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We give a statistical interpretation of entropic optimal transport by showing that 
performing maximum-likelihood estimation for Gaussian deconvolution corresponds to 
calculating a projection with respect to the entropic optimal transport distance. This 
structural result gives theoretical support for the wide adoption of these tools in the 
machine learning community.
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r é s u m é

Cette note donne un interprétation statistique du transport optimal entropique : on montre 
que l’estimateur du maximum de vraisemblance en deconvolution gaussienne correspond à 
la projection de la loi empirique des données au sens de la distance définie par le transport 
optimal entropique. Ce résultat structurel donne une justification théorique, qui soutient 
l’adoption massive de ces outils par la communauté de l’apprentissage automatique.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Optimal transport is a fundamental notion with arising in several branches of mathematics, including probability, anal-
ysis and statistics. More recently, it has found new applications in computational domains such as machine learning and 
image processing [2,6,12,23,30,36,37,41]. This newfound utility was largely fueled by algorithmic advances allowing optimal 
transport distances to be computed quickly between large scale discrete distributions [31]. At the heart of these algorithmic 
techniques is the idea of entropic penalization, which has been leveraged to obtain near-linear-time approximation schemes 
for optimal transport distances [1,13,42]. Hereafter, we refer to this technique as entropic optimal transport. This line of well 
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established computational research stands in sharp contrast with our statistical understanding of regularization for optimal 
transport, which is still in its infancy [18]. Entropic regularization has been shown to play a central statistical role in a 
variety of problems related to model selection [14–16,24,32–34] but our knowledge of its effect on optimal transport is 
currently limited to experimental evidence [13,31] without theoretical support.

In this note, we give a statistical interpretation of entropic optimal transport, showing that under some modeling as-
sumptions, it corresponds to the objective function in maximum-likelihood estimation for deconvolution problems involving 
additive Gaussian noise. This interpretation provides a first indication that optimal transport problems where data is sub-
ject to Gaussian observation error should be handled with entropic regularization. Moreover, our results indicate that in 
the same context, a relaxed version of optimal transport should be preferred, as it is equivalent to maximum-likelihood 
estimation even in absence of said modeling assumptions.

2. Entropic optimal transport

Throughout we denote by γ a probability measure on Rd × R
d and by ‖ · ‖ the Euclidean norm over Rd . Given such a 

measure, we denote by πXγ and πY γ the two measures on Rd obtained by projecting onto the first and second component, 
respectively. Given probability measures μ and ν on Rd , define

M(μ,ν) := {γ : πXγ = μ,πY γ = ν} and M(μ) := {γ : πY γ = μ} .

We also recall the definition of Kullback–Leibler (KL) divergence between probability measures μ and ν:

D(μ‖ν) =
{ ∫

log
( dμ

dν

)
dμ, if μ � ν

∞, otherwise.

Definition 2.1. The entropic optimal transport distance between μ and ν is

Wσ 2(μ,ν) := min
γ ∈M(μ,ν)

∫
1

2
‖x − y‖2 dγ (x, y) + σ 2 I(γ ) , (1)

where I(γ ) is the mutual information defined by

I(γ ) := D(γ ‖πXγ ⊗ πY γ ) .

Note that when σ = 0, this corresponds the squared 2-Wasserstein distance between probability measures over Rd [38]. 
When σ > 0, Wσ 2 no longer satisfies the axioms of a (squared) distance, but it still possesses useful distance-like prop-
erties [13]. We employ the term “distance” for all values of σ for terminological consistency. When μ and ν are discrete 
measures, the minimizer of (1) is also discrete and agrees with the minimizer of

min
γ ∈M(μ,ν)

∫
1

2
‖x − y‖2 dγ (x, y) − σ 2 H(γ ) , (2)

where H is the standard Shannon entropy:

H(γ ) :=
∑

i j

γi j log
1

γi j
,

where γi j := γ (xi, y j) for (xi, y j) ∈ supp(γ ). Note that (2) is the definition proposed by [13] for discrete measures, 
whereas (1) corresponds to the appropriate generalization studied in [20] for measures that are not necessarily discrete. 
It is not hard to check that Wσ 2 (μ, ν) < ∞ for any pair (μ, ν) possessing finite second moments, since the independent 
coupling μ ⊗ ν in the minimization that appears in (1) leads to a finite objective value.

