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Let A > 1 be a constant, and let F be a family of meromorphic functions in a domain D . 
If, for every function f ∈ F , f has only zeros of multiplicity at least 2 and satisfies the 
following conditions: (1) f (z) = 0 ⇒ | f ′′(z)| ≤ A|z|, (2) f ′′(z) �= z, (3) all poles of f have 
multiplicity at least 4, then F is normal in D . In this paper, we first give an example to 
show that condition (3) is sharp, and prove that our counterexample is unique in some 
sense.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit A > 1 une constante et F une famille de fonctions méromorphes dans un domaine 
D . Si toute fonction f ∈ F n’a que des zéros de multiplicité au moins 2 et satisfait les 
conditions suivantes : (1) f (z) = 0 ⇒ | f ′′(z)| ≤ A|z|, (2) f ′′(z) �= z, (3) tous les pôles de f
ont multiplicité au moins 4, alors F est normale dans D . Dans cette Note, nous donnons 
un exemple montrant que la condition (3) est précise. Nous montrons ensuite que notre 
exemple est, en quelque sorte, unique.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let D ⊆ C be a domain, and F be a family of meromorphic functions defined on D . F is said to be normal on D , in the 
sense of Montel, if for each sequence { fn} ⊂F there exists a subsequence { fnk } such that { fnk } converges spherically locally 
uniformly on D to a meromorphic function or ∞ (see [1,3,5]).
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In 2009, Zhang–Pang–Zalcman [6] proved the following result.

Theorem A. Let k ≥ 2 be a positive integer. Let F be a family of meromorphic functions defined on a domain D, all of whose zeros 
have multiplicity at least k + 1 and whose poles are multiple. Let h(z)(�≡ 0) be a holomorphic function on D. If, for each f ∈ F , 
f (k)(z) �= h(z), then F is normal in D.

They [6] indicated that the multiplicity k + 1 of the zeros of functions in F can not be reduced to k, by considering the 
following example.

Example 1. (see [6]) Let � = {z : |z| < 1}, h(z) = z, and let

F =
{

fn(z) = nzk
}

.

Clearly, all zeros of fn are of multiplicity k, and f (k)
n (z) = nk! �= z on �. However, F fails to be equicontinuous at 0, and 

then F is not normal in �.

Recently, Xu [4] proved that the multiplicity of the zeros of functions in F can be reduced from k + 1 to k for the case 
h(z) = z, but restricting the values f (k) can take at the zeros of f , as follows.

Theorem B. Let k ≥ 4 be a positive integer, A > 1 be a constant. Let F be a family of meromorphic functions in a domain D. If, for 
every function f ∈F , f has only zeros of multiplicity at least k and satisfies the following conditions:

(a) f (z) = 0 ⇒ | f (k)(z)| ≤ A|z|,
(b) f (k)(z) �= z,
(c) all poles of f are multiple,

then F is normal in D.

Theorem C. Let k = 2 or 3, A > 1 be a constant. Let F be a family of meromorphic functions in a domain D. If, for every function 
f ∈F , f has only zeros of multiplicity at least k and satisfies the following conditions:

(a) f (z) = 0 ⇒ | f (k)(z)| ≤ A|z|,
(b) f (k)(z) �= z,
(c) all poles of f have multiplicity at least 3,

then F is normal in D.

We remark that for k = 2 condition (c) in Theorem C is insufficient. For the case k = 2, the multiplicities of poles of 
f ∈F need be larger.

Theorem C′. Let A > 1 be a constant. Let F be a family of meromorphic functions in a domain D. If, for every function f ∈ F , f has 
only zeros of multiplicity at least 2 and satisfies the following conditions:

(a) f (z) = 0 ⇒ | f ′′(z)| ≤ A|z|,
(b) f ′′(z) �= z,
(c′) all poles of f have multiplicity at least 4,

then F is normal in D.

