.5546... + (1/8)0.5546... + (1/8)0.5546... = (71/96)0.5546... ,

we derive that 0.554 < d(r) < 0.581. This completes the argument.
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