A maximum-likelihood interpretation of entropic optimal transport is already known in the context of a large-deviation 
principle for Brownian motion [26]. In this context, given two distributions μ and ν (viewed as the positions of particles 
at times t = 0 and t = 1), Schrödinger [40] gave a heuristic argument motivated by statistical physics establishing that the 
law of independent particles undergoing Brownian motion conditioned on having initial and final distributions μ and ν
respectively is induced by the solution to the optimal transport problem with entropic regularization [26]. While suggestive, 
this interpretation does not hold any immediate implications for estimation problems where only data is available rather 
than distributions μ and ν . Below, we introduce the classical deconvolution model for corrupted observations and show 
that in this context, entropic optimal transport is precisely the maximum-likelihood estimator.



1230 P. Rigollet, J. Weed / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1228–1235
3. Deconvolution

Let P be a given family of probability distributions over Rd with finite second moments and let P∗ be an unknown dis-
tribution, also with finite second moment. The deconvolution problems consists in estimating P∗ on the basis of corrupted 
observations Y1, . . . , Yn , where

Yi = Xi + Zi , i = 1, . . . ,n , (3)

and the errors Z1, . . . , Zn are independent of X1, . . . , Xn . For identifiability purposes, the random variables {Zi} are assumed 
to be independent copies of a random variable Z with known distribution: Z ∼N (0, σ 2) where the variance σ 2 is known.

In this context, the distribution of Yi admits a density ϕσ � dP∗ with respect to λ where, for any P ∈P , we define

ϕσ � dP (y) =
∫

ϕσ (y − x)dP (x) (4)

and ϕσ denotes the density of Z ∼N (0, σ 2). Under these assumptions, we call (3) the Gaussian deconvolution model.
Deconvolution is a classical question of nonparametric statistics [7,8,17] and is core to mixture models [28] as well 

as statistical models with measurement errors [9]. As such, it has received significant attention from the statistics litera-
ture. More recently, it was shown that deconvolution has strong methodological and mathematical connections to optimal 
transport in the context of a problem known as uncoupled regression [35].

A natural candidate to estimate P∗ is the maximum-likelihood estimator (MLE) P̂ defined by

P̂ = argmax
P∈P

n∑
i=1

logϕσ � dP (Yi) . (5)

The statistical properties of the MLE are well known and have been established under general conditions on the class P [5,
22]. In the next section, we show that entropic optimal transport is in fact implementing P̂ .

4. Entropic optimal transport is maximum-likelihood deconvolution

In this section, we adopt the Gaussian deconvolution model (3) of the previous section. The extension to other distribu-
tions for the corruption errors {Zi} is postponed to Section 5.

Our main result involves families of distributions satisfying a particular closure condition.

Definition 4.1. A class P of probability measures is said to be closed under domination if Q � P for some P ∈P implies that 
Q ∈P .

This definition appears to be new. However, many families of distributions common in statistics are closed under domina-
tion. For example the class of all measures, the class of all measures absolutely continuous with respect to some reference 
measure σ , the class of discrete measures, and the set of measures whose support is finite or contains at most k points 
all possess this property. A class P of probability measures may always be augmented to be closed under domination by 
adding to it the set of probability measures 

⋃
P∈P {Q : Q � P }. The extension to families not closed under domination is 

considered in Section 5.
We are now in a position to state our main result: a structural representation of the maximum-likelihood estimator P̂ in 

terms of entropic optimal transport.

Theorem 4.2. Let P be a class of probability measures that is closed under domination and assume the Gaussian deconvolution 
model (3). Then the maximum-likelihood estimator P̂ over P defined in (5) satisfies:

P̂ = argmin
P∈P

Wσ 2

(
P ,

1

n

n∑
i=1

δyi

)
.

In other words, the maximum-likelihood estimator P̂ is the projection of the empirical measure 1
n

∑n
i=1 δyi onto P with respect to the 

entropic optimal transport distance Wσ 2 .

