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In this paper, we develop in a more general mathematical context the notion of 
indistinguishability, which in graph theory has recently been investigated as a symmetry 
relation with respect to a fixed vertex subset. The starting point of our analysis is to 
consider a set � of functions defined on a universe set U and to define an equivalence 
relation ≡A on U for any subset A ⊆ � in the following way: u ≡A u′ if a(u) = a(u′) for any 
function a ∈ A. By means of this family of relations, we introduce the indistinguishability 
relation ≈ on the power set P(�) as follows: for A, A′ ∈ P(�), we set A ≈ A′ if 
the relations ≡A and ≡A′ coincide. We use then the indistinguishability relation ≈ to 
introduce several set families on � that have interesting order, matroidal and combinatorial 
properties. We call the above set families the indistinguishability structures of the function 
system (U , �). Furthermore, we obtain a closure system and an abstract simplicial complex 
interacting each other by means of three hypergraphs having relevance in both theoretical 
computer science and graph theory. The first part of this paper is devoted to investigate the 
basic mathematical properties of the indistinguishability structures for arbitrary function 
systems. The second part deals with some specific cases of study derived from simple 
undirected graphs and the usual Euclidean real line.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous développons dans ce texte la notion d’indistinguabilité dans un contexte mathématique 
plus général. Cette notion a en effet été récemment étudiée en théorie des graphes, 
comme une relation de symétrie relativement aux sommets fixés. Le point de départ de 
notre analyse est de considérer un ensemble � de fonctions définies sur un ensemble 
univers U et de définir pour tout sous-ensemble A ⊂ � une relation d’équivalence ≡A

sur U par u ≡ u′ si a(u) = a(u′) pour toute fonction a ∈ A. Au moyen de cette famille de 
relations, nous introduisons la relation d’indistinguabilité ≈ sur l’ensemble puissance P(�)

de la façon suivante : pour A, A′ ∈ P(�), nous posons A ≈ A′ si les relations ≡A et ≡A′
coïncident. Nous utilisons cette relation d’indistinguabilité ≈ pour définir plusieurs familles 
d’ensembles sur � ayant d’intéressantes propriétés d’ordre, de matroïde et combinatoires. 
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Nous appelons les familles d’ensembles ci-dessus les structures indistinguables du système 
de fonctions (U , �). De plus, nous obtenons un système de clôture et un complexe 
simplicial abstrait interagissant l’un l’autre au travers de trois hypergraphes, qui sont 
significatifs aussi bien en théorie des graphes qu’en informatique théorique. La première 
partie du texte est dédiée à l’étude les propriétés mathématiques élémentaires des 
structures d’indistinguabilité pour les systèmes de fonctions arbitraires. La seconde partie 
traite de quelques cas particuliers dérivés des graphes non orientés simples et de la droite 
euclidienne réelle usuelle.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In graph theory, the symmetry notion is classically related to the properties of the automorphism group Aut(G) of a 
graph G (see [34]), and it is also object of deep algebraic investigations (see [39]). More in general, since a graph can be 
considered as a particular type of metric space, the symmetry notion in this context has been investigated in [40,46,47,53]. 
Recently, in [26,29] a type of notion of symmetry for simple undirected graphs has been investigated. More in detail, when 
we have a simple undirected graph G and when we fix a vertex subset A of G , we can consider the following equivalence 
relation ≡A (called A-symmetry) on the vertex set V (G). For v, v ′ ∈ V (G), we set

v ≡A v ′ : ⇐⇒ NG(v) ∩ A = NG(v ′) ∩ A,

where NG(v) is the usual open neighborhood of a vertex v of G . In [26,29], some new hypergraph families induced by the 
above A-symmetry have been introduced and studied in relation to motivations derived from database theory and related 
fields (see [26] for details). Based on some results obtained in [29], in [30] it has been introduced a new binary operation ◦
on a vertex subset family of G whose automorphism group (with respect to ◦) is isomorphic to a subgroup of Aut(G) (for 
other works on similar topics, see also [16,17]).

On the other hand, there are actually many researches and studies in discrete mathematics whose main theoretical re-
sults are strictly related to motivations derived from computer science and affine disciplines. For example, in [43–45] several 
types of results concerning the Cayley graphs, graph algebras and directed graphs are connected with automata theory and 
data mining methods. In [41,52,55], matroids have been used in their connections with new topics in theoretical computer 
science. From another perspective, in [2–5,36] some classes of bipartite graphs have been studied with FCA methods [35]. 
Again, in [20–22] some types of homotopy relations for graphs that are strictly related with database theory have been in-
troduced. In [12,13,15,19,25], some classes of lattices of signed integer partitions [1,42] have been investigated as sequential 
and discrete dynamical systems [50,51], with motivations related to some extremal combinatorial sum problems [23,24].

In this paper, we develop the above notion of A-symmetry (that in the study of data tables is usually called indiscernibility 
relation) in a purely mathematical context. To be more specific, let � be an arbitrary non-empty set. Usually, in mathematics, 
the elements of � do not have a well-specified nature. The basic idea of this paper is to assume that the elements of �
are functions, whose domain is some point set U and whose codomain is some value set �. We say therefore that a function 
system is a triple I = 〈U , �, �〉, where U is a set of points u, v, z, ... and � is a set of functions a, b, c, ... that have domain 
U and codomain �. Let us note that a function system is a type of very general structure, which can be found in many 
different mathematical contexts, both in the finite and in the infinite cases.
We can uniquely associate with the function system I the global map F : U × � → � defined by

F (u,a) := a(u),

for any u ∈ U and a ∈ �. Let then I = 〈U , �, F , �〉 be a given function system with global map F .
If A ⊆ � and u, u′ ∈ U , we set

u ≡A u′ : ⇐⇒ a(u) = a(u′) ∀a ∈ A.

In an approximation geometry for conceptual patterns [48], the equivalence relation ≡A is called A-indiscernibility relation
and it is used when the functions in � are substituted by specific attributes (or, equivalently, properties) of a set of objects. 
In this paper, we continue to use this terminology, and we call the set partition of U induced ≡A the A-indiscernibility 
partition and denote it by π(A).

We consider now the following equivalence relation ≈ defined on the power set P(�) of �. If A and A′ are any two 
subsets of �, we set

A ≈ A′ : ⇐⇒ π(A) = π(A′),
and we call ≈ the indistinguishability relation on I. If A ⊆ �, we denote by [A]≈ the equivalence class of A with respect 
to the equivalence relation ≈ and we call [A]≈ the indistinguishability class of A. In this paper, we will show that the 
indistinguishability relation induces a very rich mathematical structure on the power set P(�), and the richness of this 
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structure is a consequence of the way in which the set partitions π(A) are interrelated between them and with others three 
specific subset families of �.

A first useful property of ≈ is that any indistinguishability class is a union-closed family [49]. By the union-closed prop-
erty, it follows that any indistinguishability class [A]≈ has a maximum element M(A) with respect to set-theoretic inclusion. 
Therefore, we are led to introduce the following subset family M A X P (I) := {M(A) : A ∈ P(�)}. We call the members of the 
family M A X P (I) the maximum partitioners of I. Then it results that M A X P (I) is a closure system [11], so it is also a com-
plete lattice with respect to usual inclusion and, in the infinite case, a convexity structure [9,10]. Moreover, the dual of the 
above lattice is order isomorphic to the partially ordered set (�ind(I), �), where �ind(I) := {π(A) : A ∈ P(�)} and � is the 
usual partial order between set partitions of U (see [11]). In other terms, we have that

π(A) � π(A′) ⇐⇒ M(A) ⊆∗ M(A′), (1)

for any A, A′ ∈ P(�). It is appropriate to note here that, by means of a specific characterization that we establish in Theo-
rem 3.19, it is possible to investigate the notion of orthogonality between set partitions (see [6,7]) in the set �ind(I). On the 
other hand, we can also consider the partial order � on the quotient set I N D≈(I) := {[A]≈ : A ∈ P(�)} defined naturally as 
follows:

[A]≈ � [A′]≈ ⇐⇒ M(A) ⊆∗ M(A′). (2)

We obtain three isomorphic complete lattices M(I) := (M A X P (I), ⊆∗), Pind(I) := (�ind(I), �) and I(I) := (I N D≈(I), �), 
which have interesting mathematical properties.

The first of these properties is the global–local regularity, briefly (GLR), which can be expressed as follows:

(GLR) M(A) � M(A′) =⇒ Y � X for any X ∈ [A]≈ and Y ∈ [A′]≈ .

The global–local regularity property tells us that the inclusion between the maximum elements of two any indistin-
guishability classes preserves the same type of inclusion between any two members of these classes. In other terms, we 
can say that the macro-inclusion relations between the maximum partitioners of I have a direct influence also on the 
micro-inclusion relations between the subsets of their corresponding indistinguishability classes.

Let us note that the global–local regularity is a property whose main fundament consists of the possibility to consider 
the order structure I(I) as a lattice of posets, i.e. a lattice whose nodes are the posets ([A]≈, ⊆), when A runs over P(�). 
We call these partially ordered sets the local indistinguishability posets.

At this point, we consider the minimal subset family min([A]≈) and introduce the following subset family:

M I N P (I) :=
⋃

A∈M A X P (I)

min([A]≈),

whose members are here called minimal partitioners of I. Then M I N P (I) is an abstract simplicial complex that is related 
to M A X P (I) in a similar way, in which the independent set family of a matroid is related to its closed set family. In fact, 
although in general, M I N P (I) is not a matroid, when this happens, then M A X P (I) often coincides with the closed family of 
this matroid and, in those cases, the map A �→ M(A) is exactly its closure operator. On the other hand, also when M I N P (I)

is not a matroid, its structure has many similitudes with a matroid. For example, if A ∈ P(�) we call any subset B ⊂ A such 
that π(A) = π(B) and π(A) �= π(B ′) for any B ′ � B an A-reduct of I. Let R E D(A) be the A-reduct family. We will then show 
that R E D(I) := R E D(�) acquires properties similar to those satisfied by the basis family of a “matroidal-like structure”; in 
fact it results that

M I N P (I) ⊇
⋃

A∈R E D(�)

P(A).

In general, the complete determination of the reduct family R E D(A) is not an easy task, because the reducts of � are 
exactly the minimal transversals of the subset family E S S(A) of all the subsets C , here called essential subsets of A, such 
that π(A \ C) �= π(A) and π(A \ C ′) = π(A) for any C ′ � C . A particularly interesting case of function system I is that 
associated with the adjacency matrix of a simple graph G [26,29]. In this case, in [29] has been provided a complete 
geometric classification of the subgraphs induced by the members of R E D(G) when G is the Petersen graph.

In the literature, the hypergraph transversal problem for a finite hypergraph H is the problem of generating all the elements 
of Tr(H). In general, this is an important mathematical problem that has many applications in mathematics and in computer 
science [32,33,37,38].

Returning finally to the above discussion concerning the notion of indistinguishability, the relevant aspect is that in a 
very general situation, where we have simply a function system I, we can construct several subset families, M A X P (I), 
M I N P (I), R E D(I), E S S(I) (and others that we introduce in the next sections), that have not trivial links between them and 
interesting mathematical properties (for an interpretation of the above subset families in computer science, see [14,27,28]). 
The most important relation linking M A X P (I) and M I N P (I) is given in Theorem 7.3 by means of the set operator M , i.e. 
M I N P (I) = {A ∈ P(�) : a /∈ M(A \ {a}) ∀a ∈ A}. In particular, when the hypergraph m(I) := (�, M I N P (I)) is a matroid, we 
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can define two closure operators, namely that naturally associated with the matroid and M . They are a priori different 
between each other, as it can be seen in Example 7.10.

We conclude this introductory section with a brief description of the sections in this paper.
In Section 2, we recall the basic notions and fix the notations used in the remaining part of the paper.
In Section 3, we introduce the basic notion of our work, which is the indistinguishability relation on the power set P(�), 

and we determine the main properties of this equivalence relation. We introduce the family M A X P (I) of all maximum 
partitioners of I, and we prove some basic facts concerning the family M A X P (I). In particular, we show that M A X P (I)

is an intersection closed family and that M(I) and �ind(I) are isomorphic complete lattices. Finally, we characterize the 
indiscernibility partitions of I by means of a set operator � : P(U ) → P(�), and we also use this operator to provide a 
relativized version of the lattice M(I).

In Section 4, we try to develop the starting point of a non-trivial study of function systems where both the function 
set and the point set are infinite. In this regard, we introduce the notion of separator of a function subset in order to find 
some topological-like properties of the function systems, and we relate this notion to the problem of verifying when a chain 
of maximum partitioners is a union-closed family. We call the function systems having this property union chain preserving
(abbreviated UCP) function systems. On the Euclidean real line, we build a concrete model of infinite UCP function system, 
and we establish several general results concerning the UCP function systems.

In Section 5, we introduce the set families E S S(A) and R E D(A), and we show that R E D(A) is the transversal hypergraph 
of E S S(A), for any A ∈ P(�). We also show that the subset 

⋂
A∈P(�) R E D(A) has deep relations with the subset family 

M A X P (A) := {C ∩ A : C ∈ M A X P (I)}.
In Section 6, our intent consists in studying in details the family M I N P (I), providing all the main properties it satisfies, 

such as the global–local regularity (see Proposition 6.13) and the inheritance (see Theorem 6.16). Finally, we analyze the 
strict relation occurring between the minimum partitioners and the relative reducts of any function subset.

In Section 7, we investigate some properties of matroidal type for M I N P (I) by means of an operator ψ̂ defined similarly 
to the closure operator of a matroid. For example, we will see that if M is a closure operator having the Mac Lane–Steinitz 
exchange property, then the hypergraph m(I) is a matroid.

