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RESUME

Dans cette Note, nous étudions I'erreur d’approximation d’une fonction analytique définie
comme une transformée de Laplace-Stieltjes d’ordre fini, qui converge dans le demi-
plan gauche. Nous obtenons des théorémes reliant cette erreur, les coefficients et I'ordre
d’'approximation de la transformation de Laplace-Stieltjes.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For Dirichlet series
o0
f(s):Zane*”s, s=o0 + it, (1)
n=1

where
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O<AM<h< <Ay <-,Ag—> 00 aS N — OC; (2)

s=o0 + it (o,t are real variables), a, are nonzero complex numbers. When ay, Ap, n satisfy some conditions, the series (1)
can converge in the whole plane or the half plane, that is, f(s) is an analytic function or entire function in the whole
plane or the half plane. In the past few decades, many mathematicians studied the growth and value distribution of analytic
(entire) functions defined by Dirichlet series, and obtained a lot of interesting results (see [7,12,19-21]).

As we know, the Dirichlet series is regarded as a special example of Laplace-Stieltjes transform. The Laplace-Stieltjes
transform, named after Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace
transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure; however, it is often defined for
functions with values in a Banach space. It can be used in many fields of mathematics, such as functional analysis, and
certain areas of theoretical and applied probability.

For Laplace-Stieltjes transforms,

+00
G(s) = / e *da(x), s=o0 + it, (3)
0

where o (x) is a bounded variation on any finite interval [0, Y](0 <Y < 400), and o and t are real variables. Let

X

B, = sup / e Vda(y)|,
An<X<Apy1,—00<t<4o00
n

where the sequence {A,};2, satisfies (2) and

limsup(Ap41 — Ap) =h < 4o00. (4)
n——+4oo
In 1963, Yu [18] proved the Valiron-Knopp-Bohr formula for the associated abscissas of bounded convergence, absolute
convergence, and uniform convergence of Laplace-Stieltjes.

Theorem A. Suppose that Laplace-Stieltjes transformations (3) satisfy (2), (4) and lim sup laﬂ < +00, then
n—+oo "

log B log B} logn
limsuph <ol <limsup & " 4 limsup A

n—+o00 n n—+o00 n n—+o00 n

where o/l is called the abscissa of uniformly convergent of F(s).

Moreover, Yu [18] first introduced the maximal molecule M, (o, G), the maximal term wu(o, G), the Borel line, and
the order of analytic functions represented by Laplace-Stieltjes transformations convergent in the complex plane. After
his works, considerable attention has been paid to the growth and the value distribution of the functions represented by
Laplace-Stieltjes transformation convergent in the half-plane or whole complex plane in the field of complex analysis (see
[1,2,4,5,9,13,14]).

In 2012, Luo and Kong [8] proposed the following form for the Laplace-Stieltjes transform,

+0o0
F(s) = / e*da(x), s=o0 + it, (5)
0
where o (x) is stated as in (3), and {A,} satisfies (2), (4). Set

X

Al = sup /eityda(y) .
An<X<Ap41,—00<t<400
n
By using the same argument as in [18], we can get a similar result about the abscissa of uniformly convergent F(s) easily.
If

. n . log A;,
limsup— =D < oo, limsup
n—-+4o00 n n—-+4o00 n

=0, (6)

by (2), (4) and Theorem A, one can get that auF =0, i.e., F(s) is analytic in the left half-plane. Set

u(a,m:ma&cm:e*"”} (0 <0), M(o,F)= sup |F(o+ i),
ne

—oo<t<+400
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X

My(o, F) = sup /e(“+“)yda(y) , (0 <0).

O<x<+400,—00<t<+00

Remark 1.1. From (6), for any o < 0, we have

. log A% + Apo .
lim sup 08 A4p + 200 =0 <0, or limsuplog A:e*"(’ = —00.
n—400 An n—-+o00

This shows that w(o, F) exists.