In fact, case (a) in the proof (case 1) of Lemma 9 in [4, p. 478] can not be ruled out, since c1, c2, c3 are complex numbers, 
so that f has another possible form

f (z) = (z − c1)
2(z − c2)

2(z − c3)
2

6 (z − b)3

for k = 2, where c1, c2, c3, and b are distinct constants. Now since the multiplicities of poles of f ∈ F are at least 4 for 
k = 2, as the proof of Theorem 1 in [4, p. 483], we can also have the form (17) in [4], and hence Theorem C′ holds (for 
details, see [4]).
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Remark. For k = 1, the above theorems are no longer true, even if the multiplicities of poles of f ∈ F are large enough, 
which is shown by Example 2 in [4]. The following example shows that the number “4” in condition (c′) of Theorem C′ is 
sharp.

Example 2. Let � = {z : |z| < 1}, and let

F =
{

fn(z) = (z − 1/n)2(z − e
2πi
3 /n)2(z − e

4πi
3 /n)2

6z3

}
.

Clearly,

f ′′
n (z) = z + 2

n6z5
�= z.

For each n, fn has three zeros z1 = 1/n, z2 = e
2πi
3 /n, and z3 = e

4πi
3 /n of multiplicity 2,

| f ′′
n (zi)| = 3

n
≤ 3|zi|, (i = 1,2,3).

Since fn(1/n) = 0 and fn(0) = ∞, F fails to be equicontinuous at 0, and then F is not normal at 0.

Furthermore, we prove the following result, which illustrates that the above counterexample is unique in some sense.

Theorem 1. Let A > 1 be a constant, and let F be a family of meromorphic functions defined in D, all of whose zeros are multiple and 
whose poles all have multiplicity at least 3, such that for every f ∈ F , f (z) = 0 ⇒ | f ′′(z)| ≤ A|z|, and f ′′(z) �= z. If F is not normal 
at z0 ∈ D, then z0 = 0, and there exist r > 0 and { fn} ⊂F such that

fn(z) =
∏3

i=1(z − ξni)
2

(z − ηn)3
f̂n(z)

on �r = {z : |z| < r}, where ξni/ρn → ci (i = 1, 2, 3) and ηn/ρn → (c1 + c2 + c3)/3 for some sequence of positive numbers ρn → 0
and distinct constants c1, c2 , and c3 . Moreover, f̂n(z) is holomorphic and non-vanishing on �r , so that f̂n(z) → f̂ (z) ≡ 1/6 locally 
uniformly on �r .

In this paper, we denote by �r = {z : |z| < r} and �′
r = {z : 0 < |z| < r}, and the number r may be different in different 

places. When r = 1, we drop the subscript.

2. Lemmas

To prove our results, we need the following lemmas.

Lemma 1. ([2, Lemma 2]) Let k be a positive integer and let F be a family of meromorphic functions in a domain D, all of whose zeros 
have multiplicity at least k, and suppose that there exists A ≥ 1 such that | f (k)(z)| ≤ A whenever f (z) = 0, f ∈F . If F is not normal 
at z0 ∈ D, then for each α, 0 ≤ α ≤ k, there exist a sequence of complex numbers zn ∈ D, zn → z0 , a sequence of positive numbers 
ρn → 0, and a sequence of functions fn ∈F such that

gn(ζ ) = fn(zn + ρnζ )

ρα
n

→ g(ζ )

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C, all of whose zeros have 
multiplicity at least k, so that g#(ζ ) ≤ g#(0) = kA + 1. Moreover, g(ζ ) has order at most 2.

Here, as usual, g#(ξ) = |g′(ξ)|/(1 + |g(ξ)|2) is the spherical derivative of g .

Lemma 2. ([4, Lemma 6]) Let f be a transcendental meromorphic function of finite order ρ , and let k(≥ 2) be a positive integer. If f
has only zeros of multiplicity at least k, and there exists A > 1 such that f (z) = 0 ⇒ | f (k)(z)| ≤ A|z|, then f (k) has infinitely many 
fix-points.