In Section 8, we interpret graphs as if they were function systems. In particular, we devote our attention to the determi-
nation of the maximum and the minimal partitioners of the complete multipartite graphs and n-cycle Cn . We also provide 
an algebraic characterization for the reduct family of Cn .

2. Reviews and notations

If k is a positive integer, we set [k] := {1, . . . , k}. If X is a set, we denote by P(X) the power set of X and by |X | the 
cardinality of X . We set B(X) := (P(X), ⊆) and B∗(X) := (P(X), ⊆∗), where ⊆∗ is the dual inclusion, i.e. A ⊆∗ B if B ⊆ A. If 
we want to specify that Y is a finite subset of X , we will write Y ⊆ f X . If n is a non-negative integer, we write Y ⊆≤n X if 
Y ⊆ X and |Y | ≤ n.

A family of subsets F ⊆ P(X) is called a union-closed family if whenever F′ ⊆ F then ∪F′ ∈ F. We say that F is a chain 
union-closed family if whenever C is a chain of elements of F, then ∪C is again an element of F. Obviously, each subset 
family having a finite number of elements is chain union-closed. If X is a finite set and F ⊆ P(X) such that all its members 
have the same cardinality, we say that F has uniform cardinality. In this case, we denote by ||F|| the common cardinality of 
the members of F.

Definition 2.1. [8] A hypergraph is a pair H = (V (H), E(H)), where V (H) = {v1, . . . , vn} is an arbitrary finite set and E(H) =
{Y1, . . . , Ym} is a non-empty family of subsets Y1, . . . , Ym of V (H). The elements v1, . . . , vn are called vertices of H and the 
subsets Y1, . . . , Ym are called hyperedges of H . A hypergraph on V (H) is a hypergraph having V (H) as vertex set.

The classical notion of transversal for a finite hypergraph [8] can be also given for an arbitrary hypergraph.

Definition 2.2. Let H be a hypergraph with vertex set V (H) and hyperedge set E(H). We say that a subset Y ⊆ V (H) is 
a transversal of H if Y ∩ A �= ∅ for each non-empty hyperedge A ∈ E(H). We say that a transversal A of H is minimal if 
no proper subset of A is a transversal of H . We denote by Tr(H) the family of all minimal transversals of H . We call the 
hypergraph H tr := (V (H), Tr(H)) the transversal hypergraph of H .

2.1. Posets

A partially ordered set (abbreviated poset) is a pair P = (X, ≤), where X is a set and ≤ is a binary relation on X that is 
reflexive, antisymmetric and transitive. If P = (X, ≤) is a partially ordered set and x, y ∈ X , we also write x < y if x ≤ y and 
x �= y. If x, y are two distinct elements of X , we say that y covers x, denoted by x � y (or, equivalently, by y � x), if x ≤ y
and there is no element z ∈ X such that x < z < y. If x ∈ X we set [x|P ↑] := {z ∈ X : x � z} and [x|P ↓] := {y ∈ X : y � x}. 
We call the elements of [x|P ↑] the covers of x and the elements of [x|P ↓] the co-covers of x. An element x ∈ X is called 
minimal in P if z ≤ x implies z = x, and, in a similar way, one defines a maximal element in P . We denote respectively by 
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min(P ) and Max(P ) the sets of all minimal and maximal elements of P . In particular, when F is a subset family of some 
set X , we denote respectively by min(F) and Max(F) the minimal and the maximal subsets of F with respect to the set 
inclusion. We also set min∗(F) := Max(F) and max∗(F) := min(F). If there is an element 0̂X ∈ X such that 0̂X ≤ x, then 0̂X
is unique, and it is called the minimum of P . In a similar way, the maximum of P , usually denoted by 1̂X , can be defined. 
A chain C of P is a subset C ⊂ X such that for all x, y ∈ C we have x ≤ y or y ≤ x.

A poset P = (X1, ≤1) is said isomorphic to another poset P2 = (X2, ≤2) if there exists a bijective map φ : X1 → X2 such 
that x ≤1 y ⇐⇒ φ(x) ≤2 φ(y), for all x, y ∈ X1. The dual poset of P is the poset P∗ := (X, ≤∗), where ≤∗ is the partial order 
on X defined by x ≤∗ y : ⇐⇒ y ≤ x, for all x, y ∈ X . A poset P is called self-dual if P is isomorphic to its dual poset P∗ .

2.2. Set partitions

If X is an arbitrary set and π is a set partition on X , we usually denote by {Bi : i ∈ I} the block family of π. If x ∈ X , 
we denote by π[x] the block of π that contains the element x. If Y ⊆ X and Y ⊆ Bi , for some index i ∈ I , we say that Y
is a sub-block of π and we write Y � π. When X is finite, we use the standard notation π := B1| . . . |B |π| , where |π| is the 
number of distinct blocks of π. We denote by �(X) the set of all set-partitions of X . It is well known that on the set �(X), 
we can consider a partial order � defined as follows: if π, π′ ∈ �(X), then

π � π′ :⇐⇒ (∀B ∈ π) (∃B ′ ∈ π′) : B ⊆ B ′, (3)

which is equivalent to

π � π′ ⇐⇒ (∀x ∈ X) (π[x] ⊆ π′[x]). (4)

We will write π ≺ π′ when π � π′ and π �= π′ .
The pair P(X) = (�(X), �) is a complete lattice, which is called partition lattice of the set X . We now recall the basic 

facts about the meet and the join of this lattice.
Let π1 = A1| . . . |Am and π2 = B1| . . . |Bn be two partitions on the same finite universe X , i.e., π1, π2 ∈ �(X). We set

Sπ1, π2 := {C ⊆ X : if x ∈ C, then π1[x] ⊆ C and π2[x] ⊆ C}
Then the meet and the join of π1 and π2 in P(X) are given respectively by π1 ∧ π2 := {Ai ∩ B j : i = 1, . . . m; j = 1, . . . , n}
and π1 ∨ π2 := C1| . . . |Ck , where C1, . . . , Ck are the minimal elements of the set family Sπ1, π2 with respect to the inclusion.

2.3. Closure systems and matroids

Let S be a set.

Definition 2.3. [11] A family F on S is called a closure system on S if:

(i) S ∈ F;
(ii) whenever A, B ∈ F then A ∩ B ∈ F.

We denote by C L SY (S) the set of all closure systems on S .

Definition 2.4. [11] A closure operator on S is a set map ϕ : P(S) → P(S) having the following properties:

(i) if A ⊆ B then ϕ(A) ⊆ ϕ(B), i.e. ϕ is isotone;
(ii) A ⊆ ϕ(A), i.e. ϕ is extensive;

(iii) ϕ(ϕ(A)) = ϕ(A), i.e. ϕ is idempotent.

We denote by C L O P (S) the set of all closure operators on S .

Definition 2.5. A set map ϕ : P(S) → P(S) having the following MacLane–Steinitz exchange property: for any A ∈ P(S) and 
for all elements a ∈ � \ ϕ(A), b ∈ ϕ(A ∪ {a}) \ ϕ(A), it results that a ∈ ϕ(A ∪ {b}) is called a MLS operator on S . We call a 
closure operator that is also a MLS operator a MLS closure operator.

If F ∈ C L SY (S), we define a map ϕF : P(S) → P(S) in the following way:

C ∈ P(S) �→ ϕF(C) :=
⋂

{A ∈ F : C ⊆ A} ∈ P(S). (5)

Then it is immediate to verify that ϕF ∈ C L O P (S).
On the other hand, if ϕ ∈ C L O P (S), we set

Fϕ := {A ∈ P(S) : ϕ(A) = A}. (6)

Then, also in this case, it is immediate to verify that Fϕ ∈ C L SY (S).
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Theorem 2.6. The maps F ∈ C L SY (S) �→ ϕF ∈ C L O P (S) and ϕ ∈ C L O P (S) �→ Fϕ ∈ C L SY (S) are inverses of each other. In other 
terms, if F ∈ C L SY (S) and ϕ ∈ C L O P (S), then FϕF

= F and ϕFϕ = ϕ . Moreover, if F ∈ C L SY (S), then it is a complete lattice under 
set-inclusion in which meet means intersection.

Proof. See [11]. �
By Theorem 2.6, we can consider as equivalent the notions of closure system and closure operator on the same set S

(clearly this equivalence is described by means of (5) and (6)).
For general results on matroids, see [54]. In what follows, we provide the main results on matroid theory that we use in 

the sequel. Let X be a finite set and F be a family of subsets of X .

Definition 2.7. The pair (X, F) is a matroid if:

(M1) ∅ ∈ F;
(M2) if Y ∈ F and Z ⊆ Y , then Z ∈ F.
(M3) if U , V ∈ F are such that |U | = |V | + 1, then there exists x ∈ U \ V such that V ∪ {x} ∈ F.

In this case, any element of F is called independent set.

We finally characterize the condition for a subset family F is a matroid in terms of closure operators.

Theorem 2.8. A function σ : P(X) → P(X) is the closure operator of a matroid on X if and only if σ is a MLS closure operator on X. 
In this case, the family of the independent sets is F = {A ⊆ X : a /∈ σ(A \ {a}) ∀a ∈ A}.

3. Indistinguishability relation and maximum partitioners

In this section, we introduce the basic notions that we will use in the remaining part of this paper. We first formalize 
the notion of function system and related concepts.

Definition 3.1. We call a structure I = 〈U , �, F , �〉, where U , � and � are three non-empty sets and F : U × � → � is a 
map, a function system. We call the map F the pairing of I. If � is a set with two elements (usually denoted by 0 and 1), 
we say that I is a Boolean function system. We call the elements of U the points of I, the elements of � the functions of I
and the elements of � the values of I. When both the sets U = {u1, . . . , um} and � = {a1, . . . , an} are finite, we say that I is 
a finite function system. For a finite function system, we denote by T [I] the m × n rectangular table having on the i-th row 
the point ui , on the j-th column the function a j and the value F (ui, a j) in the place (i, j). It is clear that, in the finite case, 
we can identify I with T [I], and therefore in such a case we speak equivalently of functional table. Finally, we say that I is 
a symmetric function system if U = � and F (u, a) = F (a, u) for any u ∈ U and a ∈ �.

In what follows, we assume that I = 〈U , �, F , �〉 is a given function system and that A is an arbitrary element of P(�).
We set

u ≡A u′ :⇐⇒ F (u,a) = F (u′,a), ∀a ∈ A. (7)

Then ≡A is an equivalence relation on U that in database theory and related contexts is usually called A-indiscernibility 
relation (for details see [18,26]). In this paper, we continue to use such terminology. For any u ∈ U , we denote by [u]A the 
equivalence class of u with respect to ≡A and we call [u]A the A-indiscernibility class of u.

We introduce now the map π : P(�) → �(U ) defined by

A ∈ P(�) �→ π(A) := {[u]A : u ∈ U }, (8)

and we denote by �ind(I) the image of the operator π, i.e.

�ind(I) := {π(A) : A ∈ P(�)}. (9)

We also set

Pind(I) := (�ind(I),�), (10)

so that Pind(I) is a sub-poset of the partition lattice P(U ).



G. Chiaselotti et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 991–1021 997
Let us note that if A′ ∈ P(�), then

A ⊆ A′ =⇒ π(A′) � π(A). (11)

Furthermore, the properties given in (11) can be equivalently expressed by saying that π is an order-preserving map 
between the lattices B∗(�) and P(U ).

We introduce now a binary relation ≈ on P(�) that will play a basic role in this paper.
If A, A′ ∈ P(�), we put

A ≈ A′ : ⇐⇒ π(A) = π(A′),

which is equivalent to the following

u ≡A u′ ⇐⇒ u ≡A′ u′, (12)

for all u, u′ ∈ U .
Then ≈ is an equivalence relation on P(�) having the following basic property.

Proposition 3.2. Let A ≈ B and D ∈ P(�). Then

A ∪ D ≈ B ∪ D. (13)

Proof. It is an immediate consequence of (7) and (12). �
Definition 3.3. We call ≈ the indistinguishability relation of I, and we denote by [A]≈ the equivalence class of A with respect 
to ≈.

Another basic property of the indistinguishability relation is given in the following result.

Proposition 3.4. The indistinguishability class [A]≈ is a union-closed family.

Proof. Straightforward. �
We set now

M(A) :=
⋃

[A]≈. (14)

By Proposition 3.4 we obtain the following immediate consequence.

Corollary 3.5. M(A) is the maximum of the family [A]≈.

Proposition 3.6. We have that

M(A) = {b ∈ � : A ∪ {b} ≈ A}. (15)

Proof. Let b ∈ M(A). Then there exists A′ ∈ [A]≈ such that b ∈ A′ . Let now u, u′ ∈ U such that u ≡A∪{b} u′ , then u ≡A u′
because A is a subset of A ∪ {b}. On the other hand, let assume that u ≡A u′ . Since A′ ∈ [A]≈ , we have u ≡A′ u′ , and 
therefore F (u, b) = F (u′, b) because b ∈ A′ . Hence u ≡A∪{b} u′ , and by (12) we deduce that A ≈ A ∪ {b}.

Let now b ∈ � such that A ≈ A ∪ {b}. Then b ∈ A ∪ {b} ∈ [A]≈ and we deduce that b ∈ M(A). �
The conditions (15) can be also respectively expressed in the following equivalent way:

b ∈ M(A) ⇐⇒ (∀u, u′ ∈ U : u ≡A u′ =⇒ F (u,b) = F (u′,b)). (16)

We consider now the following set operator:

M : P(�) → P(�)

such that

M : A ∈ P(�) �→ M(A) ∈ P(�).

