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It has been proved by Sokolov that Krichever–Novikov equation’s hierarchy is hamiltonian 
for the Hamiltonian operator H0 = ux∂

−1ux and possesses two weakly non-local recursion 
operators of degrees 4 and 6, L4 and L6. We show here that H0, L4 H0 and L6 H0 are 
compatible Hamiltonians operators for which the Krichever–Novikov equation’s hierarchy 
is hamiltonian.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Il a été démontré par Sokolov que la hiérarchie de l’équation de Krichever–Novikov est 
hamiltonienne pour l’opérateur hamiltonien H0 = ux∂

−1ux et possède deux opérateurs de 
récursion faiblement non locaux de degrés 4 et 6, L4 et L6. Nous montrons ici que H0, 
L4 H0 et L6 H0 sont des opérateurs hamiltoniens compatibles pour lesquels la hiérarchie de 
l’équation de Krichever–Novikov est hamiltonienne.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the study of finite-gap solutions of KP, an integrable (1 + 1)-dimensional PDE was discovered, the Krichever–Novikov 
equation. One of its forms (equivalent to the original one in [7]) is

du

dt
= u3 − 3

2

u2
2

u1
+ P (u)

u1
, (1)

where u = u(t, x), un = ( d
dx )n(u), and P is a polynomial of degree at most 4. Let V = C[u, u±

1 , u2, ...] and K be the fraction 
field of V . Let us denote d

dx by ∂ . The differential order dF of a function F ∈ V is the highest integer n such that ∂ F
∂un

�= 0.
One of the attributes of equation (1) is to be part of an infinite hierarchy of compatible evolution PDEs of odd differential 

orders

E-mail address: syl_car@mit.edu.
http://dx.doi.org/10.1016/j.crma.2017.05.009
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2017.05.009
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:syl_car@mit.edu
http://dx.doi.org/10.1016/j.crma.2017.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2017.05.009&domain=pdf


S. Carpentier / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 744–747 745
du

dti
= Gi ∈ V, i ≥ 0, (2)

where Gi has differential order (2i + 1). One says that F , G ∈ V are compatible, or symmetries of one another, if

{F , G} := X F (G) − XG(F ) = 0, (3)

where X F denotes the derivation of V induced by the evolution equation ut = F , that is

X F =
∑

n≥0

F (n) ∂

∂un
. (4)

(3) endows V with a Lie algebra bracket, and the Gi ’s span an infinite-dimensional abelian subalgebra of (V, {., .}), which 
we will denote by S . The first four equations in the hierarchy are:
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It is known ([6,10]) that all integrable hierarchies admit a pseudodifferential operator L ∈ V((∂−1)) satisfying

X F (L) = [D F , L] (7)

for all F in the hierarchy, where D F denotes the Fréchet derivative of F :

D F =
∑

n

∂ F

∂un
∂n ∈ V[∂]. (8)

A pseudodifferential operator satisfying (7) is called a recursion operator (for F ). In [3], two rational recursions operators for 
(1) were found, of orders 4 and 6:

L4 = H1 H−1
0 , L6 = H2 H−1

0 , (9)

where
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(10)
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Moreover, L4 and L6 are both weakly non-local, i.e. of the form

E(∂) ∈ V[∂] +
∑

i

pi∂
−1 δρi

δu
, (11)

where the ρi ’s are conserved densities of (1). Recall that the variational derivative δ
δu is defined as follows:

δF

δu
= D∗

F (1) =
∑

n

(−∂)n(
∂ F

∂un
). (12)

In [11], Sokolov showed that the space of symmetries of (1), S , is preserved by L4. The same argument applies to L6, which 
was found later. He also establishes that the hierarchy of the Krichever–Novikov equation is hamiltonian for H0: there exists 
a sequence φi ∈ V such that

Gi = H0(
δφi

δu
) for all i ≥ 0. (13)

A Hamiltonian operator H = AB−1 ∈ V(∂) with A and B right coprime is a skewadjoint rational differential operator inducing 
a non-local Poisson lambda bracket, which is equivalent to the following identity (see equation (6.13) in [4])

A∗(D B(F )(A(G)) + D∗
A(G)(B(F )) − D B(G)(A(F )) + D∗

B(G)(A(F )))

= B∗(D A(G)(A(F )) − D A(F )(A(G)))
(14)

for all F , G ∈ V .

Lemma 1. Let L ∈ V(∂) be a skewadjoint rational operator. If there exists an infinite-dimensional (over C) subspace W ⊂ V such that 
B(W ) ⊂ δ

δuV and such that for all G ∈W , E = A(G) satisfies

XE(L) = D E L + LD∗
E , (15)

then L is a Hamiltonian operator. Conversely, if L is a Hamiltonian operator and G ∈ V , then D B(G) = D∗
B(G) if and only if A(G) satisfies 

equation (15).

Proof. Let us first give an equivalent form of (15) involving only differential operators.

(1.15) ⇐⇒ XE(A) − D E A = AB−1(XE(B) + D∗
E B)

⇐⇒ XE(A) − D E A = −B∗−1 A∗(XE(B) + D∗
E B)

⇐⇒ A∗(XE(B) + D∗
E B) = B∗(D E A − XE(A))

⇐⇒ A∗(XE + D∗
E)B = B∗(D E − XE)A.