The next lemma is Lemma 9 in [4], but the form (4) is ruled out by mistake (since c1, c2, c3 are complex numbers, 
(c1 − c2)

2 + (c1 − c3)
2 + (c2 − c3)

2 = 0 does not imply c1 = c2 = c3. For details, see [4, p. 478]).

Lemma 3. (cf. [4, Lemma 9]) Let f be a rational function, all of whose zeros are multiple. If f ′′(z) �= z, then one of the following cases 
must occur:
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(i)

f (z) = (z + c)3

6
; (1)

(ii)

f (z) = (z − c1)
4

6 (z − b)
; (2)

(iii)

f (z) = (z − c1)
2(z − c2)

3

6 (z − b)2
; (3)

(iv)

f (z) =
∏3

i=1(z − ci)
2

6 [z − (c1 + c2 + c3)/3]3
, (4)

where c is a nonzero constant, c1, c2, c3 and b are distinct constants.

Lemma 4. ([4, Lemma 11]) Let F be a family of meromorphic functions in a domain D, A > 1 be a constant. Suppose that, for every 
f ∈F , f has only zeros of multiplicity at least 2, and satisfies the following conditions:

(a) f (z) = 0 ⇒ | f ′′(z)| ≤ A|z|,
(b) f ′′(z) �= z,
(c) all poles of f are of multiplicity at least 3,

then F is normal in D\{0}.

3. Proof of Theorem 1

Since F is not normal at z0, by Lemma 4, z0 = 0. Without loss of generality, we assume D = � = {z : |z| < 1}. Again by 
Lemma 4, F is normal on �′ .

Consider the family

G =
{

g(z) = f (z)

z
: f ∈ F

}
.

We claim that f (0) �= 0 for every f ∈ F . Otherwise, if f (0) = 0, by the assumption of Theorem 1, | f ′′(0)| ≤ 0, and then 
f ′′(0) = 0. But f ′′(z) �= z, which is a contradiction. Thus, for each g ∈ G , g(0) = ∞. Furthermore, all zeros of g(z) are 
multiple. On the other hand, by a simple calculation, we have:

g′′(z) = f ′′(z)

z
− 2g′′(z)

z
.

Since f (z) = 0 ⇒ | f ′′(z)| ≤ A|z|, we deduce that g(z) = 0 ⇒ |g′′(z)| ≤ A.
Clearly, G is normal on �′ . We claim that G is not normal at z = 0. Indeed, if G is normal at z = 0, then G is normal on 

the whole disk � and hence equicontinuous on � with respect to the spherical distance. On the other hand, g(0) = ∞ for 
each g ∈ G , so there exists ε > 0 such that for every g ∈ G and every z ∈ �ε , |g(z)| ≥ 1. Then f (z) is non-vanishing, and 
thus 1/ f is holomorphic on �ε for all f ∈F . Since F is normal on �′ but not normal on �, the family F1 = {1/ f , f ∈F}
is holomorphic on �ε and normal on �′

ε , but it is not normal at z = 0. Therefore, there exists a sequence {1/ fn} ⊂ F1
that converges locally uniformly on �′

ε , but not in �ε . Hence, by the maximum modulus principle, 1/ fn → ∞ on �′
ε . Thus 

fn → 0 converges locally uniformly on �′
ε , and so does {gn} ⊂ G , where gn = fn/z. But |gn(z)| ≥ 1 for z ∈ �ε , which is a 

contradiction.
Then, by Lemma 1, there exist functions gn ∈ G , points zn → 0 and positive numbers ρn → 0 such that

Gn(ζ ) = gn(zn + ρnζ )

ρ2
n

→ G(ζ )

converges spherically uniformly on compact subsets of C, where G is a non-constant meromorphic function on C and of 
finite order, all zeros of G are multiple, and G#(ζ ) ≤ G#(0) = 2A + 1 for all ζ ∈C.