Then we obtain the following result.

Proposition 3.7. M is a closure operator.
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Proof. It is obvious that A ⊆ M(A). Let now A′ ∈ P(�) such that A ⊆ A′ . Let b ∈ M(A). Then A ≈ A ∪ {b}. Let u, u′ ∈ U
such that u ≡A′ u′ . Since A is a subset of A′ , we have that u ≡A u′ , and this implies F (u, b) = F (u′, b) because A ≈ A ∪ {b}. 
This shows that u ≡A′∪{b} u′ , i.e. b ∈ M(A′). Hence M(A) ⊆ M(A′). Finally, we must prove that M(M(A)) = M(A); for this, 
it is sufficient to show that M(M(A)) ⊆ M(A). Let then b ∈ M(M(A)) and u, u′ ∈ U such that u ≡A u′ . Since A ≈ M(A), it 
follows that u ≡M(A) u′ , therefore F (u, b) = F (u′, b) by (16), because b is an element of M(M(A)). Hence b ∈ M(A) again 
by (16). �

We set now

M A X P (I) := {M(A) : A ∈ P(�)} = {B ∈ P(�) : M(B) = B}, (17)

and

M(I) := (M A X P (I),⊆∗). (18)

By Proposition 3.7, we immediately obtain the following result.

Theorem 3.8. The following hold:

(i) M A X P (I) is a closure system.
(ii) M(I) is a complete lattice.

Moreover, the join and the meet in the lattice M(I) are characterized as follows.
If {A j : j ∈ J } ⊆ M A X P (I) then:

(iii) the join of {A j : j ∈ J } in M(I) is 
⋂

j∈ J A j ;
(iv) the meet of {A j : j ∈ J } in M(I) is M(

⋃
j∈ J A j).

Proof. (i) By (17), it follows that M A X P (I) is the family of all closed sets for the closure operators M . Therefore the result 
follows by Theorem 2.6.

(ii) By Theorem 2.6 we deduce that (M A X P (I), ⊆) is a complete lattice, therefore also its corresponding dual lattice 
M(I) is a complete lattice.

(iii) The result is a direct consequence of the duality and Theorem 2.6.
(iv) Let {A j : j ∈ J } ⊆ M A X P (I). Since A j ⊆ ⋃

j∈ J A j and M is a closure operator, M(
⋃

j∈ J A j) ⊆∗ M(A j) = A j , so 
M(

⋃
j∈ J A j) is a lower bound of {A j : j ∈ J } in M(I). Let now C ∈ M A X P (I) such that, for all j ∈ J , C ⊆∗ A j . Then C ⊆∗⋃

j∈ J A j , therefore C = M(C) ⊆∗ M(
⋃

j∈ J A j). This proves that the meet of {A j : j ∈ J } in M(I) is M(
⋃

j∈ J A j). �
We use the following terminology.

Definition 3.9. We call the elements of M A X P (I) the maximum partitioners of I.

Proposition 3.10. Let A′ ∈ P(�). Then the followings hold:

π(A) � π(A′) ⇐⇒ M(A′) ⊆ M(A). (19)

Proof. Let M(A′) ⊆ M(A). Then π(A) = π(M(A)) � π(M(A′)) = π(A′) by virtue of (11). We assume now that π(A) � π(A′). 
Let a ∈ M(A′) and suppose by contradiction that a /∈ M(A), then M(A) � M(A) ∪ {a}. Therefore, by (15), we deduce that 
π(M(A)) �= π(M(A) ∪{a}). Then there exist two objects u, u′ ∈ U such that u ≡M(A) u′ and u �≡M(A)∪{a} u′ , and this is possible 
only if F (u, a) �= F (u′, a). Now, since π(M(A)) � π(M(A′)) and u ≡M(A) u′ , we obtain u ≡M(A′) u′ , therefore F (u, a) = F (u′, a)

because a ∈ M(A′). This shows the contradiction and we are done. �
By Proposition 3.10, we immediately obtain the following interesting order isomorphism.

Corollary 3.11. The map πI induces an order isomorphism between the posets M(I) and Pind(I). Moreover, since M(I) is a complete 
lattice, the same holds also for Pind(I).

Definition 3.12. We call M(I) the maximum partitioner lattice of I and Pind(I) the indiscernibility partition lattice of I.

We now give another characterization of M A X P (I).
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Proposition 3.13. Let A ∈ P(�). Then:

M(A) =
⋂

{B : B ∈ M A X P (I), A ⊆ B}. (20)

Proof. Since M is a closure operator, M(A) ⊆ B for any B ∈ M A X P (I) such that A ⊆ B . Vice versa, since A ⊆ M(A), the 
intersection in the right side of (20) is obviously contained in M(A). Hence (20) holds. �

We set now

�(W ) := {a ∈ � : ∀ u, u′ ∈ W , F (u,a) = F (u′,a)}. (21)

Let us observe that � : P(U ) → P(�). Moreover, if W ′ ∈ P(U ) it is clear that

W ⊆ W ′ =⇒ �(W ) ⊇ �(W ′). (22)

The following result is immediate.

Proposition 3.14. �(W ) = A if and only if the following hold:

(i) W � π(A);
(ii) if A′ ∈ P(�) and W � π(A′), then A′ ⊆ A.

Definition 3.15. We call the set operator � the indiscernibility operator of I.

We set now

�ind(I|W ) := {π ∈ �ind(I) : W � π} and Pind(I|W ) := (�ind(I|W ),�), (23)

M A X P (I|W ) := {B ∈ M A X P (I) : W � π(B)} and M(I|W ) := (M A X P (I|W ),⊆∗). (24)

In the next result we show that the generalized indiscernibility relation is also a specific type of maximum partitioner 
having an important role in the lattice structure of M(I).

Theorem 3.16. We have that �(W ) ∈ M A X P (I|W ) and the poset M(I|W ) is a complete lattice that coincides with the upset of �(W )

in the lattice M(I).

Proof. Let C := �(W ) and D := M(C). If u, u′ ∈ W , by definition of �(W ), we have u ≡C u′ , therefore we also obtain 
u ≡D u′ , because π(D) = π(C). Hence W � π(D). By (ii) of Proposition 3.14 we deduce then that D ⊆ C , i.e. C = M(C). This 
shows that C ∈ M A X P (I). By part (i) of Proposition 3.14 we also have W � π(C), so that C = �(W ) ∈ M A X P (I|W ).

We show that M A X P (I|W ) is an upset generated by �(W ) in the poset M(I), which is equivalent to the following 
condition:

A ∈ M A X P (I|W ) ⇐⇒ A ∈ M A X P (I)and A ⊆ �(W ). (25)

Let A ∈ M A X P (I|W ). Then A ∈ M A X P (I) by definition of M A X P (I|W ). If u, u′ ∈ W we have u ≡A u′ because W � π(A). 
Therefore, by (ii) of Proposition 3.14, it follows that A ⊆ �(W ).

Conversely, let now A ∈ M A X P (I) such that A ⊆ �(W ). Let us prove that W � π(A). For this, let u, u′ ∈ W . Then ∀a ∈ A, 
since a ∈ �(W ), F (u, a) = F (u′, a). Then u ≡A u′ and thus W � π(A). So A ∈ M A X P (I|W ). This proves (25).

Now, we assume that {A j : j ∈ J } ⊆ M A X P (I|W ). Then, by (25), A j ∈ M A X P (I) and A j ⊆ �(W ) for any j ∈ J . By (iii)
of Theorem 3.8, the join of {A j : j ∈ J } is 

⋂
j∈ J

A j , which is again an element of M A X P (I) contained in �(W ). Therefore, by 

(25) it also belongs to M A X P (I|W ).
On the other hand, by (iv) of Theorem 3.8 the meet of {A j : j ∈ J } is M(

⋃
j∈ J

A j). Since M is a closure operator, we 

deduce that

M(
⋃
j∈ J

A j) ⊆ M(�(W )) = �(W ).

Again by (25), M(
⋃
j∈ J

A j) ∈ M A X P (I|W ). Thus the thesis follows. �

Proposition 3.17. The poset Pind(I|W ) is a complete lattice isomorphic to the lattice M(I|W ).
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Proof. It is sufficient to observe that the map πI induces an order isomorphism between M(I) and Pind(I) whose image is 
exactly �ind(I|W ). Therefore, the thesis follows directly by Theorem 3.16. �

By virtue of the previous results, we give the following definition.

Definition 3.18. We call the lattice Pind(I|W ) the indiscernibility partition lattice of I conditioned to W .

If π = {Bi : i ∈ I} ∈ �(U ), we set

Max(π) :=
⋂
i∈I

�(Bi). (26)

The relevance of the previous set operator � is due to the following result.

Theorem 3.19. Let π = {Bi : i ∈ I} ∈ �(U ) and A = Max(π). Then:

(i) A ∈ M A X P (I);
(ii) π � π(A);
(iii) π ∈ �ind(I) ⇐⇒ π = π(A);
(iv) Let A′ ∈ P(�) and π(A′) = {Cl : l ∈ I ′}. Then

M(A′) =
⋂
l∈I ′

�(Cl).

Proof. (i) Since M A X P (I) is a closure system and �(Bi) ∈ M A X P (I), the thesis holds.
(ii) Let u, u′ ∈ U be two elements belonging to a same block Bk of π. We must show that u ≡A u′ . Therefore, let a ∈ A. 

Then a ∈ �(Bk), so F (u, a) = F (u′a) by definition of �(Bk).
(iii) The implication ⇐= is obvious. We assume therefore that π ∈ �ind(I). Let C = Max(π). Then we have π = π(C), and 

this implies that F (u, c) = F (u′, c) for all u, u′ ∈ Bi , for each i ∈ I and each c ∈ C . By definition of �(Bi), we deduce then 
that C ⊆ �(Bi) for every i ∈ I . Hence C ⊆ A.

Let now a ∈ A. By definition of A, we have

F (u,a) = F (u′,a), ∀u, u′ ∈ Bi, for each i ∈ I. (27)

Let us suppose now by contradiction that a /∈ C . Then, since C ∈ M A X P (I) by part (i), it follows that π(C ∪ {a}) ≺ π(C) = π. 
Therefore, there exists at least an index r ∈ I and two distinct objects u, u′ ∈ Br such that F (u, a) �= F (u′, a), and this in 
contrast with (27). This shows that A ⊆ C . Thus A = C and π = π(C) = π(A). This concludes the proof of (iii).

(iv): We prove only the statement for A′ . Let π := π(A′). If we set A := ⋂
l∈I ′ �(Cl), we deduce that π(A′) = π = π(A) by 

part (iii). Hence, A ≈ A′ . But A ∈ M A X P (I) by part (i), thus M(A′) = A. �
4. Separators and related notions

In this section we assume a topological point of view for our investigation of the maximum partitioner family. We set

S(A) := � \ M(A). (28)

Definition 4.1. We call any element s ∈ S(A) a separator of A and we set

S E P (I) := {S(A) : A ∈ P(�)}.

By (16) the following characterization is immediate.

Proposition 4.2. Let s ∈ �. Then s is a separator of A if and only if there exist two points u, u′ ∈ U such that:

(i) F (u, a) = F (u′, a) ∀a ∈ A;
(ii) F (u, s) �= F (u′, s).

If A = {Ai : i ∈ I} ⊆ P(�), we set

S(A) :=
⋂
i∈I

S(Ai). (29)
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Proposition 4.3. S(∪A) ⊆ S(A).

Proof. Let s ∈ S(A), then there exist u, u′ ∈ U with the property that for any a ∈ ⋃
i∈I Ai , F (u, a) = F (u′, a) and F (u, s) �=

F (u′, s). In other words, for any fixed ĩ ∈ I and for any choice of a ∈ Aĩ ⊆ ⋃
i∈I Ai , it follows that F (u, a) = F (u′, a) and 

F (u, s) �= F (u′, s), i.e. s ∈ S(Aĩ). It readily follows that s ∈ S(Ai) for any i ∈ I and hence s ∈ S(A). �
Definition 4.4. We say that a chain A ⊆ P(�) is union preserving separated if S(A) ⊆ S(∪A).

Let us consider now the following two very natural infinite function systems.

Definition 4.5. We call the Boolean symmetric function system R = 〈R, EU , {0, 1}〉, where EU (x, y) := 1 if d(x, y) = 1 and 
EU (x, y) := 0 otherwise, the unitary Euclidean real function system. Similarly, we call the Boolean symmetric function system 
N = 〈N, EU , {0, 1}〉, where EU is defined as before, the unitary Euclidean natural function system.

Example 4.6. Let A = {An : n ≥ 1} where An := [0, (1 + 1
n )n]. Since each An is an interval, by Proposition 4.13 we have that 

An ∈ M A X P (R), for any n ≥ 1, and

S(An) = R \ An =] − ∞,0[∪
](

1 + 1

n

)n

,+∞
[

.

It follows immediately that

S(A) :=
⋂
n≥1

S(An) =] − ∞,0[∪ ]e,+∞[.

On the other hand, by the fact that⋃
n≥1

An = [0,e],

again by Proposition 4.13, we deduce that

S(∪A) = S([0,e]) = R \ [0,e].
In other terms, we have that S(A) = S(∪A), so A is a union preserving separated chain.

In what follows, we define a new class of function systems, i.e. those for which any chain is union preserving.

Definition 4.7. We say that the function system I is union chain preserving, abbreviated UCP, if any chain A ⊆ P(�) is union 
preserving separated.

Remark 4.8. Any finite function system is UCP.

We now characterize the UCP function systems.

