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RESUME

Soit A > 1 une constante et F une famille de fonctions méromorphes dans un domaine
D. Si toute fonction f € F n'a que des zéros de multiplicité au moins 2 et satisfait les
conditions suivantes : (1) f(z2) =0= |f"(2)| < Alz|, (2) f"(z) # z, (3) tous les poles de f
ont multiplicité au moins 4, alors F est normale dans D. Dans cette Note, nous donnons
un exemple montrant que la condition (3) est précise. Nous montrons ensuite que notre
exemple est, en quelque sorte, unique.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let D € C be a domain, and F be a family of meromorphic functions defined on D. F is said to be normal on D, in the
sense of Montel, if for each sequence {f;} C F there exists a subsequence {f;, } such that {f; } converges spherically locally
uniformly on D to a meromorphic function or oo (see [1,3,5]).
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In 2009, Zhang-Pang-Zalcman [6] proved the following result.

Theorem A. Let k > 2 be a positive integer. Let F be a family of meromorphic functions defined on a domain D, all of whose zeros
have multiplicity at least k + 1 and whose poles are multiple. Let h(z) (s 0) be a holomorphic function on D. If, for each f € F,
f®(z) # h(z), then F is normal in D.

They [6] indicated that the multiplicity k + 1 of the zeros of functions in F can not be reduced to k, by considering the
following example.

Example 1. (see [6]) Let A ={z:|z| <1}, h(z) =z, and let
F= {fn(z) =nzk].

Clearly, all zeros of f; are of multiplicity k, and f,.fk)(z) =nk! # z on A. However, F fails to be equicontinuous at 0, and
then F is not normal in A.

Recently, Xu [4] proved that the multiplicity of the zeros of functions in F can be reduced from k + 1 to k for the case
h(z) = z, but restricting the values f®) can take at the zeros of f, as follows.

Theorem B. Let k > 4 be a positive integer, A > 1 be a constant. Let F be a family of meromorphic functions in a domain D. If, for
every function f € F, f has only zeros of multiplicity at least k and satisfies the following conditions:

(@) f@)=0=|fP ()| < Az,
(b) f¥(@) #2,
(c) all poles of f are multiple,

then F is normal in D.

Theorem C. Let k = 2 or 3, A > 1 be a constant. Let F be a family of meromorphic functions in a domain D. If, for every function
f € F, f has only zeros of multiplicity at least k and satisfies the following conditions:

(@) f@)=0=|fP(2)| < Alz,
(b) f¥(@) #2,
(c) all poles of f have multiplicity at least 3,

then F is normal in D.

We remark that for k =2 condition (c) in Theorem C is insufficient. For the case k = 2, the multiplicities of poles of
f € F need be larger.

Theorem C'. Let A > 1 be a constant. Let F be a family of meromorphic functions in a domain D. If, for every function f € F, f has
only zeros of multiplicity at least 2 and satisfies the following conditions:

(@) f(0)=0=[f"(2)| < Alz,
(b) f"(2) #z,
(c') all poles of f have multiplicity at least 4,

then F is normal in D.

In fact, case (a) in the proof (case 1) of Lemma 9 in [4, p. 478] can not be ruled out, since cq, c2, c3 are complex numbers,
so that f has another possible form

z—c1)*(z—c2)%(z—c3)?

_
fo= 6z —b)

for k = 2, where c1, ¢, c3, and b are distinct constants. Now since the multiplicities of poles of f € F are at least 4 for
k = 2, as the proof of Theorem 1 in [4, p. 483], we can also have the form (17) in [4], and hence Theorem C’ holds (for
details, see [4]).
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Remark. For k = 1, the above theorems are no longer true, even if the multiplicities of poles of f € F are large enough,
which is shown by Example 2 in [4]. The following example shows that the number “4” in condition (c’) of Theorem C’ is
sharp.

Example 2. Let A ={z:|z| < 1}, and let

@—1/m2@z—e% 2z —eT n)?
623

= {f n(2) =
Clearly,
D=2+ e A7
N
For each n, f, has three zeros z1 =1/n,z; = e%/n, and z3 = e%/n of multiplicity 2,
3 .
| fa @) = o= 3lzil, (i=1,2,3).
Since f,(1/n) =0 and f,(0) = oo, F fails to be equicontinuous at 0, and then F is not normal at O.
Furthermore, we prove the following result, which illustrates that the above counterexample is unique in some sense.