By [4, pages 481–482], we can assume that zn/ρn → α (a finite complex number). Then

gn(ρnζ )

ρ2
n

= gn(zn + ρn(ζ − zn/ρn))

ρ2
n

= Gn(ζ − zn/ρn) → G(ζ − α) = G̃(ζ )

spherically uniformly on compact subsets of C. Clearly, G̃(0) = ∞.
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Set

Hn(ζ ) = fn(ρnζ )

ρ3
n

. (5)

Then

Hn(ζ ) = fn(ρnζ )

ρ3
n

= ζ
gn(ρnζ )

ρ2
n

→ ζ G̃(ζ ) = H(ζ ) (6)

spherically uniformly on compact subsets of C, and

H ′′
n(ζ ) = f ′′

n (ρnζ )

ρn
→ H ′′(ζ ) (7)

locally uniformly on C \ H−1(∞). By the assumption of Theorem 1 and (6), all zeros of H are multiple, and all poles of H
have multiplicity at least 3. Since G̃(0) = ∞, H(0) �= 0.

Claim: (I) H(ζ ) = 0 ⇒ |H ′′(ζ )| ≤ A|ζ |; (II)H ′′(ζ ) �= ζ .
If H(ζ0) = 0, by Hurwitz’s theorem and (6), there exist ζn → ζ0 such that fn(ρnζn) = 0 for n sufficiently large. By the 

assumption, | f ′′
n (ρnζn)| ≤ A|ρnζn|. Then, it follows from (7) that |H ′′(ζ0)| ≤ A|ζ0|. Claim (I) is proved.

Suppose that there exists ζ0 such that H ′′(ζ0) = ζ0. By (7),

0 �= f ′′
n (ρnζ ) − ρnζ

ρn
= H ′′

n(ζ ) − ζ → H ′′(ζ ) − ζ,

uniformly on compact subsets of C \ H−1(∞). Hurwitz’s theorem implies that H ′′(ζ ) ≡ ζ on C \ H−1(∞), and then on C. 
Hence H is a polynomial of degree 3. In view of the fact that all zeros of H are multiple, we know that H has only one zero, 
say ζ1, with multiplicity 3, so that H ′′(ζ1) = 0, and thus ζ1 = 0 since H ′′(ζ ) ≡ ζ . But H(0) �= 0, which is a contradiction. This 
proves claim (II).

Noting that H is of finite order, Lemma 2 implies that H must be a rational function. Since all poles of H have multiplicity 
at least 3, it follows from Lemma 3 that

H(ζ ) = 1

6
(ζ + c)3

or

H(ζ ) =
∏3

i=1(ζ − ci)
2

6 [ζ − (c1 + c2 + c3)/3]3
,

where c1, c2, and c3 are distinct constants, and c is a nonzero constant. The former case can be ruled out as the form (17) 
in [4, pp. 483–485]. So this, together with (5) and (6), gives that

fn(ρnζ )

ρ3
n

→
∏3

i=1(ζ − ci)
2

6 [ζ − (c1 + c2 + c3)/3]3
. (8)

Noting that all zeros of fn are multiple, there exist ζni → ci (i = 1, 2, 3) and λn → (c1 + c2 + c3)/3 such that ξni = ρnζni (i =
1, 2, 3) are zeros of fn with exact multiplicity 2, and ηn = ρnλn is the pole of fn with exact multiplicity 3.