Theorem 4.9. The following three conditions are equivalent:

(i) I is UCP;
(ii) M A X P (I) is a chain union closed family;
(iii) For any A ∈ P(�), we have

M(A) =
⋃

{M(F ) : F ⊆ f A}. (30)

Proof. (i) =⇒ (ii): Let I be a UCP function system and let B = {Bi : i ∈ I} be a chain of maximum partitioners of �. Let 
B := ∪B and s ∈ � \ B . Then s ∈ � \ Bi = � \ M(Bi) = S(Bi) for all i ∈ I , because any Bi is a maximum partitioner and 
therefore M(Bi) = Bi . Hence s ∈ ⋂

i∈I S(Bi) := S(B), and S(B) ⊆ S(∪B) by hypothesis, so that s ∈ S(B). This shows that 
� \ B ⊆ S(B) = � \ M(B), i.e. M(B) ⊆ B , and hence B ∈ M A X P (I). Therefore M A X P (I) is a chain union closed family.

(ii) =⇒ (i): Let M A X P (I) be a chain union closed family and let A = {Ai : i ∈ I} ⊆ P(�) be a chain. Since Ai ⊆ A j implies 
that M(Ai) ⊆ M(A j), it follows that AM := {M(Ai) : i ∈ I} is a chain of maximum partitioners. Then, by hypothesis we have 
that K := ⋃

i∈I M(Ai) ∈ M A X P (I). Let us note now that

S(A) :=
⋂

S(Ai) =
⋂

� \ M(Ai) = � \ K . (31)

i∈I i∈I
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Then, since K = M(K ), by (31) we deduce that

S(A) = � \ M(K ) = S(K ). (32)

Now, since Ai ⊆ M(Ai) for all i ∈ I , we have ∪A := ⋃
i∈I Ai ⊆ K , therefore

S(K ) ⊆ S(∪A). (33)

Hence, by (32) and (33) we deduce that S(A) ⊆ S(∪A). This shows that I is an UCP.
(ii) =⇒ (iii): If I is a function system on a finite set �, then the thesis is obvious. Let now I be a function system on an 

infinite set � and let A ⊆ �. We endow A with a well-order <. Set

C(a) := {b ∈ A : b < a}
for any a ∈ A. Let us assume that the thesis holds for sets whose cardinality is less than |A| and, furthermore, that for 
any a ∈ A, the set C(a) has cardinality strictly less than |A|. In particular, the thesis holds for C(a), for any a ∈ A. Let 
Q := {M(C(a)) : a ∈ A}. It is clearly a chain in M A X P (I). Since M A X P (I) is a chain union closed family, we have that the 
union

D :=
⋃

Q

belongs to Q. Let K := ⋃
a∈A C(a). Hence, we have that M(C(a)) ⊆ M(K ) for any a ∈ A, so D ⊆ M(K ). On the other hand, it 

is obvious that M(K ) ⊆ D , thus D = M(K ). By transfinite inductive hypothesis, the thesis holds for C(a), for any a ∈ A. We 
observe that for any F ⊆ f A, there exists a ∈ A such that F ⊆ f C(a). This shows the claim.

(iii) =⇒ (ii): Let C be a non-empty chain of maximum partitioners in M A X P (I) and let B := ⋃
C. We will show that 

B ∈ M A X P (I). Suppose by contradiction that there exists F ⊆ f
⋃

B such that F � f C for any C ⊆ B . Let us fix a ∈ F , then 
there exists C1 ∈ B such that x ∈ C1 and, in a similar way, there exists C2 ∈ B such that F \{a} ⊆ C2. Therefore, if C1 ⊆ C2, we 
would have F ⊆ C2, which is absurd and, analogously, if C2 ⊆ C1, then F ⊆ C1, once again a contradiction. Thus F must be 
contained in some C ⊆ B . Furthermore, we must have M(F ) ⊆ C ⊆ B so, by our hypothesis, the claim has been showed. �

In the next result, we provide some sufficient condition in order to verify the existence of a maximal element for any 
non-empty subfamily A of M A X P (I).

Theorem 4.10. If M A X P (I) is a chain union closed family and for any C ∈ M A X P (I), there exists F ⊆ f C such that F ≈ C , then any 
non-empty subfamily A of M A X P (I) admits a maximal element.

Proof. Let A be a non-empty subfamily of M A X P (I). Since M A X P (I) is a chain union closed family, then 
⋃

K ∈ M A X P (I)

for any K chain in M A X P (I). Therefore, let us take a chain K in A, so C := ⋃
K ∈ M A X P (I). By our assumption, there 

exists F ⊆ f C such that F ≈ C . Let us define the map φ : a ∈ F �→ Aa ∈ K, where Aa is a maximum partitioner in K
containing a. Then, we obtain a finite chain {Aa : a ∈ F } in A clearly having a maximal element, which we call Ab , for 
some b ∈ F . Thus, Ab ∈ M A X P (I). Since F ⊆ Ab ⊆ C , we deduce that M(Ab) = Ab = C . But since K is a maximal chain, we 
conclude that Ab is a maximal element in A and this completes the proof. �

Let now K be equal to N or R, K := 〈K, EU , {0, 1}〉 and let A be a given subset of K. In order to give a concise description 
of the A-indiscernibility partition, we set:

A∗ := (A − 1) ∪ (A + 1), A∗ := (A − 1) ∩ (A + 1)c ∩ (A − 3)c. (34)

In the next result, we provide the general form for an A-indiscernibility partition of K.

Proposition 4.11. We have that

π(A) = K \ A∗|{x, x + 2}x∈A∗ |{y}y∈A∗\(A∗∪A∗+2).

Proof. Let x, y ∈K such that x < y. It is easy to prove that x ≡A y in K if and only if x, y ∈R \ A∗ or x ∈ A∗ and y = x + 2. 
Moreover, in this second case, since A∗ = {x ∈K : x −1 /∈ A, x +3 /∈ A, x +1 ∈ A}, there exist no other real number equivalent 
to x beside y. �

In the next result, we characterize the maximum partitioners of K.

Proposition 4.12. A ∈ M A X P (K) if and only if for all a /∈ A

(1′) (a − 2 /∈ A or a + 2 /∈ A) and the subset R \ A∗ has at least two elements;
(2′) (a + 2 ∈ A and a + 4 /∈ A) or (a − 2 ∈ A and a − 4 /∈ A).
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Proof. A subset A ⊆ K is a maximum partitioner in K if and only if, for all a /∈ A, there exist x, y ∈K such that x ≡A y but 
x �≡A∪{a} y. By (4.11), it is equivalent to say that, for each choice of a /∈ A, it holds at least one of the followings:

(1) ∃x, y ∈K \ A∗ such that x < y and {x, y} ∩ (A ∪ {a})∗ �= ∅;
(2) ∃x ∈ A∗ \ (A ∪ {a})∗ .

These conditions are equivalent, respectively, to 1′ and 2′ . �
We now show that any interval of the real line is a maximum partitioner.

Proposition 4.13. Let A be any interval of the real line, then A ∈ M A X P (R).

Proof. Let A be an interval of the real line. Let us consider A = [α, β); the other cases are similar. Let a /∈ A. If a ∈
(−∞, α +2) or a ∈ [β −2, +∞), then a −2 /∈ A or a +2 /∈ A, so condition (1′) is satisfied. If a ∈ (−∞, α +2) ∪[β −2, +∞), 
then β − α < 2, {a − 2, a + 2} ∩ A �= ∅ and thus if a − 2 ∈ A, then a − 4 /∈ A and if a + 2 ∈ A, then a + 4 /∈ A. It follows the 
thesis. �

We prove now that both R and N are UCP.

Theorem 4.14. M A X P (K) is a chain union closed family.

Proof. Let A = {Ai : i ∈ I} be a chain of maximum partitioners of K, and let A := ⋃
i∈I Ai . Let a /∈ A and suppose a − 2,

a + 2, a + 4 ∈ A. Since A is a chain, there exists i ∈ I such that a − 2, a + 2 and a + 4 are all in Ai . It follows that a − 4 /∈ Ai , 
and thus, for all j ∈ I such that A j ⊆ Ai , a − 4 /∈ A j . Moreover, if j ∈ I is such that Ai ⊆ A j , then a − 2, a + 2, a + 4 ∈ A j , 
thus, since A j ∈ M A X P (K), a − 4 /∈ A j . We conclude that a − 4 /∈ A and A ∈ M A X P (K).

Let us suppose now |K \ A∗| ≤ 1 and that a + 2 /∈ A and a − 2 ∈ A. We have to prove that a − 4 /∈ A. If a − 4 ∈ A then for 
some i ∈ I , |K \ A∗

i | ≤ 1, a + 2 /∈ Ai , a − 2 ∈ Ai and a − 4 ∈ Ai , and this contradicts the fact that Ai is a maximum partitioner. 
Moreover, it can not hold simultaneously that both a + 2 and a − 2 do not belong to A, because in this case, since a /∈ A, it 
would hold that |K \ A∗| ≥ 1, contradicting our assumption.

Suppose a + 4 ∈ A. If a − 2 /∈ A, then a + 2 ∈ A and there exists i ∈ I such that |K \ A∗
i | ≤ 1, a + 2 ∈ Ai , a − 2 /∈ Ai and 

a + 4 ∈ Ai , but this is impossible because Ai ∈ M A X P (K). Finally suppose that both a − 4 and a + 4 are in A. Then, in this 
case for some i ∈ I , |K \ A∗

i | ≤ 1, a − 4 ∈ Ai and a + 4 ∈ Ai , so Ai is not a maximum partitioner by Proposition 4.12, which 
is a contradiction.

It follows that A ∈ M A X P (K). �
5. Indiscernibility hypergraphic structures of a function system

In this section, we introduce three new hypergraphs that we use to investigate the closure system M A X P (I) in relation 
to an associated simplicial complex M I N P (I) that we will introduce in Section 6.

Let I = 〈U , �, F , �〉 be a function system.
For A ∈ P(�) we set �A : U × U → P(A) defined by

�A(u, u′) := {a ∈ A : F (u,a) �= F (u′,a)}, (35)

for any u, u′ ∈ U .
In particular, we set � := �U ,� , so that �A(u, u′) = �(u, u′) ∩ A. We call the hypergraph having vertex set A and 

hyperedge set the following subset family of A:

D I SC(A) := {�A(u, u′) : u, u′ ∈ U and �A(u, u′) �= ∅} (36)

the A-discernibility hypergraph. In particular, we set D I SC(I) := D I SC(�) and we call D(I) := (�, D I SC(I)) the discernibility 
hypergraph of I.

The following result relates the subsets �A(u, u′) to the indiscernibility relation.

Proposition 5.1. Let D ⊆ A and u, u′ ∈ U . Then:

(i) D = �A(u, u′) =⇒ u ≡A\D u′;
(ii) u ≡A\D u′ =⇒ �A(u, u′) ⊆ D;

(iii) Let C ⊆ A. Then �A(u, u′) ∩ C = ∅ ⇐⇒ u ≡C u′ .
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Proof. Straightforward. �
We now introduce some new notions that we will use in what follows.
If A ∈ P(�), we set

C O R E(A) := {a ∈ A : π(A) �= π(A \ {a})},
N(A) := {B ⊆ A : C O R E(B) = ∅},

M A X P (A) := {B ∩ A : B ∈ M A X P (I)}.
We call C O R E(A) the A-core of I and we can use the notion of A-core to establish the following characterization.

Theorem 5.2. Let A ∈ P(�). Then:

(i) C O R E(A) = {a ∈ A : A \ {a} ∈ M A X P (A)}.
(ii) C O R E(M(A)) ⊆ A.
(iii) C O R E(A) = {a ∈ A : a /∈ M(A \ {a})}.
(iv) C O R E(A) = ∅ if and only if for any B ∈ S E P (I) and for any a ∈ A ∩ B, it results

A \ {a} ∩ B �= ∅. (37)

(v) N(A) is a union-closed family.

Proof. (i): Let a ∈ C O R E(A). We must show that A \ {a} ∈ M A X P (A), i.e. there exists B ∈ M A X P (I) such that A \ {a} =
A ∩ B . Let us assume by absurd that A \ {a} �= A ∩ B for any B ∈ M A X P (I). Since π(A) �= π(A \ {a}), then A \ {a} �≈ A. Let 
B = M(A \ {a}). Clearly, A \ {a} ⊆ B , and we have A \ {a} ⊆ A ∩ B; therefore, by our assumption, it follows that A \ {a} � A ∩ B . 
Hence A ∩ B = A, i.e. A ⊆ B . It follows that π(B) = π(A \ {a}) � π(A) � π(A \ {a}) = π(B), i.e. π(A) = π(B), which is equivalent 
to say that A ≈ B ≈ A \ {a}, which is absurd. Thus A \ {a} ∈ M A X P (A).

Conversely, let a ∈ A such that A \ {a} ∈ M A X P (A). Hence, there exists B ∈ M A X P (I) such that A \ {a} = B ∩ A. If 
B = A \ {a}, then A \ {a} ∈ M A X P (I). In this case, by maximality of A \ {a}, then A /∈ [A \ {a}]≈ , so π(A) �= π(A \ {a}), 
therefore a ∈ M A X P (A)} ⊆ C O R E(A), and the claim is proved. Otherwise, let A \ {a} � B . Clearly, it results that a /∈ B . 
Furthermore, it results π(B) � π(A \ {a}). Suppose by contradiction that π(A) = π(A \ {a}). Then, we have π(B) � π(A), so

u ≡B u′ =⇒ u ≡A u′ =⇒ F (u,a) = F (u′,a) =⇒ u ≡B∪{a} u′.
In other terms, we have shown that π(B) � π(B ∪ {a}). Nevertheless, we also have π(B ∪ {a}) � π(B), i.e. π(B) = π(B ∪ {a}). 
This contradicts the maximality of B , which is absurd. Thus, a ∈ C O R E(A).