⇐⇒ A∗(D B(F )(E) + D∗
E(B(F ))) = B∗(D E(A(F )) − D A(F )(E)) ∀F ∈ V.

(16)

Comparing the last line of (16) with (14), it is clear that if H is Hamiltonian, then E = A(G) satisfies equation (15) is 
and only if D B(G) is self-adjoint. It is also clear that if A(G) satisfies (15) and D B(G) is self-adjoint, then (F , G) satisfies 
(14) for any F ∈ V . Therefore, if we consider W ⊂ V infinite-dimensional subspace of V such that A(W) satisfies (15) and 
B(W) ⊂ δ

δuV , we deduce that (14) is satisfied for any (F , G) ∈ V × W . To conclude, we note that (14) can be rewritten as 
an identity of bidifferential operator, i.e. it amounts to say that some expression of the form 

∑
mij F (i)G( j) , where mij ∈ V

is trivial, i.e. mij = 0 for all i, j. Namely, (14) is equivalent to

A∗(X A(G)(B)(F ) − X A(F )(B)(G) + (D A)∗G(B(F )) + (D B)∗G(A(F )))

= B∗(X A(F )(A)(G) − X A(G)(A)(F )),
(17)

where given a differential operator P , an element F ∈ V , the differential operator (D P )F is defined by

(D P )F (G) = XG(P )(F ) ∀G ∈ V. (18)

If a bidifferential operator vanishes on V × W , it must be identically 0, since W is infinite dimensional. Hence, L is an 
Hamiltonian operator. �
Lemma 2. Let L = C D−1 be a rational operator and (Fn)n≥0 a sequence spanning an infinite-dimensional subspace of K satisfying 
C(Fn) = D(Fn+1) ∈ V for all n ≥ 0. Assume that L is recursion for all the D(Fn)’s and that the D(Fn)’s are hamiltonian for some 
Hamiltonian operator H ∈ V(∂). Then, provided LH is skew-adjoint, LH is a Hamiltonian operator for which all the D(Fn)’s are 
hamiltonian (n ≥ 1).
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Proof. By Lemma 1, H satisfies equation (15) for all D(Fn), n ≥ 0, hence so does LH (L is recursion for D(Fn) for all n ≥ 0). 
To conclude using Lemma 1, one needs to check that D(Fn) = LH(

δρn
δu ) for some ρn ∈ V for all n ≥ 1. Let P , Q ∈ V[∂]

be right coprime differential operators such that LH = P Q −1. Let A, B be right coprime differential operators such that 
H = AB−1. D(Fn) is hamiltonian for H for all n ≥ 0, meaning that there exist two sequences in V , (φn)n≥0 and (ρn)n≥0, 
such that δρn

δu = B(φn) and D(Fn) = A(φn) for all n ≥ 0. In the language of [2], δρn
δu and C(Fn) are C D−1 AB−1 associated, 

hence (quote result) there exists ψn such that C(Fn) = P (ψn) and Q (ψn) = δρn
δu for all n ≥ 0. Therefore, by Lemma 1.1, LH

is a Hamiltonian operator for which (C(Fn))n≥0 are hamiltonian. �
Theorem. H0 , H1 and H2 are compatible Hamiltonian operators.

Proof. Let α, β, γ ∈ C and let Lα,β,γ = (αH0 + βH1 + γ H2)H−1
0 . Lα,β,γ is a recursion operator for the whole Krichever–

Novikov hierarchy S . Moreover, it maps S to itself as was proved in [11], meaning that if Lα,β,γ = AB−1 with A, B right 
coprime and G ∈ S , then G = B(F ) for some F ∈K and A(F ) ∈ S . The theorem follows from Lemma 2. �
Remark 3. It follows from Lemma 1 that H = H2 H−1

1 H0 is a Hamiltonian operator of degree 1. However, it is not weakly 
non-local. More generally, all the (H2 H−1

1 )n H0, for n ∈ Z are pairwise compatible Hamiltonian operators. It is known since 
the work of Magri ([8], see also [5]) that from a pair of compatible Hamiltonian operators, one can construct infinitely many.

Remark 4. Every Hamiltonian operator K = AB−1 over V , where A and B are right coprime induces a Lie algebra bracket on 
the space of functionals F(K ) := {∫ f ∈ V/∂V| δ f

δu ∈ ImB}, (well-)defined by {∫ f , 
∫

g} = ∫
δ f
δu AB−1(

δg
δu ) (see section 7.2 in 

[4]). Note that F(H0) = V/∂V but that F(H1) and F(H2) consist only of the conserved densities of the Krichever–Novikov 
equation.

We recall that if a rational differential operator L = AB−1, with A, B ∈ V[∂] right coprime generates an infinite dimen-
sional abelian subspace of (V, {., .}), in the sense that there exist (Fn)n≥0 ∈ K such that A(Fn) = B(Fn+1) for all n ≥ 0 and 
such that the B(Fn)’s span an infinite-dimensional abelian subspace of (V, {., .}), then for all λ ∈ C, Im(A + λB) must be a 
sub Lie algebra of (V, {., .}) (see [1]). The recursion operators Lα,β,γ satisfy this condition.

Note that weakly non-local Hamiltonian operators were introduced in [9], where the authors study the complete set of 
weakly non-local Hamiltonian operators for both the KdV and the NLS hierarchies.

The author thanks Vladimir Sokolov for useful discussions, and Victor Kac for his interest in this work.
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