Theorem 1. Let A > 1 be a constant, and let F be a family of meromorphic functions defined in D, all of whose zeros are multiple and
whose poles all have multiplicity at least 3, such that for every f € F, f(z) = 0= |f"(2)| < Alz|, and f"(z) # z. If F is not normal
at zo € D, then zg = 0, and there exist r > 0 and { f,} C F such that

[Ty (2 — &n)?
(z—nn)?
on Ar={z:|z| <r}, where &;/pn — ¢i (i=1,2,3) and 0,/ pn — (c1 + c2 + c3)/3 for some sequence ofposmve numbers p, — 0

and distinct constants c1, ¢, and c3. Moreover, fn (2) is holomorphic and non-vanishing on A, so that fn(z) — f(z) = 1/6 locally
uniformly on A;.

@)= fn( Z)

In this paper, we denote by A, ={z:|z| <r} and A, ={z:0 < |z| <1}, and the number r may be different in different
places. When r =1, we drop the subscript.

2. Lemmas

To prove our results, we need the following lemmas.

Lemma 1. (/2, Lemma 2]) Let k be a positive integer and let F be a family of meromorphic functions in a domain D, all of whose zeros
have multiplicity at least k, and suppose that there exists A > 1 such that | f® (z)| < A whenever f(z) =0, f € F. If F is not normal
at zg € D, then for each «, 0 < o < k, there exist a sequence of complex numbers z, € D, z; — zo, a sequence of positive numbers
pn — 0, and a sequence of functions f, € F such that

&@)zﬁﬁ%gﬁﬁzag@)

n

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C, all of whose zeros have
multiplicity at least k, so that g¥(¢) < g*(0) = kA + 1. Moreover, g(¢) has order at most 2.

Here, as usual, g#(£) = |g/(£)|/(1 + |g(£)|?) is the spherical derivative of g.
Lemma 2. ([4, Lemma 6]) Let f be a transcendental meromorphic function of finite order p, and let k(> 2) be a positive integer. If f
has only zeros of multiplicity at least k, and there exists A > 1 such that f(z) =0 = | f® (2)| < Alz|, then f% has infinitely many

fix-points.

The next lemma is Lemma 9 in [4], but the form (4) is ruled out by mistake (since c1,cy, c3 are complex numbers,
(c1 — €2)% + (c1 — €3)2 + (c2 — c3)2 = 0 does not imply ¢ = ¢ = c3. For details, see [4, p. 478]).

Lemma 3. (cf. [4, Lemma 9]) Let f be a rational function, all of whose zeros are multiple. If f”(z) # z, then one of the following cases
must occur:
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(i)
3
fi =22 M
(ii)
(=)t
f@)= m» (2)
(ii)
-z —)?
f@)= W’ (3)
(iv) 3 2
foy= == (4)

6[z— (c14c2+¢3)/3P"
where c is a nonzero constant, c1, ¢z, ¢z and b are distinct constants.

Lemma 4. ([4, Lemma 11]) Let F be a family of meromorphic functions in a domain D, A > 1 be a constant. Suppose that, for every
f € F, f has only zeros of multiplicity at least 2, and satisfies the following conditions:

(a) f(@)=0=|f"(2)] < Alz,
(b) f"(2) #2,
(c) all poles of f are of multiplicity at least 3,

then F is normal in D\{0}.
3. Proof of Theorem 1

Since F is not normal at zg, by Lemma 4, zg = 0. Without loss of generality, we assume D = A = {z: |z| < 1}. Again by
Lemma 4, F is normal on A’.
Consider the family

gz{ﬂl)z@tfef}

We claim that f(0) # 0 for every f € F. Otherwise, if f(0) =0, by the assumption of Theorem 1, |f”(0)| <0, and then
f”(0) =0. But f”(z) # z, which is a contradiction. Thus, for each g € G, g(0) = oo. Furthermore, all zeros of g(z) are
multiple. On the other hand, by a simple calculation, we have:

'@ 28"(»
z z
Since f(z2) =0= |f"(2)| < A|z|, we deduce that g(z) =0= |g"(2)| < A.

Clearly, G is normal on A’. We claim that G is not normal at z= 0. Indeed, if G is normal at z=0, then G is normal on
the whole disk A and hence equicontinuous on A with respect to the spherical distance. On the other hand, g(0) = oo for
each g € G, so there exists € > 0 such that for every g € G and every z € A¢, |g(2)| > 1. Then f(z) is non-vanishing, and
thus 1/f is holomorphic on A, for all f € F. Since F is normal on A’ but not normal on A, the family 7 ={1/f, f € F}
is holomorphic on A, and normal on A[, but it is not normal at z = 0. Therefore, there exists a sequence {1/f,} C Fi
that converges locally uniformly on A7, but not in A.. Hence, by the maximum modulus principle, 1/ f, — oo on A.. Thus
fn — 0 converges locally uniformly on A/, and so does {g,} C G, where g, = f,/z. But |gs(z)| > 1 for z € A, which is a
contradiction.