(ii): Let a ∈ C O R E(M(A)) and suppose, by contradiction, that a /∈ A. Therefore, we have A ⊆ M(A) \ {a} ⊆ M(A) and, 
hence, that π(M(A)) � π(M(A) \{a}) � π(A). Since π(M(A)) = π(A), we conclude that π(M(A) \{a}) = π(M(A)), contradicting 
the fact that a ∈ C O R E(A).

(iii): Let a ∈ C O R E(A), then π(A) �= π(A \ {a}). Therefore, M(A \ {a}) � M(A). We must have a /∈ M(A \ {a}), otherwise 
M(A) ⊆ M(A \ {a}), which is a contradiction. Hence C O R E(A) ⊆ {a ∈ A : a /∈ M(A \ {a})}. Conversely, if a /∈ M(A \ {a}), it is 
clear that π(A) �= π(A \ {a}), i.e. a ∈ C O R E(A).

(iv): Let C O R E(A) = ∅. Then for any a ∈ A it results M(A) = M(A \ {a}). Let us fix a ∈ A. Suppose by contradiction that 
there exists B ∈ S E P (I) containing a and such that

A \ {a} ∩ B = ∅.

Thus A \ {a} ⊆ Bc = C , where C ∈ M A X P (I). In particular, it follows that

M(A \ {a}) = M(A) ⊆ C

but this means that a ∈ C , which is absurd.
Conversely, suppose by contradiction that C O R E(A) �= ∅, then there exists a ∈ A such that M(A \ {a}) � M(A). Hence, if 

we set B = M(A \{a})c , we have just found B ∈ S E P (I) such that a ∈ A ∩ B and A \{a} ∩ B = ∅, contradicting our assumption.
(v): It follows immediately by (iv). �
By (v) of Theorem 5.2, we deduce that N(A) has a unique maximum element. We set therefore

C(A) :=
⋃

B∈N(A)

B. (38)

We now provide the notion of A-reduct.

Definition 5.3. Let B ⊆ A. We say that B is an A-reduct of I if:
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(R1) π(A) = π(B);
(R2) π(A) �= π(B ′) for all B ′ � B .

We denote by R E D(A) the family of all A-reducts of I and we set R E D(I) := R E D(�). We call the members of R E D(I) the 
reducts of I, the hypergraph R(A) := (A, R E D(A)) the A-reduct hypergraph, and the hypergraph R(I) := R(�) the reduct 
hypergraph of I.

The A-reduct family is related to the A-core in the following natural way.

Proposition 5.4. C O R E(A) := ⋂{C : C ∈ R E D(A)}.

Proof. Let a /∈ C O R E(A). Then π(A) = π(A \ {a}). This means that there exists B ⊆ A \ {a} such that π(A) = π(B), i.e. B ∈
R E D(A) and a /∈ B . In other terms, we have shown that 

⋂{C : C ∈ R E D(A)} ⊆ C O R E(A). On the other hand, let B ∈
R E D(A) and a ∈ A \ B . Then we have π(B) � π(A \ {a}) � π(A) but, since π(B) = π(A), we deduce that π(A \ {a}) = π(A), i.e. 
a /∈ C O R E(A). Hence, C O R E(A) ⊆ ⋂{C : C ∈ R E D(A)} and the thesis follows. �

We now give the notion of A-essential, which provides a generalization to the notion of A-core.

Definition 5.5. Let B ⊆ A. We say that B is A-essential if:

(E1) π(A \ B) �= π(A);
(E2) π(A \ B ′) = π(A) for all B ′ � B .

We denote by E S S(A) the family of all A-essential subsets of A and we set E S S(I) := E S S(�). We call the members 
of E S S(I) the essentials of I, the hypergraph E(A) := (A, E S S(A)) the A-essential hypergraph of A and the hypergraph 
E(I) := E(�) the essential hypergraph of I.

The next result tells us that the A-essentials are exactly the minimal elements of the A-discernibility hypergraph.

Theorem 5.6. We have that E S S(A) = min(D I SC(A)).

Proof. Let B ∈ E S S(A). By Definition 5.5 it results that π(A \ B) �= π(A). Hence, there exist two distinct elements v, w ∈ U
such that v ≡A\B w and v �≡B w . Equivalently, we can express the previous condition by saying that A \ B ⊆ A \ �A(v, w), 
i.e. �A(v, w) ⊆ B . This shows that any A-essential contains some hyperedge of the A-discernibility hypergraph. We now 
claim that �A(v, w) = B . Indeed, if b ∈ B and B ′ := B \ {b} � B , we deduce that v �≡A\B ′ w by Definition 5.5. Therefore 
b ∈ �A(v, w). By the arbitrariness of b ∈ B , it follows that �A(v, w) = B . This proves that B ∈ D I SC(A). Moreover, we 
proved that whenever two elements v, w ∈ U satisfy the relation �A(v, w) ⊆ B , then �A(v, w) = B . This means that B is 
minimal in D I SC(A) with respect to the set-theoretical inclusion.

Let now B = �A(v, w) �= ∅ minimal in the poset (D I SC(A), ⊆), for some v, w ∈ U . Since B is not empty, by (iii)
of Proposition 5.1, it follows that v �≡A w . Moreover, by (i) of Proposition 5.1 we also obtain v ≡A\B w . Then we have 
π(A \ B) �= π(A), and thus B satisfies (i) of Definition 5.5. Let now B ′ � B . B minimal in D I SC(A) implies that, for all 
u, u′ ∈ U such that �A(u, u′) �= ∅, �A(u, u′) � B ′ . We claim that π(A \ B ′) = π(A). It is obvious that u ≡A u′ implies u ≡A\B ′
u′; furthermore suppose that u ≡A\B ′ u′ and assume by contradiction that u �≡A u′ . Then we have �A(u, u′) ⊆ B ′ , which is 
absurd. Hence u ≡A u′ ⇐⇒ u ≡A\B ′ u′ , so π(A \ B ′) = π(A). In this way, we have shown that B satisfies also condition (ii)
of Definition 5.5. Then B ∈ E S S(A) and the theorem is proved. �
Remark 5.7. By Theorem 5.6, it is clear that Tr(D I SC(A)) = Tr(E S S(A)).

The next result shows that the A)-reducts are exactly the minimal transversals of the family E S S(A).

Theorem 5.8. Let B ⊆ A. Then R E D(A) = Tr(D I SC(A)) = Tr(E S S(A)).

Proof. We firstly claim that π(B) = π(A) if and only if B ∈ Tr(D I SC(A)). To prove this, let B ⊆ A. Let us note that the 
equality π(B) = π(A) is obviously equivalent to the identity ≡B=≡A . Therefore, we assume first that ≡B=≡A ; we must 
show that B is a transversal of D I SC(A). Let then D ∈ D I SC(A). By definition of D I SC(A), it results that D is not empty 
and that there exist two distinct elements u, u′ ∈ U such that D = {a ∈ A : F (u, a) �= F (u′, a)}. Since D contains at least one 
element, we deduce that u �≡A u′ , and this also implies u �≡B u′ from the hypothesis ≡B=≡A . Hence, by definition of ≡B , 
we find an element b ∈ B such that F (u, b) �= F (u′, b), i.e. b ∈ B ∩ D . This shows that B ∩ D �= ∅; therefore, B is a transversal 
of D I SC(A).
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We suppose now that B is a transversal of D I SC(A) and let u, u′ be two any distinct elements in U . If u ≡A u′ , it is obvious 
that we also have u ≡B u′ . We can assume therefore that u �≡A u′ . By definition of ≡A and by (35), it follows then that 
the D := �A(u, u′) is not empty, so that D ∈ D I SC(A). Since B is a transversal of D I SC(A) we have that B ∩ D �= ∅. Let 
b ∈ B ∩ D . Then we obtain a function b ∈ B such that F (u, b) �= F (u′, b), and this implies that u �≡B u′ . Hence ≡B=≡A . This 
proves that π(B) = π(A) if and only if B ∈ Tr(D I SC(A)).

Let B ∈ R E D(A). By Definition 5.3, we have then π(B) = π(A), and by part (i) this implies that B is a transversal of 
D I SC(A). Now, if b ∈ B , again by Definition 5.3 we have that π(B \ {b}) �= π(A), therefore by (i) it follows that B \ {b} is not 
a transversal of D I SC(A). Hence B is a minimal transversal of D I SC(A). On the other hand, let B be a minimal transversal 
of D I SC(A), then by (i) it follows that π(B) = π(A). Now, if b ∈ B the subset B \{b} is not a transversal of D I SC(A) by virtue 
of the minimality of B , therefore, again by (i) we obtain π(B \ {b}) �= π(A). Hence, B ∈ R E D(A) and the thesis follows. �

By virtue of Theorems 5.6 and 5.8, we give the following terminology.

Definition 5.9. We call D(I), R(I) and E(I) the indiscernibility hypergraphic structures of I.

We now study the deep link between relative maximum partitioners and R E D(A).

Proposition 5.10. Let B ∈ M A X P (A) such that B � A. Then A \ B is a transversal of R E D(A).

Proof. Suppose by contradiction that A \ B is not a transversal of R E D(A), i.e. that there exists C ∈ R E D(A) such that 
C ∩ (A \ B) = ∅. Thus, C ⊆ B � A. In particular, it results that

M(C) ⊆ M(B) ⊆ M(A),

but M(C) = M(A), so M(A) = M(B). Since there exists D ∈ M A X P (I) such that B = A ∩ D , we observe that M(B) ⊆ D , 
hence

A ⊆ M(A) ⊆ D

or, equivalently, B = A ∩ D = A, which is a contradiction. Therefore, A \ B is a transversal of R E D(A). �
We now prove two interesting properties of the indistinguishability classes.
If B, C ∈ [A]≈ we write B �A C if C covers B in the poset ([A]≈, ⊆). We also set

CA(B) := {C ∈ [A]≈ : C �A B}, (39)

and

S(A) := {B ∈ [A]≈ : |CA(B)| ≤ 1}. (40)

Let us note that

R E D(A) ⊆ S(A). (41)

We have the following result.

Theorem 5.11. Any element of [A]≈ is a union of elements of S(A).

Proof. Let B ≈ A such that |CA(B)| ≥ 2. Firstly, we claim that if A1, A2, A3 are three distinct non-empty function subsets 
such that A1, A2 ≈ A3 and A1, A2 � A3, then A1 ∪ A2 = A3. It clearly results that A1 ∪ A2 ⊆ A3; suppose therefore that 
A1 ∪ A2 � A3. Hence, A1 � A1 ∪ A2 � A3, so A3 does not cover A1, contradicting our assumption. Thus, if CA(B) = {D, E}, 
we have

B = D ∪ E. (42)

If D (or E) covers more than one function subset, in (42) we can substitute D with the union of two of the subsets it 
covers; in this way, the thesis is proved. �

Based on the result obtained in Theorem 5.11 we introduce the following terminology.

Definition 5.12. We call S(A) the spanning family of [A]≈ .

In the next result, we find some conditions so that R E D(A) coincides with the spanning family of [A]≈ .
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Fig. 1. The functional table J.

Proposition 5.13. Let B, C ∈ [A]≈ and K = M(A). If:

(i) B ∩ C = ∅,
(ii) B, C �A K ,

then CA(K ) = {B, C} = R E D(K ) and [A]≈ = {K , B, C}.

Proof. By (39), we have {B, C} ⊆ CA(K ). Suppose by contradiction that {B, C} � CA(K ) and let D ∈ CA(K ) \ {B, C}. By the 
proof of Theorem 5.11, we have that the union of any pair of elements of CA(K ) is exactly K , hence it results B = K \ C ⊆ D
and C = K \ B ⊆ D . In this way, we conclude that D = K , contradicting our assumption. Therefore, CA(K ) = {B, C}. On 
the other hand, in order to prove that R E D(K ) = {B, C}, by (41) we must only prove that B, C ∈ R E D(K ). Suppose that 
B /∈ R E D(K ), thus there exists D � B such that D ∈ R E D(K ). Hence, it results

C � C ∪ D � K ,

contradicting the fact that C ∈ CA(K ). Similarly if C /∈ R E D(K ). Therefore R E D(K ) = {B, C} = CA(K ) and [K ]≈ =
{K , B, C}. �
6. Local indistinguishability posets and minimal partitioners

In this section, we introduce an abstract simplicial complex M I N P (I) that can be investigated as a potential type of 
matroid having M A X P (I) as its closed set family.
Let I be a finite function system and M A X P (I) = {C1, . . . , Ck}. We set now

I N D≈(I) = {[C1]≈, . . . , [Ck]≈}. (43)

We introduce the following partial order � on I N D≈(I). If [Cl]≈, [C j]≈ ∈ I N D≈(I) we set

Cl ⊆∗ C j ⇐⇒ : [Cl]≈ � [C j]≈ (44)

and

I(I) := (I N D≈(I),�). (45)

We have then the following immediate result

Theorem 6.1. I(I) is a lattice that is order isomorphic to the maximum partitioner lattice M(I).

Proof. The thesis follows immediately by the definition of I N D≈(I) and by (44). �
Definition 6.2. We call I(I) the indistinguishability lattice of I.

Example 6.3. Let us consider the function system J given in Fig. 1.
We represent the diagram of M(J) in Fig. 2 and the diagram of I(J) in Fig. 3.

Definition 6.4. We say that ([C1]≈, ⊆), . . . , ([Ck]≈, ⊆) are the local indistinguishability posets of I.