We denote L, to be the class of all the functions F(s) of the form (5) that are analytic in the half plane His < o(—o0 <
o < o0) and the sequence {\,} satisfies (2) and (4), and denote L to be the class of all the functions F(s) of the form (5)
that are analytic in the half-plane s < 0; the sequence {A,} satisfies (2), (4), and (6). Thus, if —co <@ <0 and F(s) € L,
then F(s) € Ly; if 0 < o < 400 and F(s) € Ly, then F(s) € L. If the L-S transform (5) satisfies, Ay =0 forn>k+1, and

A} #0, then F(s) will be called an exponential polynomial of degree k, usually denoted by py, i.e., pr(s) = fokk exp(sy) da(y).
When we choose a suitable function «(y), the function py(s) may be reduced to a polynomial in terms of exp(sA;), that is,
Zi‘;l b; exp(si;). Similarly, we give the following definition.

Definition 1.1. If the Laplace-Stieltjes transform (5) satisfies ouF =0, the sequence {Ap} satisfies (2), (4) and (6) and

log" log" My (0. F)

o0 log(—1)

)

we say that F(s) is of order p in Res =o < 0, where log™ x = max{logx, 0}. If p € (0, +00), we say that F(s) is an analytic
function of finite order in the left half-plane.

Recently, many people studied some problems on analytic functions defined by L-S transformations and obtained a num-
ber of interesting results. Kong Y.Y., Sun D.C., Huo Y.Y,, and Xu H.Y. investigated the growth of analytic functions with kinds
of order defined by L-S transformations in the right half-plane (see [3,4,6,8,16]), and Shang L.N., Gao Z.S., etc., investigated
the value distribution of such functions (see [10,11,15,17]).

For F(s) € Ly, —00 < & < 400, we denote by E,(F,a) the error in approximating the function F(s) by exponential
polynomials of degree n in uniform norm as

En(F,)= inf |F—pla, n=12,...,
pelly
where
|F=plle= max [F(a+ it)—p(a+ i)l
—oo<t<+oo

In this paper, by using the properties on E,(F, ), we will further investigate the growth of analytic functions defined
by L-S transformations in the left half-plane. Moreover, we will deal with the relation between the order and type of F(s)
and E,(f,a), Ap. To state the results of this paper, we introduce some definitions and notations as follows.

Let p € (0, +00) and p(r)(r > rp) be a non-negative, continuous, monotonic function, which has left-hand derivative and
right-hand derivative in every r(> rp), such that

lim p(r) =p, lim p'(r)rlogr =0, (7)
r—+o00 r—-+o00

and set U(r) =™, which is a strictly increasing function of r in r > ro > To. Let

t=ru(r), r=W(), r>0,t>0, (8)
be two reciprocally inverse functions. From Ref. [22], for any positive real number k, we have
U (kr W (kt 1
im ( )=k", i ( )=k0+1. (9)
r—+oo U(r) t—+oo0 W (t)
For the L-S transformation (5), if
log* My (o, F
limsupgiu(l)=1, (10)
o0~ U(—5)

we call p(—%) the proximate order of (5) and U(—%) the type function of (5) in Res=0 <0.
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The main results of this paper are as follows.

Theorem 1.1. Suppose that the Laplace-Stieltjes transformations (5) of finite order p (0 < p < o0) satisfy (2), (4), (6), and for any real
number —oo < & < 0. Then

log" My (o, F 1 1+p
limsupogiu(la)=lc}limsupﬂn(F,a,An)z%, (11)
00" U(=5) n—+00 PP

where U (r) is defined by (8) and

+ f—
Qn(F,a, Ay) = log™ [En—1(F, &) exp{—aAn}]

u( *“ )
1og™ [En_1 (F.c0) exp{—in)]

Theorem 1.2. Suppose that Laplace-Stieltjes transformations (5) of finite order p (0 < p < 00) satisfy (2), (4), (6) and for any real
number —oo < o < 0. Then

logt My (o, F ; 14
Og—uga)=1<:>(i) limsuan(F,a,)\n)zw.
0—0~ U(=5) > 400 0P

’

(ii) There exists a non-decreasing positive integer sequence {n,} satisfying

(1+p)'*
pP

where U (r) is stated in Theorem 1.1 and

A
, lim —t —1q, (12)

lim Qn, (F, o, Ap,) =
V—+00 V—+00 Anv

log™ [En,_, (F, ) exp{—atin, }]

u Aoy
log*[En%] (F,a) exp{—atin, }]

Qn, (F, o, k) =

2. Some lemmas

The process of proofs of Lemmas 2.1-2.3 are similar to those in [16,21,22]; for the convenience of the reader, we will
give the complete proofs as follows.