The projection estimator argminP∈P Wσ 2

(
P , 1n

∑n
i=1 δyi

)
has been employed in the machine learning community [21,29]

as a smoothed version of a minimum Kantorovich distance estimator [3] more suitable for optimization. Theorem 4.2 shows 
that this estimator has a statistical interpretation in addition to its computational benefits.

As noted above, in the special case when σ 2 = 0, the quantity Wσ 2 reduces to the squared 2-Wasserstein distance W . 
In the context of Gaussian mixture models, when P is the class of probability distributions supported on at most k points, 
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solving argminP∈P W (P , 1n
∑n

i=1 δyi

)
corresponds to performing a “hard” clustering of the data by minimizing the k-means 

objective. It is known, however, that hard k-means clustering does not lead to consistent estimation of the centroids in a 
mixture of Gaussians model, whereas consistent estimation can be achieved with the MLE, which induces a relaxed “soft” 
clustering [25]. Theorem 4.2 implies that replacing W by Wσ 2 precisely corresponds to this relaxation.

Proof. Write for simplicity 
P := logϕσ � dP . By (4), we have


P (yi) = C + log
∫

exp
( − 1

2σ 2
‖x − yi‖2)dP (x) ,

where C is a constant not depending on yi or P . The Gibbs variational principle [10, Equation (5.2.1)] then implies that


P (yi) = C − 1

σ 2
min

Q i

{
1

2
E

x∼Q i

‖x − yi‖2 + σ 2 D(Q i ‖ P )

}
,

where the minimization is taken over probability measures on Rd . Then, by definition of the MLE, we have

P̂ = argmin
P∈P

min
Q 1,...,Q n

1

n

n∑
i=1

[
1

2
E

x∼Q i

‖x − yi‖2 + σ 2 D(Q i ‖ P )

]
.

Next, given any set of n distributions {Q 1, . . . , Q n} on Rd , we can define the joint probability measure γ̄ on Rd ×{y1, . . . , yn}
by

γ̄ := 1

n

n∑
i=1

Q i ⊗ δyi .

Note that πY γ̄ = U , the uniform distribution on {y1, . . . , yn}. Conversely, for any joint probability measure γ on Rd ×
R

d satisfying πY γ = U , we can decompose γ as 1
n

∑n
i=1 Q i ⊗ δyi for some Q 1, . . . , Q n . This bijection between sets of n

probability measures {Q 1, . . . , Q n} on Rd and joint measures γ ∈M(U ) satisfies the equality

1

n

n∑
i=1

[
1

2
E

x∼Q i

‖x − yi‖2 + σ 2 D(Q i ‖ P )

]
= 1

2
E

(x,y)∼γ
‖x − y‖2 + σ 2 D(γ̄ ‖ P ⊗ U ) .

We can therefore leverage this bijection to rewrite P̂ as

P̂ = argmin
P∈P

min
γ ∈M(U )

{
1

2
E

(x,y)∼γ
‖x − y‖2 + σ 2 D(γ ‖ P ⊗ U )

}
.

By Lemma 6.1,

D(γ ‖ P ⊗ U ) = I(γ ) + D(πXγ ‖P ) ,

where we have used that D(πY γ ‖U ) = 0 for any γ ∈M(U ). We obtain

P̂ = argmin
P∈P

V (P ) ,

where

V (P ) := min
γ ∈M(U )

{
1

2
E

(x,y)∼γ
‖x − y‖2 + σ 2 I(γ ) + σ 2 D(πXγ ‖P )

}
. (6)

Next, for any P ∈ P , denote by γP the coupling that achieves the minimum in the definition (1) of Wσ 2 (P , U ) and 
observe that since D(πXγP ‖P ) = 0, we get

V (P ) ≤ 1

2
E

(x,y)∼γP

‖x − y‖2 + σ 2 I(γP ) = Wσ 2(P , U ) < ∞ ,

since P has finite second moment. We now show that the functions P 
→ V (P ) and P 
→ Wσ 2 (P , U ) achieve their minimum 
over P at the same P . To that end, observe that since V (P ) < ∞, the minimum in the definition (6) of V may be restricted 
to couplings γ such that πXγ � P , since otherwise D(πXγ ‖P ) is infinite. Thus,
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min
P∈P V (P ) = min