Proposition 6.5. Let Ci ∈ M A X P (I). Then ([Ci]≈ ∪ {∅}, ⊆) is a lattice ([Ci]≈ ∪ {∅}, ∧, ∨) where

A ∧ B =
⋃

{C ∈ [Ci]≈ ∪ {∅} : C ⊆ A ∩ B} (46)

and

A ∨ B = A ∪ B (47)

for any A, B ∈ [Ci]≈ ∪ {∅}.
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Fig. 2. The lattice M(J).

Fig. 3. The lattice I(J).
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Proof. By Proposition 3.4, [Ci]≈ ∪ {∅} is a join-semilattice with a least element. So the thesis follows. �
We set now

KI(A) := {a ∈ A : ∃B ∈ [A]≈ : B \ {a} /∈ [A]≈} (48)

and K c
I(A) := A \ KI(A).

Example 6.6. By referring to the function system given in Fig. 1, let A = {1, 3, 4, 5}, we have that KI(A) = {1, 4, 5} and 
K c
I(A) = {3}.

The next set family has a relevant role in this paper. We set

M I N P (I) :=
⋃

{min([A]≈) : A ∈ M A X P (I)}. (49)

It is clear that M I N P (I) can be considered as a dual version of M A X P (I).
In the next result, we establish some basic properties of the set families above introduced.

Theorem 6.7. The following conditions hold:

(i) Let A ∈ M A X P (I). Then a ∈ KI(A) if and only if there exists C ∈ M A X P (A) such that a /∈ C and M(C ∪ {a}) = A.
(ii) Let A ∈ M A X P (I). Then K c

I(A) = ⋂{B : B ∈ [A|M(I) ↑]}.
(iii) If A ∈ P(�), then C O R E(A) ⊆ KI(A).
(iv) If A ⊆ A′ and A ≈ A′ , then KI(A) ⊆ KI(A′).
(v) If A ∈ M I N P (I), then KI(A) = A.
(vi) If A ∈ P(�), then A ≈ KI(M(A)).
(vii) If A ∈ P(�), then M(A) = M(KI(M(A))).
(viii) If KI(A) = ∅ then for any B ∈ S E P (I) and for any a ∈ A ∩ B, it results

A \ {a} ∩ B �= ∅. (50)

Proof. (i): Let a ∈ KI(A). By definition of KI(A), there exists B ∈ [A]≈ such that

B \ {a} �≈ A. (51)

Since B ≈ A, by (51) we have that a ∈ B . Let C := M(B \ {a}). We first show that a /∈ C . In fact, let us assume by absurd that 
a ∈ C . In this case, B ⊆ C because B \ {a} ⊆ M(B \ {a}) = C . Therefore, A = M(B) ⊆ M(C) = C because A, C ∈ M A X P (I) and 
B ∈ [A]≈ , and this implies that

π(C) � π(A). (52)

On the other hand, we also have

π(A) = π(B) � π(B \ {a}) = π(C). (53)

Then, by (52) and (53) we deduce π(A) = π(C), i.e. A ≈ C , and this implies (by definition of C ) A ≈ B \ {a}, which is in 
contrast with (51). Hence a /∈ C . Let us observe now that

C = M(B \ {a}) ⊆ M(B) = M(A) = A, (54)

because A ∈ M A X P (I). By (54) we have then C ∈ M A X P (A). Finally, since B \ {a} ⊆ C , we have B ⊆ C ∪ {a} ⊆ A, so that

π(A) � π(C ∪ {a}) � π(B),

and this implies π(C ∪ {a}) = π(A) because π(A) = π(B). Hence M(C ∪ {a}) = M(A) = A because A ∈ M A X P (I). This proves 
the first implication.

For the other implication, we assume that there exists C ∈ M A X P (A) such that a /∈ C and M(C ∪ {a}) = A. Then a ∈ A
and we set B := C ∪ {a}. Therefore, B ∈ [A]≈ and B \ {a} = C . Let us note that C /∈ [A]≈ . In fact, if C ≈ A then C = A
because C ∈ M A X P (A) and A ∈ M A X P (I), contradicting a ∈ A \ C . Hence, we obtain a function subset B ∈ [A]≈ such that 
B \ {a} /∈ [A]≈ and a ∈ A, i.e. a ∈ KI(A).

(ii) Let a ∈ ⋂{B : B ∈ [A|M(I) ↑]} and suppose by contradiction that a ∈ KI(A). By (i), there exists B ∈ M A X P (A)

such that a /∈ B and M(B ∪ {a}) = A. We clearly have that B /∈ [A|M(I) ↑]. Therefore, there exists C ∈ M A X P (A) such that 
B � C � A. Hence

π(A) � π(C). (55)

We claim that a /∈ C . In fact, if a ∈ C , we would have B ∪ {a} ⊆ C , hence
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π(C) � π(B ∪ {a}) = π(A). (56)

Thus, by (55) and (56), π(A) = π(C) and, so, C = A, contradicting our assumption on C . Proceeding in this way, we will find 
a function subset D ∈ [A|M(I) ↑] not containing a, which is absurd. Thus, a ∈ K c

I(A).
Conversely, let a ∈ K c

I(A). Suppose by contradiction that there exists B ∈ [A|M(I) ↑] such that a /∈ B . Hence C := B ∪{a} ≈
A, so we have found an element C ∈ [A]≈ such that C \ {a} �≈ A, i.e. a ∈ KI(A), which is absurd.

(iii) Let a ∈ C O R E(A). Hence π(A) �= π(A \ {a}), i.e. a ∈ KI(A).
(iv) Let a ∈ KI(A). Hence, for any B ≈ A, it results that B \ {a} ≈ A. Therefore, a ∈ KI(A′).
(v) Since A ∈ M I N P (I), we have that π(A) �= π(A \ {a}) for any a ∈ A, hence KI(A) = A.
(vi) Set A′ = KI(M(A))). We have that A′ ⊆ M(A). Let B ∈ min([A]≈), then B ⊆ M(A); hence, by part (iv), we have that 

KI(B) ⊆ A′ . Since B ∈ M I N P (I), by part (v), KI(B) = B , so B ⊆ A′ . We conclude that

B ⊆ A′ ⊆ M(A).

Therefore, we have

π(M(A)) = π(A) � π(A′) � π(B) = π(A),

so π(A) = π(A′) and A ≈ A′ = KI(M(A)).
(vii) It follows directly by part (vi).
(viii) It follows by part (iii) and by (37). �
In the next result, we provide a first basic link between relative reducts and M I N P (I).

Proposition 6.8. Let A ∈ P(�). Then

R E D(A) = {X : X ∈ min([A]≈), X ⊆ A}. (57)

Proof. Let C ∈ R E D(A). By (i) of Definition 5.3 we have then π(C) = π(A), therefore C ∈ [A]≈ and, by (ii) of the same 
definition, there is no D ∈ [A]≈ is such that D � C . Hence C is necessarily minimal in the subset family [A]≈ . Hence 
R E D(A) ⊆ {X : X ∈ min([A]≈), X ⊆ A}.

Conversely, let C ∈ min([A]≈). Then π(C) = π(A). Let now C ′ � C . Since C is minimal in [A]≈ , it follows that C ′ /∈ [A]≈ , 
so that π(C ′) �= π(A). This shows that C satisfies both the conditions of Definition 5.3, i.e. C ∈ R E D(A). �

For the maximum partitioners, we have the following stronger results.

Theorem 6.9. Let A ∈ M A X P (I). Then R E D(A) = min([A]≈).

Proof. Since A is a maximum partitioner, the subset family {X : X ∈ min([A]≈), X ⊆ A} in (57) coincides with min([A]≈). 
The thesis follows then by Proposition 6.8. �
Corollary 6.10. R E D(I) = min([�]≈).

It is now immediate to see that

M I N P (I) :=
⋃

A∈M A X P (I)

min([A]≈) =
⋃

A∈M A X P (I)

R E D(A). (58)

Moreover, we also set

M I N P c(I) := P(�) \ M I N P (I), (59)

M X MN(I) := Max(M I N P (I)), (60)

MN MNc(I) := min(M I N P c(I)). (61)

We call any member of M I N P (I) a minimal partitioner of I and the hypergraph m(I) := (�, M I N P (I)) the minimal 
partitioner hypergraph of I.

Definition 6.11. We call the hypergraphs M(I) and m(I) the indistinguishability hypergraphic structures of I.

Example 6.12. Again in reference to the finite function system J introduced in Example 6.3, it results that (we write the 
members of M I N P (J) and M I N P c(J) as strings)
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M I N P (J) = {∅,1,2,4,5,12,14,15,24,25,124,125}, (62)

M I N P c(J) = {3,13,23,34,35,45,123,134,135,234,245,345,1234,1235,1245,2345,12345}, (63)

so that M X MN(J) = {124, 125} and MN MNc(J) = {3}.
Let us note that for J we also have R E D(J) = {124, 125}.

In general, the reducts do not coincide with the max-min partitioners, although any reduct is always a max-min parti-
tioner, as the next result shows.

Proposition 6.13. Let M A X P (I) = {C1, . . . , Ck}. The following conditions hold:

(i) Let Ci � C j . Then, if X ∈ [Ci]≈ and Y ∈ [C j]≈ we have Y � X.
(ii) R E D(I) ⊆ M X MN(I).

Proof. (i) Since Ci and C j are two distinct maximum partitioners such that Ci � C j , we have π(C j) ≺ π(Ci). Now, by absurd, 
let X ∈ [Ci]≈ and Y ∈ [C j]≈ such that Y ⊆ X . Then

π(Ci) = π(X) � π(Y ) = π(C j),

which is a contradiction.
(ii) It is a direct consequence of the previous (i), because R E D(I) = min([�]≈), � ∈ M A X P (I) and Ci � � for any 

maximum partitioner Ci �= �. �
In the following result, we establish a deepest link between minimal partitioners and reducts.

Theorem 6.14. The following conditions hold:

(i) Let A ⊆ � and B ∈ R E D(A) and C ⊆ B. Then π(C \ {x}) �= π(C) for any x ∈ C.
(ii) We have that

M I N P (I) ⊇
⋃

B∈R E D(A)

P(B), ∀A ⊆ �. (64)

Proof. (i) Let us suppose by absurd that there exists an element x ∈ C such that π(C \ {x}) = π(C). Then, since C \ {x} ⊆
B \ {x}, we have

π(B \ {x}) � π(C \ {x}) = π(C). (65)

Therefore, if u, u′ ∈ U by (65) it follows that

u ≡B\{x} u′ =⇒ u ≡C u′ =⇒ F (u, x) = F (u′, x) =⇒ u ≡B u′,

therefore

π(B \ {x}) � π(B). (66)

On the other hand, since we also have π(B) � π(B \ {x}), by (66) we deduce that π(B \ {x}) = π(B), which is in contrast with 
the hypothesis that B ∈ R E D(A). This concludes the proof of part (i).

(ii): Let C ∈ ⋃
B∈R E D(A)

P(B). Then there is some reduct B ∈ R E D(A) such that C ⊆ B . Let j ∈ {1, . . . , k} such that C ∈ [C j]≈ . 

Let us assume, by absurd, that C /∈ min([C j]≈). Then there exists some C ′ ∈ [C j]≈ such that C ′ � C . Let x ∈ C \ C ′ . Then

C ′ ⊆ C \ {x} ⊆ C,

and therefore

π(C) � π(C \ {x}) � π(C ′). (67)

Since C, C ′ ∈ [C j]≈ , we have π(C) = π(C ′); therefore, by (67), we deduce that

π(C) = π(C \ {x}). (68)

But the identity in (68) is in contrast with part (i), because C ⊆ B and B ∈ R E D(A). Hence, C ∈ min([C j]≈) ⊆ M I N P (I). This 
concludes the proof of part (ii). �
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Corollary 6.15. We have that:

M I N P (I) ⊇
⋃

A∈R E D(I)

P(A) = {X ∈ P(�) : X ⊆ A, A ∈ R E D(I)}. (69)

In the following result, we show that M I N P (I) is an abstract simplicial complex.

Theorem 6.16. If C ∈ M I N P (I) and K ⊆ C , then K ∈ M I N P (I).

Proof. Let C ∈ M I N P (I). Then there exists B ∈ M A X P (I) such that C ∈ min([B]≈). Let K � C , then there exists B ′ ∈
M A X P (I) such that K ∈ [B ′]≈ . Suppose by contradiction that K /∈ min([B ′]≈), then there exists K ′ � K such that 
K ′ ∈ min([B ′]≈). Hence, there is x ∈ K \ K ′ . We deduce that

K ′ ⊆ K \ {x} ⊆ K

i.e.

π(K ) � π(K \ {x}) � π(K ′).

But since π(K ) = π(K ′) = π(B), we conclude that π(K ) = π(K \ {x}), contradicting (i) of Theorem 6.14. Hence K ∈
M I N P (I). �

If A ∈ P(�) we set

M I N P (A) := {X : X ⊆ A, X ∈ M I N P (I)} (70)

and

M X MN(A) := Max(M I N P (A)). (71)

In particular, we have M I N P (�) = M I N P (I) and M X MN(�) = M X MN(I).
In the next proposition we establish the basic links between relative reducts and relative minimum partitioners.