Lemma 2.1. Let § and A be any positive real numbers, then

1
@(o)=48U <——) — Ao, o0 <0,
o

attains the minimum

1
L p+1 A (8p) T
§prt T ————(14+0(1)),A—> 400 at o=-— (1+0(1)), A > 400.
prt W) W)
Proof. For the definition of U (—%) we have

Then we can get

8 1 1 , 1 1 1
A=—=U|—-=])|p|-—=)+0|—=) —log—
o o o o —0 —0
sp 1
=—LU(-=)+0(1), (.~ +o0),
o o
as ¢'(o) =0.
With the value of o increased from —oo to 0, the value of ¢’(0) changes from a negative one to a positive one. Then,
from (7), (9) and the definition of ¢(o), we can get that ¢ (o) attains a minimum when
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1

__(@p)rr
o= W (14+0(1)), r— +o0,

and the minimum is

" 1

sU ( 1 @) ) +)»(i/\'(;):+l (1+0(1))
6p) 7 (14+0(1)) @)

1 [ SW (W)U (W (L))

+A6P) T (1 +o(1)>}

~ WG [ 30)7 (1 +01)
S [ ° +(Gp) 7T (1 +o(1)>}
WG L3077 (1 +0(1))
p+1 a
=81 ————(1 1 A .
e T ALt

Thus, we complete the proof of Lemma 2.1. O

Lemma 2.2. Let b and o be any negative real number, then

d(x) = W +ox,
attains the maximum
_P <—l> (1+0(1)), 00"
b(p + 1)P+1 o :
at
x= 1 <L>p+] —Ly (—l> (1+0(1), o—0.
b\p+1 o o ’

Proof. From (9), we can get

d  Um+rU'(dr dr  tW'(@)dt

- u(r) roor W@ t

Differentiating U (r) = r*™ and applying (7) and the above two equalities, we can have
tw’ (t) u()
W (t) U(r)+rU’(r) ,0+1
By (7), (9) and the above equality, we can have
W (bx) — bxW'(bx)
W2(bx)

1 »p
pr mw—()(]+0(l))+0 (x = +00).

Then we can get that

+0(1) (t— +00).

¢'(x) =

1 1
W(X)Z—lL(——)(l-i-O(l)) (X — +00)

paet p+1 o

as ¢'(x) =0, ie,

X= ! —(——)(1+0(1))U 1
e+l o paeT ,O'H o
_1( e\ 1)u( 1)1 1), (0 —07)
‘E<m> (~U (== ) a+o), (@

as ¢’(x) =0

67
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With the value of x increased from —oo to +oo, the value of ¢’(x) changes from a positive one to a negative one. Then,
from (7), (9), and the definition of ¢ (x), we can get that ¢ (x) attains its maximum when

1/ p ' 1 1 N

and the maximum is
+1
() ey e
) e
bW [(#) (-3 (-5)a +°(”)}

b
(e Y o (cDYasoan -2 (<Y v (=LY a +oa
= (m) (—g>( +o(1)) — b <m) (‘;)( +o(1))

_1Lu<_l> 1+0(1))
" b (p+1)PH! o ( .

Thus, we complete the proof of this lemma. O

p+1

Lemma 2.3. Let A > 0 and {A,,} be a strictly increasing sequence tending to co(v — oo) and satisfying An, > ArgU (rj)) where ) is

stated as in Section 1. If lim % =1, then there exists a monotone decreasing positive sequence {o,} convergent to 0, satisfying
V—+00 v

1 1

A 1 — & U(— - )
An:__u(__), lim 2\ o)

v V—00 1 1
BThA

Lemma 2.4. [20] If Dirichlet series f(s) = Y > | an exp{sin} is of order p(0 < p < +00), and satisfies (2), (4) and lim sup logi% =0,
n—oo

then

loglog M log* log™
limsup M =p = limsup og" log™ |an| _ P i
o0~ —log(—o) n—>+oo  l0gAp p+1

where M (o, f) is the maximum modular of Dirichlet series f(s).