P∈P min
γ ∈M(U )
πX γ �P

{
1

2
E

(x,y)∼γ
‖x − y‖2 + σ 2 I(γ ) + σ 2 D(πXγ ‖P )

}
(7)

≥ min
P∈P min

γ ∈M(U )
πX γ �P

{
1

2
E

(x,y)∼γ
‖x − y‖2 + σ 2 I(γ )

}

= min
P∈P min

γ ∈M(P ,U )

{
1

2
E

(x,y)∼γ
‖x − y‖2 + σ 2 I(γ )

}
(8)

= min
P∈P Wσ 2(P , U ) ,

where in the inequality we used that D(πXγ ‖P ) ≥ 0. To justify the equality in (8), we use the fact that P is closed under 
domination, which implies that

{γ : ∃P ∈ P s.t. γ ∈ M(U ),πXγ � P } = {γ : γ ∈ M(U ),πXγ ∈ P}
= {γ : ∃P ∈ P s.t. γ ∈ M(P , U )} .

Since 1
2 E

(x,y)∼γ
‖x − y‖2 + σ 2 I(γ ) depends only on γ and the constraints on γ are the same, the equality holds.

In light of the fact that minP∈P V (P ) = minP∈P Wσ 2 (P , U ), we conclude that P̂ = argminP∈P Wσ 2

(
P , 1n

∑n
i=1 δyi

)
, as 

claimed.

5. Extensions

5.1. Relaxed transport

Traditional parametric classes of distributions P are often not closed under domination. For example, the one-
dimensional scale/location family with template density ϕ with respect to the Lebesgue measure Leb on R is defined 
by

P =
{

P : dP

dLeb
(·) = 1

τ
ϕ

( · − μ

τ

)
,μ ∈ R, τ > 0

}
.

Clearly P is not closed under domination. In such cases, Theorem 4.2 can fail to hold as illustrated by Proposition 5.1 below. 
However, it follows from (7) in the proof of Theorem 4.2 that the following representation for the MLE always holds:

P̂ = argmin
P∈P

W rel
σ 2

(
P ,

1

n

n∑
i=1

δyi

)
,

where W rel
σ 2 denotes the relaxed entropic optimal transport distance defined for any probability measures μ, ν by

W rel
σ 2(μ,ν) = min

γ ∈M(ν)
πX γ �μ

∫
1

2
‖x − y‖2 dγ (x, y) + σ 2[I(γ ) + D(πXγ ‖μ)

]
.

This result indicates that it may be preferable to use relaxed transport in statistical contexts. Relaxing the marginal con-
straints in the optimal transport problem is an idea which has attracted significant recent interest [11,19,27] after it was 
first formally proposed in [4] under the name “unbalanced transport” to generalize optimal transport to apply to nonnega-
tive measures with different total mass. Relaxed optimal transport has since been used to improve robustness to sampling 
noise in statistical applications [39].

We now exhibit a simple example of a class P that is not closed under domination and for which Theorem 4.2 fails to 
hold. For any σ > 0, let P = {P1, P2} where P1 and P2 are two probability measures on the real line defined respectively by

P1 := 1

2
(δ0 + δ4σ ) and P2 := 1

2
(δ2σ + δ6σ ).

Let X ∼ P1 and let Y = X + Z where Z ∼N (0, σ 2) is independent of X .

Proposition 5.1. With probability at least .15, we have

P1 = argmin
P∈P

Wσ 2(P , δY ) , and P2 = argmax
P∈P

logϕσ � dP (Y ) .