Then, by Lemma 1, there exist functions g, € G, points z; — 0 and positive numbers p, — 0 such that

&n(Zn + Pnd)
2

n

g2 =

Gn(0) = — G(2)

converges spherically uniformly on compact subsets of C, where G is a non-constant meromorphic function on C and of
finite order, all zeros of G are multiple, and G*(¢) < G*(0) =2A+1 for all ¢ € C.
By [4, pages 481-482], we can assume that z,/0, — « (a finite complex number). Then
&n(Pnl) _ &n(zn + (& — zn/pn))
P Ph
spherically uniformly on compact subsets of C. Clearly, E(O) = 00.

=Gn(¢ —2zn/pn) = G(¢ — ) = G(¢)
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Set
Ha() = 120080 (5)
Pn
Then
1%@)=f“@g)=;&z?0—»;5@>=H@> (6)

n n

spherically uniformly on compact subsets of C, and

{(Pn()

n

H,(¢) = — H"(¢) (7)
locally uniformly on €\ H~1(c0). By the assumption of Theorem 1 and (6), all zeros of H are multiple, and all poles of H
have multiplicity at least 3. Since 5(0) =00, H(0) #0.

Claim: (I) H(¢) = 0= [H"(£)| < Al¢|: (IDH"(£) #¢.

If H(¢p) =0, by Hurwitz’s theorem and (6), there exist ¢, — ¢o such that f,(on¢s) =0 for n sufficiently large. By the
assumption, | f;/(on¢n)| < Alpn&al. Then, it follows from (7) that |[H”(¢o)| < Algol. Claim (I) is proved.

Suppose that there exists ¢o such that H” (¢o) = ¢o. By (7),

7 (Png) — png

n

0# =H;()—¢— H"() —¢,

uniformly on compact subsets of C\ H~!(co). Hurwitz's theorem implies that H”(¢) =¢ on C\ H~'(c0), and then on C.
Hence H is a polynomial of degree 3. In view of the fact that all zeros of H are multiple, we know that H has only one zero,
say ¢1, with multiplicity 3, so that H”(¢1) =0, and thus ¢y =0 since H”(¢) = ¢. But H(0) # 0, which is a contradiction. This
proves claim (II).

Noting that H is of finite order, Lemma 2 implies that H must be a rational function. Since all poles of H have multiplicity
at least 3, it follows from Lemma 3 that

1 3
H() = 6(5 +c)
or
_ I —a)?
6[¢ — (c14+c2+c3)/3P

where c1, ¢, and c3 are distinct constants, and c¢ is a nonzero constant. The former case can be ruled out as the form (17)
in [4, pp. 483-485]. So this, together with (5) and (6), gives that

0s) [T —ci)?
3 3
OR 6[¢ —(c1+c2+c3)/3]
Noting that all zeros of f, are multiple, there exist ¢ — cij(i =1, 2,3) and A; — (c1 + ¢c2 + ¢3)/3 such that &;; = pnGi(i =

1,2, 3) are zeros of f, with exact multiplicity 2, and n, = ppAn is the pole of f, with exact multiplicity 3.
Now write

H(¢)

(8)

3 o
ﬂgg%%Lh@. )

Then, by (8) and (9), we obtain

@)=

. 1
fn(ond) — 3 (10)

on C.

Next we complete our proof in three steps.

Step 1. We first prove that there exists § > 0 such that f‘n (z) #0 on Ags.

Suppose not, taking a sequence and renumbering if necessary, that fn has zeros tending to 0. Assume that z, — 0 is the
zero of fn with the smallest modulus. Then, by (10), it is easy to see that Z, /0, — oo.

Set

T = Fan2). (11)

Clearly, ?,;* (2) is well defined on C and not vanishing on A. Moreover, /f\,;*(l) =0.
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Now let

l_[i3=1 (z— ‘i‘_m/zn)
(z—1n/Zn)3

It follows from (9), (11), and (12) that

l_[i3=1 (22y — Sni)z }n(gnz) _ fa(zn2)

(22p — 77n)3 2% Z%

Mn(2) = fr@. (12)

Mpn(2) =

Obviously, all zeros of M;(z) have multiplicity at least 2 and all poles of My(z) have multiplicity at least 3. Since f;(z) =
0= |f)/(2)| < Alz|, it follows that M, (z) = 0= |[M,/(2)| < Al|z|. In view of f;/(z) # z, we have
" (Znz) — Znz
M) —z= InED =02 (13)
Zn
Thus Lemma 4 implies that {My(z)} is normal on C* = C\{0}.
Since &ui/on = &ni — ¢i for i=1,2,3, Nn/pn = An — (c1 +c2 +¢3)/3 and 2,/ pn — oo, we have