Lemma 2.5. [18] If F(s) € L is of the order p (0 < p < +00), and satisfies (2), (4), and (6), then

loglog My (o, F log™ log™ A
limsupM = p < limsup %8 98 f_ _P_
o—0— - IOg(_U) n—+4o00 log Ay, p+1

Lemma 2.6. If the abscissa cruF = 0 of uniformly convergent to Laplace-Stieltjes transformation F (s), and the sequence (2) satisfies (4),
(6), then, for o (< 0) sufficiently approaching 0, we have i (o, F) <4My(o, F), and, for any real number y, we have

oo +00

/exp{(y +inylda(y)| <2 Arexp{yini).
Ak n=k
where

X

Al = sup /e"y da(y)|.
A <X<Ap41,—00<t<+00
Proof. Set
X
I(x; it) :/exp{ity}doc(y).
0

From (4), there exists n > 0 satisfying 0 < Ap41 —Ap <n (n=1,2,3,...). When o is sufficiently close to 0—, it follows that
e "9 < 2. When x > XA,, we have
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X X

/exp{ity}da(y) =fe_"y dyI(y; o +it)
An An
X
=I(y;o +it)e Y[} +U/e"7y1(y; o+ it)dy.
An

Then, for o <0, it follows that
X
f expfity}da(y)| < My(o, F)[le " + e~ 7% | + [e77% — e 7/n|]
An
<2My(o, F)e 7%,
Thus, for any o <0 and any x € (Ap, An+1], it follows that
X
/exp{ity}doc(y) <2My (o, F)e e~ < 4M, (o, F)e %%,
An
that is,
u(o, F) <4My(o, F).

Further, for any real number y, since f;f exp{(y + it)y}da(y) =, lim ff’ exp{(y + it)y}da(y), that is,
—+00 " K

o0 b
/exp{(y+ it)y}da(y) ZbEToo /exp{(y+ it)y}da(y)|.
Ak M

. b . . .
Set Ij i (b;it) = fAM exp{ity}do(y), (Ajyk <b < Xjtrs1), then we have |1 (b;it)| < A;f+k. Thus, it follows that

b
f exp{(y + i) y}de(y)
Ak
nk—1 Mt b
=[ Y [ explyyidylj(y:it) + / exp{y yidyInik(y; it)
j=k Aj Ank
n+k—1 A
=I| 3 e g —y / e’V 15(y:it) dy
j=k Aj
b
+e" Py (bs it) — y / e’VI;(y;it)dy
Antie
n+k—1
< Z I:A}‘e)‘jﬂy + A?(e)‘jﬂy _ e)‘j)/)] + Zey}‘””‘”AL_k _ e)’)hn+ch:+k
j=k
n+k
<2 ZA:EMHV_
=k

When n — oo, we have b — oo, thus we have:

co +o00

/ exp{(y + iHy}da(y)| <2 Arexp{yrnt1). O

Ak n=k

69
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3. Proofs of Theorems 1.1 and 1.2
3.1. The proof of Theorem 1.1
Let

Co=En1(F,a)exp(—athn), (n=1,2,---).

We first prove the necessity of Theorem 1.1. If limsup % =1, then for Ve > 0, there exists op < 0 such that
o—0~ o
" 1
log Mu(d,f)<(l+8)U(—;), as og<o <0. (13)

Since F(s) € L, thus, for any constant «(—oo < o < 0), we have F(s) € Ly. For o <o <0, it follows from the definitions of
En(F,) and py, that

En(F,a) <|| F — pp o< |F(ax + it) — pp(cx + it)]