Now write

fn(z) =
∏3

i=1(z − ξni)
2

(z − ηn)3
f̂n(z). (9)

Then, by (8) and (9), we obtain

f̂n(ρnζ ) → 1

6
(10)

on C.
Next we complete our proof in three steps.
Step 1. We first prove that there exists δ > 0 such that f̂n(z) �= 0 on �δ .
Suppose not, taking a sequence and renumbering if necessary, that f̂n has zeros tending to 0. Assume that ẑn → 0 is the 

zero of f̂n with the smallest modulus. Then, by (10), it is easy to see that ẑn/ρn → ∞.
Set

f̂ ∗
n (z) = f̂n(ẑnz). (11)

Clearly, f̂ ∗
n (z) is well defined on C and not vanishing on �. Moreover, f̂ ∗

n (1) = 0.
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Now let

Mn(z) =
∏3

i=1(z − ξni/ẑn)
2

(z − ηn/ẑn)3
f̂ ∗
n (z). (12)

It follows from (9), (11), and (12) that

Mn(z) =
∏3

i=1(zẑn − ξni)
2

(zẑn − ηn)3

f̂n(ẑnz)

ẑ3
n

= fn(ẑnz)

ẑ3
n

.

Obviously, all zeros of Mn(z) have multiplicity at least 2 and all poles of Mn(z) have multiplicity at least 3. Since fn(z) =
0 ⇒ | f ′′

n (z)| ≤ A|z|, it follows that Mn(z) = 0 ⇒ |M ′′
n(z)| ≤ A|z|. In view of f ′′

n (z) �= z, we have

M ′′
n(z) − z = f ′′

n (ẑnz) − ẑnz

ẑn
�= 0. (13)

Thus Lemma 4 implies that {Mn(z)} is normal on C∗ = C\{0}.
Since ξni/ρn = ζni → ci for i = 1, 2, 3, ηn/ρn = λn → (c1 + c2 + c3)/3 and ẑn/ρn → ∞, we have

ξni

ẑn
= ξni

ρn

ρn

ẑn
→ 0 (i = 1,2,3); ηn

ẑn
= ηn

ρn

ρn

ẑn
→ 0.

We now see from (12) that { f̂ ∗
n } is also normal on C∗ .

Then, by taking a subsequence, we assume that f̂ ∗
n → f̂ ∗ spherically locally uniformly on C∗ . Moreover, since f̂ ∗

n (1) =
f̂n(ẑn) = 0, we know that f̂ ∗(1) = 0 with multiplicity at least 2.

Set

Ln(z) = M ′′
n(z) − z. (14)

From (13), we have Ln �= 0.
Now we show that f̂ ∗(z) �≡ 0. Otherwise f̂ ∗

n (z) → 0, thus Ln(z) → −z and L′
n(z) → −1 locally uniformly on C∗ . By the 

argument principle, we get

∣∣∣∣n(1, Ln) − n(1,
1

Ln
)

∣∣∣∣ = 1

2π

∣∣∣∣∣∣∣
∫

|z|=1

L′
n

Ln
dz

∣∣∣∣∣∣∣ → 1

2π

∣∣∣∣∣∣∣
∫

|z|=1

1

z
dz

∣∣∣∣∣∣∣ = 1,

where n(r, f ) denotes the number of poles of f in �r , counting multiplicity. It follows that n(1, Ln) = 1. On the other hand, 
the poles of Ln(z) = M ′′

n(z) − z have multiplicity at least 5, which is a contradiction.
Then 1/ f̂ ∗

n → 1/ f̂ ∗ �≡ ∞ spherically locally uniformly on C∗ . Recalling that f̂ ∗
n �= 0 on �, then 1/ f̂ ∗

n is holomorphic on 
�. The maximum modulus principle implies that 1/ f̂ ∗

n → 1/ f̂ ∗ , and then f̂ ∗
n → f̂ ∗ on �. Hence, f̂ ∗

n → f̂ ∗ spherically locally 
uniformly on C. In particular, f̂ ∗

n (0) = f̂n(0) → 1/6 = f̂ ∗(0).
Then, we obtain from (12) and (14) that

Ln(z) → L(z) = (z3 f̂ ∗(z))′′ − z

locally uniformly on C∗ \ {( f̂ ∗)−1(∞)}. Note that Ln(z) �= 0, then each 1/Ln(z) is holomorphic on C, and thus 1/Ln(z) →
1/L(z) locally uniformly on C∗ \ {( f̂ ∗)−1(∞)}. By Hurwitz’s theorem, 1/L(z) ≡ ∞ or 1/L(z) is holomorphic on C∗ \
{( f̂ ∗)−1(∞)}. If 1/L(z) ≡ ∞, then L(z) ≡ 0 on C∗ \ {( f̂ ∗)−1(∞)}, and hence on C, that is,