Proposition 6.17. Let A ∈ P(�) and W ∈ P(U ). Then:

R E D(A) ⊆ M X MN(A). (72)

Proof. Let X ∈ R E D(A), then X ⊆ A and X ∈ min([A]≈) ⊆ M I N P (I) by Proposition 6.8. This proves that X ∈ M I N P (A). 
Suppose by contradiction that there exists Y ∈ M I N P (A) such that X � Y . Then π(Y ) � π(X) = π(A). Moreover, we have that 
Y ∈ M I N P (I), hence there exists B ∈ M A X P (I) such that Y ∈ min([B]≈). Thus π(Y ) = π(B) and, since Y ⊆ A, it results that 
π(A) � π(Y ) = π(B). Hence π(A) = π(B), i.e. A = B . Therefore, Y ∈ min([A]≈) and, by (57), we conclude that Y ∈ R E D(A), 
absurd since it contains X . So X ∈ M X MN(A). �

By means of Proposition 6.17, we obtain the following characterization of M I N P (I).

Theorem 6.18. We have that

M I N P (I) = {A ∈ P(�) : R E D(A) = {A}} (73)

Proof. Let A ∈ M I N P (I), then A ∈ min([A]≈). Moreover, the unique subset satisfying both conditions of Definition 5.3 is 
exactly A, i.e. R E D(A) = {A}.

Vice versa, suppose that R E D(A) = {A}. Then, by (72), we have that A ∈ M X MN(A), so by (70) we have that A ∈
M I N P (I). �
Remark 6.19. It is clear by Definition 5.3 that the identity in (73) can be restated equivalently as follows:

M I N P (I) = {A ∈ P(�) : ∀B � A π(A) ≺ π(B)}. (74)
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7. Some properties of matroidal type for M I N P (I)

In this section, we discuss some basic cases in which the hypergraph m(I) is a matroid. To this purpose, we introduce 
the following numerical function on P(�). For any A ∈ P(�), we set

ψ(A) := max{|X | : X ∈ M I N P (A)} (75)

so that we obtain the map

ψ : A ∈ P(�) �→ ψ(A) ∈N∪ {0}.
We call ψ the max-min function of I.

Remark 7.1. The function ψ satisfies the following properties:

(i) ψ(∅) = 0;
(ii) If A ⊆ B , then ψ(A) ≤ ψ(B);
(iii) 0 ≤ ψ(A) ≤ |A| for any A ∈ P(�);
(iv) ψ(A) ≤ ψ(A ∪ {x}) ≤ ψ(A) + 1.

Definition 7.2. Let C ∈ P(�). We say that C is a ψ-incremental subset if

ψ(C ∪ {x}) := ψ(C) + 1,

for all x ∈ � \ C .

We denote by I NC R(ψ) the family of all ψ-incremental subsets. Moreover, if A ∈ P(�), we denote by I NC R(A|ψ) the 
family of all ψ-incremental subsets containing A.

In the next result, we give three new different characterizations for M I N P (I).

Theorem 7.3. The following conditions hold:

(i) M I N P (I) = {A ∈ P(�) : C � A ∀C ∈ MN MNc(I)};
(ii) M I N P (I) = {A ∈ P(�) : ψ(A) = |A|};
(iii) M I N P (I) = {A ∈ P(�) : a /∈ M(A \ {a}) ∀a ∈ A}.

Proof. (i): Let A ∈ M I N P (I). Then, by Theorem 6.16, any subset of A belongs to M I N P (I) hence A cannot contain any 
element of MN MNc(I). So M I N P (I) ⊆ {A ∈ P(�) : C � A ∀C ∈ MN MNc(I)}. On the other hand, let A ∈ P(�) such that 
C � A for any C ∈ MN MNc(I). Hence A /∈ M I N P c(I), otherwise or A ∈ MN MNc(I) or it contains a function subset C ∈
MN MNc(I). In both cases, we are contradicting our assumption on A, hence A ∈ M I N P (I) and (i) has been shown.

(ii): Let A ∈ M I N P (I). Since ψ(A) = max{|X | : X ⊆ A, X ∈ M I N P (I)}, it is clear that ψ(A) = |A|, thus M I N P (I) ⊆
{A ∈ P(�) : ψ(A) = |A|}. Conversely, let A ∈ P(�) such that ψ(A) = |A| and suppose by contradiction that A ∈ M I N P c(I). 
This is equivalent to require the existence of B ∈ M I N P (I) such that B � A and π(B) = π(A). Hence, we should have 
|B| = ψ(A) = |A|, contradicting our assumption on B . So (ii) has been shown.

(iii): Let A ∈ M I N P (I) and a ∈ A. Then A \ {a} /∈ [A]≈ , so M(A \ {a}) /∈ [A]≈ . Since A \ {a} � A, we have π(A) � π(A \ {a}). 
Moreover, suppose by contradiction that a ∈ M(A \ {a}). Then A ⊆ M(A \ {a}) and, by (20), M(A) ⊆ M(A \ {a}). By (19), we 
have π(A \{a}) � π(A), so π(A \{a}) = π(A) and A \{a} ∈ [A]≈ , which is absurd. So a /∈ M(A \{a}) and M I N P (I) ⊆ {A ∈ P(�) :
a /∈ M(A \ {a}) ∀a ∈ A}. On the other hand, let A ∈ P(�) such that a /∈ M(A \ {a}) for any a ∈ A. Suppose by contradiction 
that A ∈ M I N P c(I), i.e. there exists B � A such that π(A) = π(B). Then there exists a ∈ A such that B ⊆ A \ {a} ⊆ A. This 
implies that π(A) � π(A \ {a}) � π(B), i.e. π(A \ {a}) = π(A). In other terms, we have M(A \ {a}) = M(A) ⊇ A, which is a 
contradiction. So (iii) follows. �
Corollary 7.4. Let A ∈ M I N P (I). Then C(A) = ∅.

Proof. Let A ∈ M I N P (I). By (iii) of Theorem 7.3, we have that a /∈ M(A \ {a}) for any a ∈ A. Hence, by (iii) of Theorem 5.2, 
it follows that C O R E(A) = A. But Theorem 6.16 asserts that any subset of A belongs to M I N P (I); therefore, we conclude 
that C O R E(B) = B for any B ⊆ A. So C(A) = ∅. �

At this point, we introduce a new class of function subsets that will be useful in the sequel.

Definition 7.5. Let A ∈ P(�). We say that

• A is reduct uniform if R E D(A) has uniform cardinality.
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Fig. 4. The function system I.

• A is maxp-reduct uniform if R E D(M(A)) has uniform cardinality.

Example 7.6. Let A = {1, 2, 3, 4}. We observe that R E D(A) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}, hence A is reduct uniform. Nev-
ertheless, as we can observe in Fig. 5, M(A) = � but R E D(I) = R E D(�) has not uniform cardinality, hence A is not 
maxp-reduct uniform.

We introduce now an operator ψ̂ : P(�) → P(�) as follows.
If A ∈ P(�) and c ∈ � we set

c #ψ A : ⇐⇒ ψ(A ∪ {c}) = ψ(A), (76)

and

ψ̂(A) := {x ∈ � : x #ψ A}. (77)

Remark 7.7. If m(I) is a matroid, then ψ̂ coincides with the closure operator of m(I).

Example 7.8. By referring to the function system J of the Example 6.3, it is easy to verify that we have ψ̂(A) = M(A) for 
any function subset A. We also observe that in this case m(I) is a matroid.

However, the identity ψ̂(A) = M(A) does not hold in general, as we can see in the next example.

Example 7.9. Let I be the function system given in Fig. 4 and let A = {1, 2}. It is immediate to see that ψ({1, 2}) =
ψ({1, 2, 5}) = 2 and that 5 /∈ M({1, 2}) = {1, 2}. Hence, M(A) �= ψ̂(A).

It is simple to find examples of function systems such that m(I) is a matroid, but ψ̂ �= M .

Example 7.10. Let us consider the function system T whose functional table is given in Fig. 6.
It is easy to see that m(T) is a matroid. In fact, for the empty set, Property (M3) holds trivially. Moreover, if we take A, B

such that |A| = 1 and |B| = 2, two cases occur: if A � B , (M3) is trivially verified; otherwise, we clearly have that A ∩ B = ∅. 
Let us consider, for example A = {a1} and B = {a3, a4}. Since both {a1, a3} and {a1, a4} belong to M I N P (T), we conclude 
that (M3) is satisfied for these two particular sets. A similar argument holds for any pair of subsets as A and B . Therefore, 
m(T) is a matroid. Nevertheless, it is easy to see that, we have that ψ̂({a1, a4}) = {a1, a2, a3, a4} �= M({a1, a4}) = {a1, a4}.

The next result is a consequence of (71) and a well-known basic theorem of matroid theory (see [54]).

Proposition 7.11. m(I) is a matroid if and only if M X MN(A) has uniform cardinality for any A ⊆ �.

We can establish now two basic links between some properties of the reducts and the matroidal properties of the 
hypergraph m(I).

Corollary 7.12. If m(I) is a matroid, then A is reduct uniform for any A ⊆ �.

Corollary 7.13. If A, B ∈ R E D(I) are such that |A| �= |B|, then m(I) is not a matroid.

We can easily provide a sufficient condition in order to ensure that m(I) is a matroid.

Proposition 7.14. If M is a MLS closure operator on � then m(I) is a matroid.
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Fig. 5. The lattice I(I).

Fig. 6. The functional table T.
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Proof. Since M is a MLS closure operator on �, the family

F := {A ∈ P(�) : a /∈ M(A \ {a}) ∀a ∈ A}
coincides with the independent set family of a matroid on � by Theorem 2.8. By virtue of (iii) of Theorem 7.3, we deduce 
that F = M I N P (I), hence the claim has been showed. �

We can now characterize the property of m(I) of being a matroid in terms of MLS closure operators.

Corollary 7.15. Let I be a function system such that ψ̂ = M. Then m(I) is a matroid if and only if M is a MLS closure operator.

Proof. Suppose that m(I) is a matroid. By Remark 7.7, ψ̂ is the closure operator associated with m(I), hence it is a MLS 
closure operator by Theorem 2.8. But, since ψ̂ = M , we deduce that M is a MLS closure operator. The converse is given in 
Proposition 7.14. �

However, the particular cases described in Example 7.6 and in Example 7.8 induce us to investigate in more detail the 
link between the dependency operator and the maximum partitioner operator. In the next definition, we introduce a first 
class of function systems for which the identity ψ̂(A) = M(A) holds for any A ⊆ �.

Definition 7.16. We say that a function system I is maxp-reduct uniform if the following two conditions are satisfied:

(i) any A ∈ P(�) is maxp-reduct uniform;
(ii) if A, B ∈ P(�), A � B and A �≈ B , then ||R E D(M(A))|| < ||R E D(M(B))||.

Example 7.17. It is easy to verify that the function system J of Example 6.3 is maxp-reduct uniform.

Theorem 7.18. Let I be a maxp-reduct uniform function system. Then:

(i) ψ̂(A) = M(A) for any A ∈ P(�);
(ii) M A X P (I) = I NC R(ψ).

Proof. (i) Let A ⊆ � and a ∈ ψ̂(A). Then ψ(A) = ψ(A ∪ {a}). Suppose by contradiction that a /∈ M(A), then A ∪ {a} /∈ [A]≈ . 
By (ii) of Definition 7.16, we have that ||R E D(A)|| < ||R E D(A ∪ {a})||, so ψ(A ∪ {a}) > ψ(A), which is absurd. On the other 
hand, let a ∈ M(A). Then, by (ii) of Remark 7.1, we have that

ψ(A) ≤ ψ(A ∪ {a}) ≤ ψ(M(A)).

But, since ||R E D(A)|| = ||R E D(M(A))|| and A ∪ {a} ∈ [A]≈ , we have that ψ(A) = ψ(A ∪ {a}), so a ∈ ψ̂(A).
(ii) Let A ∈ M A X P (I), hence by (ii) of Definition 7.16, for any a ∈ � \ A, we have that ψ(A ∪ {a}) = ψ(A) + 1, so 

A ∈ I NC R(ψ). Conversely, let A ∈ I NC R(ψ). Then ψ(A ∪ {a}) = ψ(A) + 1 for any a ∈ � \ A, hence a /∈ ψ̂(A) = M(A). Thus 
A ∈ M A X P (I) and the thesis follows. �

Hence, by Corollary 7.15 and Theorem 7.18 we obtain an immediate consequence.

Corollary 7.19. If I is a maxp-reduct uniform function system then m(I) is a matroid.

8. Graphs as Boolean function systems

In this section, we deal exclusively with finite undirected simple graphs and we refer the reader to [31] for any general 
notion concerning graph theory. Here we recall only some basic definitions, and we fix some notations that we will use 
in the sequel. We always denote by G = (V (G), E(G)) a finite simple (i.e. no loops and no multiple edges are allowed) 
undirected graph, with vertex set V (G) = {v1, . . . , vn} and edge set E(G). In this case, we also use the term n-graph. If 
v, v ′ ∈ V (G), we will write v ∼ v ′ if {v, v ′} ∈ E(G) and v � v ′ otherwise.

Definition 8.1. Let v ∈ V (G). We call the set NG(v) := {w ∈ V (G) : v ∼ w} the neighborhood of v in G . In particular, if 
A ⊆ V (G), we call the set

NG(A) :=
⋃
v∈A

NG(v) (78)

neighborhood of A in G .
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We now associate a function system with any n-graph G .

Definition 8.2. We call the Boolean function system

I[G] := 〈V (G), V (G), {0,1}, FG〉,
where

FG(u, v) :=
{

1 if u ∼ v
0 otherwise

adjacency function system of the n-graph G .

Hereafter, we write G instead of I[G].
Let A ⊆ V (G) a vertex subset. We can define the A-indiscernibility relation ≡A for the function system of the graph G

as follows:

v ≡A v ′ :⇐⇒ FG(v,a) = FG(v ′,a),∀a ∈ A. (79)

We denote by πG(A) the set partition of V (G) induced from the equivalence relation ≡A . If v ∈ V (G), we denote by [v]A

the equivalence class of the vertex v with respect to ≡A .
For the graphs, we have the following interpretation of the indiscernibility relation.