+o0 An

< / exp{(er + i6)y}dar(y) — / expl(e + it)y)da(y)
0 0

= /exp{(a—i— it)yy}da(y)|. (14)
An

Thus, from the definition of A* and My (o, F), and by Lemma 2.6, we have A} <4M,(o, F)e=%* for any o (o <o <0); it
follows from (14) and Lemma 2.6 that

x o
En(F.a) <2 Y Af_jexplai} <8My(o. F) Y exp{(e — o)) (15)
k=n+1 k=n+1

From (4), taking h’ (0 < h’ < h) such that (A1 —Ag) = k' for n > 0, it follows from (15), for o > &, that

oo

En(F,a) <8My(o, F)exp{int1(a —0)} Z exp{(Ax — An+1) (@ — 0)}
k=n+1

= 8Mu(0, F)explinsa (@ — o)} expl—Sh m+ D) Y (explS kD
k=n+1

=8My (0, F) explini1 (@ — o)} (1- exp{%h’})_1 ,
that is,
En_1(F,@) = KMy(o, F) exp{in(ax — 0)}, (16)
where K is a constant. Thus, for any constant o (—oo < « < 0), it follows from (16) that
10g+Cn<(1+8)U(—%)—0An+log1<. (17)

By Lemma 2.1, there exists a positive integer N1 € N, for any positive integer n > N1, such that

1
o= [(apw }(1 +o(1)),

W)

then we have

1
1+ 74T
log™ Cn<(1+g)p+l'0 )‘" 1+e) = (—( +P) p( + )) o

W 1O

that is,
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1

(1 +8)> " 1+¢).

1+p
W(kn)fl An <(1+p)

og" Gy P
Since W (x) is a monotonous and increasing function for x > xo =rqU (rp), thus we have:

_1 1

bn_ (A+p)* )ﬂ“ *n ((1 +p)e )ﬂ“
An < 1+¢ 1+e)U 1+¢ 1+¢
”—1og+cn< o AFe ) AFoU| a5 te))  (+e)
An (1+p)]+p ) ( An )
< 14+6) ) A +&)PTT A +o0(1)U )
_log+Cn( pp (14 |+ Ao ( e

Then it follows

log"Co _ (1+p)'*

An - P
u (logJr Cn) P

Hence we have:

(14 &)PT2(1 +o(1)).

log"Cn _(1+p)™*

limsup - < o (18)
—+ n
! > U (10gJr Cn )
Next, we prove that the following inequality
log™ C 1 1+
limsup gk LI ( +p€’) (19)
—+ n
! > U (10gJr Cn )
can not hold by using the method of reduction of absurdity.
If
log™ C 1 I+p
lim sup g/\ T_—B< ( +€)) , (20)
——+ n
! > U (10g+ Cn) P
thus for any & > 0 such that g8 + 3¢ < “*g#. there exists a positive integer N, € N such that, for n > N, we have
logt Chp < (B+)U (A—"> ;
! log™ C, /)’
then it follows
< (B+e) An u( An )
< .
g log™ C,  \log™ Cy
Since r= W (t) and t =rU (r) are two reciprocally inverse and monotone increasing functions, it follows that
A A
W) < ——,
B+e log™ Cy,
that is,
A
log™ C, < —r;
w (%)
So, there exists a constant ¢ > 0 such that
An
Cn <cexp — |- n=0,1,2--.. (21)
w (#)
For any « < 0, from the definition of Ey(F, «), there exists p; € I1,_1 such that
IF —pill <2Ep—1(F, @). (22)

And since
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X

Ay explaiy} = sup /exp{ity}da(y) exp{ain}
An<X<Ap41,—00<t<+00 N

X

< sup / exp{(a + it)y}da(y)

An<X<Ap41,—00<t<+00

An

[e e}

< sup /exp{(a+ it)y}da(y)|,
—oo<t<+o00
An

thus for any p € I,,_4, it follows
Ajexp{ain} < [F(e + it) — p(a + it)| < |F = plla-
Hence, from (22) and (23), for any o <0 and F(s) € L, we have

Ay exp{ain} <2Eq_1(F, ).