(z3 f̂ ∗(z))′′ − z ≡ 0.

It follows that

f̂ ∗(z) = z3 + c1z + c2

6z3
,

where c1, c2 are constants. Since f̂ ∗(1) = 0 and all zeros of f̂ ∗ are multiple, we have

f̂ ∗(z) = (z − 1)3

6z3
,

which is impossible, since z3 + c1z + c2 �= (z −1)3. Thus 1/L(z) is holomorphic on C∗ \ {( f̂ ∗)−1(∞)}. The maximum modulus 
principle implies that Ln(z) → L(z) locally uniformly on C. Since Ln(z) �= 0, we have L(z) �= 0 or L(z) ≡ 0. As before, L(z) ≡ 0
is impossible. Then we have L(z) �= 0. But L(0) = 0 since f̂ ∗(0) = 1/6, which is a contradiction. Thus our claim is proved.
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Step 2. We now show that f̂n → f̂ spherically locally uniformly on �, and each f̂n(z) is holomorphic on �δ′ for some 
δ′ > 0.

Since { fn}, and hence { f̂n} is normal on �′ , taking a subsequence and renumbering, we have f̂n → f̂ spherically locally 
uniformly on �′ .

We claim that f̂ (z) �≡ 0 on �′ . Otherwise, we have f ′′
n (z) → 0 and f ′′′

n (z) → 0 locally uniformly on �′ . Then the argument 
principle yields that

∣∣∣∣n(
1

2
, f ′′

n − z) − n(
1

2
,

1

f ′′
n − z

)

∣∣∣∣ = 1

2π

∣∣∣∣∣∣∣∣
∫

|z|= 1
2

f ′′′
n − 1

f ′′
n − z

dz

∣∣∣∣∣∣∣∣ → 1

2π

∣∣∣∣∣∣∣∣
∫

|z|= 1
2

1

z
dz

∣∣∣∣∣∣∣∣ = 1.

Now that f ′′
n (z) �= z, it follows that n( 1

2 , f ′′
n ) = n( 1

2 , f ′′
n − z) = 1, which is impossible.

Recalling that f̂n(z) �= 0, as before, the maximum modulus principle implies that f̂n → f̂ spherically locally uniformly on 
�. Since f̂n(0) → 1/6, we have f̂ (0) = 1/6. Hence f̂ is holomorphic at 0. Moreover, there exists a positive number δ′ such 
that each f̂n is holomorphic on �δ′ .

Step 3. Finally, we prove that f̂ (z) ≡ 1/6.
By (9), we get fn(z) → z3 f̂ (z) on �′ . Thus

f ′′
n (z) − z → [z3 f̂ (z)]′′ − z, (15)

on �′\{ f̂ −1(∞)}. If [z3 f̂ (z)]′′ − z �≡ 0, noting that f ′′
n (z) �= z, the maximum modulus principle implies that (15) still holds on 

�. Then, Hurwitz’s theorem yields that [z3 f̂ (z)]′′ − z �= 0, violating the fact that ([z3 f̂ (z)]′′ − z)|z=0 = 0. Hence, [z3 f̂ (z)]′′ −
z ≡ 0. This, together with f̂ (0) = 1/6, gives f̂ (z) ≡ 1/6.

Letting r = min{δ, δ′}, the proof of Theorem 1 is completed. �
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