In other words, the maximum-likelihood estimator and the projection with respect to the entropic optimal transport distance do not 
agree.
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Proof. By rescaling, it suffices to consider the case σ 2 = 1. For each P ∈P , the set M(P , δY ) contains only the independent 
coupling P ⊗ δY , for which the mutual information vanishes. Therefore,

Wσ 2(P1, δY ) = W0(P1, δY ) = 1

4
(Y 2 + (Y − 4)2) Wσ 2(P2, δY ) = 1

4
((Y − 2)2 + (Y − 6)2) ,

so that P1 is the unique minimizer over P of Wσ 2 (P , δY ) as long as Y < 3.
On the other hand, P2 is the unique maximum-likelihood estimator if

e−Y 2/2 + e−(Y −4)2/2 < e−(Y −2)2/2 + e−(Y −6)2/2 ,

and it can be checked that this condition holds on the interval [1.01, 3).
Therefore, if Y ∈ [1.01, 3), then the claimed situation occurs. To conclude the proof, it suffices to observe that P1(1.01 ≤

Y < 3) ≥ .5P(1.01 ≤ |Z | ≤ 2.99) ≥ .15.

5.2. General noise distribution

In the is section, we raise the question of non-Gaussian deconvolution that arises when the errors {Zi } are not Gaussian. 
It turns out that a simple modification of our argument can be made to accommodate any noise distribution that admits a 
density f with respect to the Lebesgue measure on Rd . In this context, the MLE takes the form

P̂ = argmax
P∈P

n∑
i=1

log f � dP (Yi). (9)

The use of the squared Euclidean norm 1
2σ 2 ‖x − y‖2 in the objective (1) is tailored to Gaussian errors and may be 

replaced with − log f (x − y). After rescaling by σ 2, we define

W f (μ,ν) := min
γ ∈M(μ,ν)

−
∫

log f (x − y)dγ (x, y) + I(γ ) .

We assume in what follows that log f (· − y) ∈ L1(P ) for all y ∈ R
d and P ∈ P . The following proposition is stated without 

proof as it follows from exactly the same arguments as Theorem 4.2.

Proposition 5.2. Let P be a class of probability measures that is closed under domination and assume the deconvolution model (3)
where Zi has density f with respect to the Lebesgue measure. Then the maximum-likelihood estimator P̂ over P defined in (9) satisfies:

P̂ = argmin
P∈P

W f

(
P ,

1

n

n∑
i=1

δyi

)
.

In other words, the maximum-likelihood estimator P̂ is the projection of the empirical measure 1
n

∑n
i=1 δyi onto P with respect to the 

entropic optimal transport distance W f .

In the case where f (z) ∝ exp(−‖z‖p
p), the cost − log f (x − y) corresponds to the 
p metric arising in the definition of the 

p-Wasserstein distance. Another intriguing example is the cost − log cos2(‖x − y‖ ∧ π/2), which appears in the definition 
of the Wasserstein–Fisher–Rao [11] or Hellinger–Kantorovich [27] distance between positive measures. These formulations 
differ from ours in that they consider a version of relaxed transport which allows for misspecification of both marginals; 
nevertheless, our analysis suggests that inference involving these distances is likely to be robust to convolutional noise Z
supported on the Euclidean ball of radius π/2 around the origin with density

f (z) ∝ cos2(‖z‖)1(‖z‖ ≤ π

2

)
.

The Wasserstein–Fisher–Rao/Hellinger–Kantorovich distance is motivated by a dynamic formulation of unbalanced transport 
and it is unclear whether the above noise distribution plays a special role in the context of deconvolution.

6. Additional lemmas

Lemma 6.1. Let γ be a measure on Rd ×R
d, and let α and β be probability measures on Rd. Then

D(γ ‖α ⊗ β) = I(γ ) + D(πXγ ‖α) + D(πY γ ‖β) .
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Proof. We assume γ � πXγ ⊗ πY γ � α ⊗ β , since otherwise both sides are infinite. Under this condition, we have

D(γ ‖α ⊗ β) =
∫

log
dγ

dαdβ
(x, y)dγ (x, y)

=
∫

log
dγ

dπXγ dπY γ
(x, y)dγ (x, y) +

∫
log

dπXγ dπY γ

dαdβ
(x, y)dγ (x, y)

= I(γ ) +
∫

log
dπXγ

dα
(x, y)dγ (x, y) +

∫
log

dπY γ

dβ
(x, y)dγ (x, y)

= I(γ ) +
∫

log
dπXγ

dα
(x)dπXγ (x) +

∫
log

dπY γ

dβ
(y)dπY γ (y)

= I(γ ) + D(πXγ ‖α) + D(πY γ ‖β) .
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