Constructing Dirichlet series

fa(s) = [En_1(F,a)e”*r]en =~ Cpen,

n=1 n=1

(23)

(24)

where « < 0 and {Ap} satisfy (2), (4) and (6). By using the Valiron-Knopp-Bohr formula of the associated abscissas of
uniform convergence of Dirichlet series, it follows from (16) and (24) that 0, = 0, where o;* is called the abscissas of

uniform convergence of Dirichlet series fy(s).
By Lemma 2.4 and Lemma 2.5, it follows from (16) and (24) that p(fy(s)) = p. Since

M(o, fo) < csup {exp -
n=l w (ﬁ+s)

it follows from (21), (25) and Lemma 2.2 that

1 1
M(o, fo) <cexp {(ﬂ +&)(1+o0(1)U (-m>} 0 (U(_£)> )

From (24), we have

An

o0
+ i1+ ¢8)o Zexp{—sakn},
n=1

o0

* A0 A
> Ay

n=1

= A5 +2M(0., fo).

<A;+2) En1(F,a)expl(o — a)in)

n=1

My(o, F) =

it follows from (9) and (27) that

log" My(o, F) < (B+3e)(1 + 0(1))U(—%),
that is,

log* My (o, F) .4 +p)itP
< I

lim sup
o0 U=D

This is a contradiction. Thus, the necessity of Theorem 1.1 is completed.
The sufficiency of Theorem 1.1 can be easily proved in a fashion similar to the proof of the necessity.

(25)

(27)
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3.2. The proof of Theorem 1.2

We first prove the sufficiency of Theorem 1.2. From the condition (i), (ii) of Theorem 1.2, for any ¢ € (0,1) and for
sufficiently large v, we have

14+p
1+ p) U( An, >

log" Cn, > (1—¢)

pP log™ Cn,
ie.,
/Op )\nv )"Tlu ( )\'nv )
> .
(1+p)'*P 1~ log*Cp, \log" Cy,
Since r =W (t) and t =rU(r) are two reciprocally inverse functions and monotone increasing functions, then we can get
An, - An,
(1- 8)% log® Cp,’
ie.,

An,

A
W —m
p
(175)7“*%

We take a positive real sequence {0} satisfying
p+1 A+ptte 1 1 1 1
o, =<—p ) -2 (——) (1+8)=p(—)(~—)U (——>.
p+1 pP oy oy oy oy

From Lemma 2.3, we have o, | 0, then for any sufficiently small o < 0, there exists v € N1 such that 0, <0 <o0y,4+1. By
Lemma 2.2, it follows from (16) that

log™ Cp, >

log™ My(o, F) > log™ Cp, + An,0 —logK >log™t Cpy, + An,00 — log K
)‘nv

>
A
Wil ———
+p
(1—g) L0 Z};

1 oy 1
=1-A+o0o()U (——) =(1+0(1) U<— )
0 Ov+1

v Ov+1

+ Ap,0p —logK

Z(l-l—o(l))U(— ! >2(1+0(1))U(_l),
Ov+1 o

that is,
log™ My (o, F
0og u(]Ua ) -1
o—0~ U(— E)
Combining Theorem 1.1, we get
log™ My(o,F)
o—0- UL
We prove the necessity of the Theorem 1.2 in the following.
+
If lim % =1, by Theorem 1.1, we can easily get (i) of Theorem 1.2. Then we will prove (ii) of Theorem 1.2 in

o—0—
the following. We take a positive decreasing sequence {¢;} (0 < ¢&; < 1), & — 0(i — 00). Let

log* C 1 +p
Ej={n: 28 =n L d+p) —& ', (28)

An pP
u (10g+ Cn )
()00

it follows that Vi, E; # ® and E; C E;_1. For each i, we arrange the n(e E;) in an increasing sequence {n,’}°,,
consider the two cases in the following.

then we
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A ) .
Case 1. Suppose that lim @ =1 for any i. Then there exists N; € E;(i € N.), such that, when n,(,') > Nj, we have
V—>+400 )””]()l) +
A
)\l—)ﬁ <14 ¢&. (29)
ny

Note E;j+1 C Ej, take Niy1 > N;, denote E; the subset of Ej,
Ei={neE;:N;<n<Njy},

thus the elements of E; satisfy (28) and (29).