Proposition 8.3. If A ⊆ V (G) and v, v ′ ∈ V (G), then

v ≡A v ′ :⇐⇒ NG(v) ∩ A = NG(v ′) ∩ A. (80)

Proof. Straightforward. �
We recall that two vertices vi, v j ∈ V (G) are called twin if NG(vi) = NG(v j) and a graph without twin vertices is called 

a twin-free graph.
By means of this classical terminology, we can establish the following immediate characterization for the graphs G such 

that πG(V (G)) = v1| . . . |vn .

Proposition 8.4. Let G be a n-graph. Then πG(V (G)) = v1| . . . |vn if and only if G has at most a single isolated vertices and it is 
twin-free.

Proof. Immediate. �
In what follows, we analyze the case of complete multipartite graph.

Definition 8.5. A n-graph G = (V (G), E(G)) is said complete multipartite if there exist s non-empty subsets B1, . . . , Bs of 
V (G) such that

(i) |Bi | = ri ;
(ii) Bi ∩ B j = ∅ if i �= j;

(iii)
s⋃

i=1
Bi = V (G);

(iv) E(G) = {{x, y} : x ∈ Bi, y ∈ B j, i �= j}.

We denote a complete multipartite graph by Kr1,...,rs or (B1| . . . |Bs).

In the next result we provide the A-indiscernibility partition of Kr1,...,rs . To this regard, we introduce the following 
notation: let G := Kr1,...,rs = (B1| . . . |Bs) and A ⊆ V (G), then we set

Q G(A) := {Bi : A ∩ Bi �= ∅}.

Proposition 8.6. Let G = Kr1,...,rs = (B1| . . . |Bs) and A ⊆ V (G). Then:

πG(A) = Bi1 | . . . |Bir |Q G(A)c (81)

where r := |Q G(A)| = 1, . . . , s.
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Proof. Let A ⊆ V (G) and let Q G (A) = {Bi1 , . . . , Bir }. Let us fix and index i j , where 1 ≤ j ≤ r ≤ n. Then any vertex of Bi j is 
linked to all vertices of A \ Bi j while, all vertices of Q G (A)c are linked to any vertex of A. Therefore we conclude that

πG(A) = Bi1 | . . . |Bir |Q G(A)c . �
We can therefore express M A X P (Kr1,...,rs ). We first introduce the following notation: if n ≥ k we set

V(n,k) := {K ⊆ [n] : |K | ≤ n − k} ∪ {[n]}. (82)

Proposition 8.7. Let G := Kr1,...,rs = (B1| . . . |Bs). Then

M(G) ∼= (V(n,2),⊆∗). (83)

Proof. It follows immediately by (81) that

M A X P (Kr1,...,rs ) = {A ⊆ V (G) : A =
|Q G (A)|⋃

j=1

Bi j , |Q G(A)| = 1, . . . ,n − 2} ∪ {V (G)}. (84)

Therefore, the map φ : M(G) → V(n, 2) that associates with a block Bi the integer i is an order isomorphism between M(G)

and V(n, 2), and the claim has been proved. �
In the next result, we show that m(G) is a matroid when G is a complete multipartite graph Kr1,...,rs , with ri ≥ 2 for any 

i = 1, . . . , s.

Theorem 8.8. Let G = Kr1,...,rs be a complete multipartite graph where ri ≥ 2 for any i = 1, . . . , s. Then m(G) is a matroid.

Proof. Firstly, we observe that

min([A]≈) = {B ⊆ V (G) : B = {vi1 , . . . , vil }, vi j ∈ Bi j , Bi j ∈ Q G(A)}. (85)

We must prove that ψ̂(A) = M(A) for any vertex subset A ⊆ V (G). Fix A ⊆ V (G) and let Bi ∈ Q G(A). Let v ∈ Bi , then 
A ∪ {v} ≈ A, so by (85), ψ(A ∪ {v}) = ψ(A). On the other hand, if v ∈ B j for some B j ∈ Q G(A)c , then A ∪ {v} /∈ [A]≈ , so by 
(85), ψ(A ∪ {v}) �= ψ(A). Thus v #ψ A if and only if v ∈ M(A). Finally, by Corollary 7.15, we have to show that M is an MLS 
closure operator. Let A ⊆ V (G). Let a, b ∈ V (G) \ M(A) such that b ∈ M(A ∪{a}) \ M(A). Let M(A) = {Bi1 , . . . , Bir } and a ∈ Bl . 
Hence, b ∈ Bl too. Thus

M(A ∪ {a}) = Q G(A) ∪ Bl = M(A ∪ {b}),
so a ∈ M(A ∪ {b}), as claimed. �

As an immediate consequence, we show the next result.

Corollary 8.9. Let G = Kr1,...,rs be a complete multipartite graph where ri ≥ 2 for any i = 1, . . . , s. Then R E D(Kr1,...,rs ) has uniform 
cardinality and ||R E D(Kr1,...,rs )|| = n − 1.

Proof. Straightforward. �
8.1. The case of Cn

We study now in detail the case G = Cn , i.e. the undirected cycle on n vertices.

Lemma 8.10. Let G = Cn and let V = V (G) = {v1, . . . , vn}. Fix a subset A ⊆ V , A = {vi1 , . . . , vik }, and let vi, v j ∈ V , with i < j. 
Then vi ≡A v j if and only if NG(vi) ∩ A = NG(v j) ∩ A = ∅ or NG(vi) ∩ A = NG(v j) ∩ A = {vi+1} = {v j−1}.

Proof. We firstly observe that, for each i ∈ {1, . . . , n}, NCn (vi) = {vi−1, vi+1}, where the index sums are all taken mod(n). 
The proof follows easily by observing that, since vi �= v j , then |NG(vi) ∩ NG(v j)| ≤ 1, and the equality holds if and only if 
j = i + 2. It follows that, if NG (vi) ∩ A = NG(v j) ∩ A, then NG(vi) ∩ A = (NG(vi) ∩ NG(v j)) ∩ A ⊆ NG(vi) ∩ NG(v j). By (80), 
vi ≡A v j if and only if NG (vi) ∩ A = NG(v j) ∩ A. Thus, |NG(vi) ∩ A| = |NG(v j) ∩ A| ≤ 1 and the equality holds if and only if 
j = i + 2 and vi+1 = v j−1 ∈ A. This proves the thesis. �

We give now a complete description of the indiscernibility partition for Cn .
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Proposition 8.11. Let G and A as in Lemma 8.10. We set BG(A) := (NG(A))c and

CG(A) := {vi ∈ A : vi−2 /∈ A ∧ vi+2 /∈ A}.
Then, if vs1 , . . . , vsl are the vertices in V (G) \ [BG(A) ∪ NG(CG(A))] and v j1 , . . . , v jh are the vertices in CG(A), we have

πG(A) = BG(A)|v j1−1 v j1+1| · · · |v jh−1 v jh+1|vs1 | · · · |vsl .

Proof. The proof follows directly by Lemma 8.10. In fact, let vi, v j ∈ V (G), with i < j and vi ≡A v j . By the previous lemma, 
then either (a) NG(vi) ∩ A = NG(v j) ∩ A = ∅ or (b) NG(vi) ∩ A = NG(v j) ∩ A = vi+1 = v j−1. But (a) is equivalent to say that 
vi, v j ∈ B A , (b) that {vi, v j} = NG(v), for some v ∈ C A . The proposition is thus proved. �
Example 8.12. Let n = 7 and let G = C7 the 7-cycle and the 7-path on the set V = {v1, . . . , v7}. Let A = {v3, v4, v7}. Then 
BG(A) = {v7}, CG(A) = {v3, v4, v7} and V (G) \ [BG(A) ∪ NG(CG(A))] = ∅. Thus,

πG(A) = v1 v6|v2 v4|v3 v5|v7.

In the next results, we provide a characterization of the maximum partitioners and the minimum partitioners of Cn .

Theorem 8.13. Let G = Cn and A ⊆ V (G). Then A ∈ M A X P (G) if and only if for any vi /∈ A it holds one of the following conditions:

(i) (vi−2 /∈ A or vi+2 /∈ A) and (BG(A) �= {vi−1, vi+1});
(ii) (vi−2 ∈ A and vi−4 /∈ A) or (vi+2 ∈ A and vi+4 /∈ A).

Proof. If A ⊆ V (G) is a maximum partitioner, then, for all vi /∈ A there exist v j, vk ∈ V (G) such that v j ≡A vk and 
FG(vi, v j) �= FG(vi, vk), which is equivalent to require that one of the two conditions holds: (1) v j, vk are both in BG(A)

and |{v j, vk} ∩ BG(A ∪ {a})| = 1, or (2) |k − j| = 2, v j+1 ∈ CG(A) and either vi = v j−1 or vi = vk+1. Case (1) is equivalent to 
say that vi−2 /∈ A or vi+2 /∈ A and if both vi−2 and vi+2 are not in A, there exists another vertex vl ∈ BG(A) \ {vi−1, vi+1}. 
In this way, we obtain (i) of the Theorem. Condition (2) holds if and only if v j+1 ∈ CG (A) \ CG(A ∪ {a}). This is equivalent 
to say that v j+1 ∈ A, v j−1 /∈ A, v j+3 = vk+1 /∈ A and vi ∈ {v j−1, vk+1}. This means that vi+2 ∈ A and vi+4 /∈ A or vi−2 ∈ A
and vi−4 /∈ A, which is condition (ii). The theorem is thus proved. �
Theorem 8.14. Let G = Cn and A ⊆ V (Cn). Then A ∈ M I N P (G) if and only if for any vi ∈ A it holds one of the following conditions:

(i) (vi−2 /∈ A or vi+2 /∈ A) and (BG(A) �= ∅);
(ii) (vi−2 ∈ A and vi−4 /∈ A) or (vi+2 ∈ A and vi+4 /∈ A).

Proof. Let A ⊆ V (G) and suppose there exists vi ∈ A such that both (1) and (2) are false. If BG (A) = ∅, then

BG(A \ {vi}) =

⎧⎪⎪⎨
⎪⎪⎩

{vi−1} if vi−2 /∈ A and vi+2 ∈ A,

{vi+1} if vi−2 ∈ A and vi+2 /∈ A,

{vi−1, vi+1} if vi−2 /∈ A and vi+2 /∈ A,

∅ otherwise.

Moreover, since vi−2 ∈ A =⇒ vi−4 ∈ A and vi+2 ∈ A =⇒ vi+4 ∈ A, then

CG(A \ {vi}) =
{

CG(A) \ {vi} if vi−2 /∈ A and vi+2 /∈ A,

CG(A) otherwise.

Thus, we conclude that A ≈ A \ {vi} and, accordingly, A /∈ M I N P (G).
On the other hand, let now A /∈ M I N P (G) and vi ∈ A such that A ≈ A \ {vi}. Then there exist v j, vk ∈ V (G) such that 

v j ≡A\{vi} vk and v j �≡A vk . This happens if and only if both the following assertions are false:

(1) v j, vk ∈ BG(A \ {vi}), {v j, vk} � BG(A) and BG(A) �= ∅;
(2) vi−2 ∈ CG(A) or vi+2 ∈ CG (A).

These conditions are equivalent to conditions (i) and (ii) respectively. This proves the theorem. �
We now provide the following characterization for the reducts of Cn .

Theorem 8.15. Let A ⊆ V (Cn). Then A is a reduct of Cn if and only if CCn (A) = ∅ and for all vi ∈ A one of the following conditions 
holds:
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(1) |BCn (A)| = 1 ∧ (vi−2 /∈ A ∨ vi+2 /∈ A);
(2) |BCn (A)| ≤ 1 ∧ ((vi−4 /∈ A ∧ vi−2 ∈ A) ∨ (vi+2 ∈ A ∧ vi+4 /∈ A)).

Proof. Let V = V (Cn). By Definition 5.3, it is clear that a vertex subset A ⊆ V (Cn) is a reduct if and only if |BCn (A)| ≤ 1 and 
CCn (A) = ∅. We claim that A is minimal with respect to (i) of Definition 5.3 if and only if (1) or (2) holds. Let A be a reduct 
of Cn and vi ∈ A such that |BCn (A \ {vi})| ≥ 2. If |BCn (A)| = ∅, we would have {vi−2, vi+2} ∩ A = ∅ or, equivalently, CCn (A) �=
∅, which contradicts our assumptions. Thus |BCn (A)| = 1 and one of the two vertices vi−2 or vi+2 is not in A, which is 
condition (1). On the other hand, suppose that A is a reduct of Cn and vi ∈ A such that CCn (A \ {vi}) �= ∅. Hence vi−2 ∈
CCn (A \ {vi}) or vi+2 ∈ CCn (A \ {vi}). This is equivalent to condition (2). Conversely, suppose that A ⊆ V is a vertex subset 
satisfying conditions (1) or (2) and such that CCn (A) = ∅. It is obvious that A satisfies (i) of Definition 5.3. Let vi ∈ A and 
let us consider the vertex subset A \ {vi}. Suppose BCn (A) = {v j}. Hence j �= i ± 1. If vi−2 /∈ A, then vi−1 ≡A\{vi } v j ; similarly 
if vi+2 /∈ A, then vi+1 ≡A\{vi} v j . On the other hand, let vi ∈ A such that vi−4 /∈ A ∧ vi−2 ∈ A. In this case, vi−3 ≡A\{vi } vi−1; 
similarly in the other case. In both cases, π(A \ {vi}) �= π(V ). This completes the proof. �
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