Sni _Snifn g =1,2,3); I_MmPn g
Zn Pn Zn Zn  Pn Zn

We now see from (12) that {fn} is also normal on C*.
Then, by taking a subsequence we assume that fn — f * spherically locally uniformly on C*. Moreover, since fn 1) =

fn (z4) =0, we know that f (1) = 0 with multiplicity at least 2.
Set

Ln(2) = M)(2) — z. (14)

From (13), we have L, ;f 0. A
Now we show that f*(z) # 0. Otherwise f(z) — 0, thus L,(z) - —z and L} (z) — —1 locally uniformly on C*. By the

argument principle, we get
1 L 1 1
= f—"dz—>— /—dz:l,
27 Ly 27 z

z|=1 z|=1

1
n(1, L,) —n(1, L—)

n

where n(r, f) denotes the number of poles of f in A, counting multiplicity. It follows that n(1, L) = 1. On the other hand,
the poles of L,(z) = M, (z) — z have multiplicity at least 5, which is a contradiction.

Then 1/}‘,;“ — 1/]‘* # oo spherically locally uniformly on C*. Recalling that frf #0 on A, then 1/},;“ is holomorphic on
A. The maximum modulus principle implies that 1/},;" — 1/}*, and then f,f — f* on A. Hence, f;f — f* spherically locally
uniformly on C. In particular, f,;"(O) = fn 0)—>1/6= f*(O).

Then, we obtain from (12) and (14) that

Ln(2) = L(2) = (2 *(2)" — 2
locally uniformly on C*\ {(?*)*1 (c0)}. Note that L,(z) # 0, then each 1/L,(z) is holomorphic on C, and thus 1/L,(z) —
1/L(2) locally uniformly on C* \ {(f*)~1(c0)}. By i—lurwitz‘s theorem, 1/L(z) = co or 1/L(z) is holomorphic on C* \
{((f*)~1(c0)}. If 1/L(z) = 00, then L(z) =0 on C*\ {(f*)~'(c0)}, and hence on C, that is,

@) —2=0
It follows that

2zt
623 ’

where c1, ¢y are constants. Since /f\*(l) =0 and all zeros of T* are multiple, we have

@)=

—1)3
f*()—(z ),

which is impossible, since z3 +c1z+c3 # (z—1)3. Thus 1/L(z) is holomorphic on C*\ {(T*)*1 (00)}. The maximum modulus
principle implies that L, (z) — L(z) locally uniformly on C. Since L,(z) # 0, we have L(z) # 0 or L(z) = 0. As before, L(z) =
is impossible. Then we have L(z) # 0. But L(0) =0 since f*(0) =1/6, which is a contradiction. Thus our claim is proved.



62 C. Fang, Y. Xu / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 56-62

Step 2. We now show that fn — f spherically locally uniformly on A, and each fn(z) is holomorphic on Ay for some
8 > 0.

Since {f,}, and hence {f‘n} is normal on A’, taking a subsequence and renumbering, we have fn — f spherically locally
uniformly on A’. A

We claim that f(z) #0 on A’. Otherwise, we have f/(z) — 0 and f,(z) — 0 locally uniformly on A’. Then the argument

principle yields that
/// -l 1
f / —-dz|=1.
T - ZTE z

1 1
z|l=5 z|=5

1
2 f//

1
"(5’ - )—n(

Now that f;'(z) # z, it follows that n(;, = n(% " — z) =1, which is impossible.

Recalhng that fn(z) # 0, as before, the maximum modulus principle implies that fn — f spherically locally uniformly on
A. Since fn(O) — 1/6, we have f(O) =1/6. Hence f is holomorphic at 0. Moreover, there exists a positive number § such
that each fn is holomorphic on Ag.

Step 3. Finally, we prove that ]‘(z) =1/6.

By (9), we get fn(z) = 23f(z) on A’. Thus

"2 -z 2 f@)] -z, (15)

on A \{f’” (00)}. If [23]‘(2)]” z 0, noting that f}'(z) # z, the maximum modulus principle implies that (15) still holds on
A. Then, Hurwitz's theorem yields that [z3f(z)]” 20, violating the fact that (23 f(2)]” — 2)|,—0 = 0. Hence, [23f(2)]" —

z=0. This, together with f(O) =1/6, gives f(z) =1/6.
Letting r = min{$, §'}, the proof of Theorem 1 is completed. O
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