Therefore, let E = (72, E{ and arrange the n(e E}) in an increasing sequence {n,}; (ii) is proved.

A i) A )

Case 2. If there exists i € N4 satisfying lim ;“f" #1, then, since A ¢ > A @, we get lim )’:“T] > 1. Hence, there
V—~400 nS) n,i ny V—+4-00 (i)

exists {nS’,}} - {nf,i)} (still marked with {ng)}) and § € (0, %(1 + %)*P), from which it follows that

A_G)

Ty _

T>l+8. v=1,2,---

)

Let

r_ @ (D) 1 (D
M =n My =Nz, M, =Ny 4,0
" __ (i) " __ (i) " __ (i)
ny =ny 7n2_n47...,nv_n2v7...’

where {n}, {n}} are two increasing positive integer sequences, and

ny<myyqn Ay >04+8ky, v=1,2,-.-.

Take y = %ai > 0 and from (28), for any sufficiently large v, when n ¢ E; satisfies n|, <n <n/, we can get

log"Cy _(A+p™ _ (+p) _
) T o ! o ’
u <logJr Cn> P P

thus, by using the same argument as in Theorem 1.1, we have
An

An
w < a+pl+p )
R

and it follows from (24) that

log™ C, <

A
log" (A% exp{An0}) < —————— 4+ A0
An
w < (szﬁ-p —y)
Since 0 — 07, it follows by Lemma 2.2 that
1 1+p 1
log™ (A% exp{Ano}) < (% — y) (1+o0(1)U (—;) , n,<n<n. (30)
Take © > 0 and
1
l:—-l; <1-n, O0<np<l.
N -1
Let 0y = — |:W (%)} , then we have o, | 0 and
aA+p)t*r 1 1
Ay =0+p)——"—(——(——]. (31)
pP oy oy

For the above p > 0 and from Theorem 1.2(i), there exists a positive integer ng € N4 such that
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An

w H)Lin
)
(%(HW

When n > n, > ng, then A, > Ay Since W (¢) is a increasing function, from (31) and (32), we have

1
At

w +
0

(“*ﬁ’p (1+)

From Lemma 2.2 and for sufficiently large v, when ng <n <n;, it follows that An <Ay < 1+6 Ay, then we have

+ 0. n>no. (32)

log" (A} exp{An0}) <

log™ (A% exp{Anov}) < An( +0,)=0. (33)

1
—)\, // 1
log* (A} exp(inoy}) < 142 + 1o o (34)
W 1+<S)‘n”
T (1 p0)
1+u (14 p)itr 1 1
(1+8)oy _U_v

1—-n (1+p)'*r Yo _ 1
S Tre 0P [(1+a 1+o(1>] (‘aT)

1-7 st

- o

= 1+0(1) 1+p +o()

__1-n Y

REETTEY [ -+ ) +°(1)] >

<A-mA+o()U ( > ,
Oy

when n > ng, from (30), (33), and (34), we have

log*(A:j exp{inov}) < (1 —=B)A+0(1))U (—%) , 0<pB=min{n,y}<1
Hence we have

n(oy, F) < Kjexp [(1 - B A +o()U (—Gl)} (35)

where Ky is a positive real number.

From (4) and (6), for any € > 0 we have

My (0. F) < ZA* e < ju((1 - )0y, F) Ze‘“’”*" < Kat((1 + £)0y, F)(——)
n=0 n=0

it follows from (30) that

1 1
My(oy, F) < Kz exp |:(1 - B)A+o(1)U (—m>] (—*> ,

where K1, K, are constants.

Therefore, when v is sufficiently large, we have
i 1 " 1
log"™ My(oy, ) <A -8 A +o0()U|—— ) +log" | —— | + K3
Oy Oy

B 1
=(1- E)(l +o(M)HU(——),
Oy

where K3 is a constant.
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Thus, it follows

10g+Mu(0'v»F) é
_— 5

lim sup <1-—

V—+00 U (_ol)

This is contradictory with the condition of Theorem 1.2. Then the necessity of Theorem 1.2 is proved.
Therefore, we complete the proof of Theorem 1.2.
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