
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 665–670
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations/Numerical analysis

Variational projector augmented-wave method

La méthode VPAW

Xavier Blanc a, Éric Cancès b, Mi-Song Dupuy a

a Université Paris-Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis-Lions, UMR 7598, UPMC, CNRS, 75205 Paris, France
b CERMICS, École des ponts and Inria Paris, 6 & 8, avenue Blaise-Pascal, 77455 Marne-la-Vallée, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 December 2016
Accepted after revision 16 May 2017
Available online 26 May 2017

Presented by Olivier Pironneau

In Kohn–Sham electronic structure computations, wave functions have singularities at 
nuclear positions. Because of these singularities, plane wave expansions give a poor 
approximation of the eigenfunctions. The PAW (projector augmented-wave) method 
circumvents this issue by replacing the original eigenvalue problem by a new one with 
the same eigenvalues, but smoother eigenvectors. Here a slightly different method, called 
VPAW (variational PAW), is proposed and analyzed. This new method allows for a better 
convergence with respect to the number of plane waves. Some numerical results on an 
idealized case corroborate this efficiency.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans les calculs de structure électronique de type Kohn–Sham, les fonctions d’ondes 
présentent des singularités aux positions des noyaux. Ces singularités empêchent une 
bonne approximation de la fonction par des ondes planes. La méthode PAW (projector 
augmented-wave) vise à contourner cette difficulté en remplaçant le problème aux valeurs 
propres d’origine par un autre ayant les mêmes valeurs propres, mais des vecteurs 
propres plus réguliers. Nous proposons et analysons une implémentation différente de 
cette méthode, baptisée VPAW (variational PAW). Elle permet d’obtenir une meilleure 
convergence en nombre d’ondes planes. Quelques résultats numériques sur un cas idéalisé 
confirment son efficacité.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

0. Introduction

Electronic structure calculations for solid-state physics and materials science are usually performed using the Kohn–Sham 
(KS) model in a periodic supercell, together with plane wave (i.e. Fourier spectral) discretization method. The KS Hamiltonian 
is a Schrödinger operator with Coulomb singularities at the nuclei. Therefore, the occupied KS orbitals, referred to as wave 
functions in the following, exhibit cusps. This universal behavior was first explained mathematically by Kato ([7], see also 
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[4,5]). This considerably impedes the rate of convergence of a plane wave expansion. Pseudopotentials or the projector 
augmented-wave (PAW) [3] method must be used. The latter method consists in building an invertible operator that carries 
the cusp behavior information. A key ingredient in the analysis proposed by Blöchl in [3] is that this operator is constructed 
using a complete basis. The wave function is thus transformed into a pseudo-wave function that is smoother and can be 
efficiently expanded in plane waves. In practice, the aforementioned complete basis is truncated, introducing a numerical 
error, which is rarely analyzed. Nevertheless, because of its efficiency to produce accurate results, the PAW method has 
become a very popular tool and has been implemented in widely distributed plane-wave molecular codes (AbInit [11], 
VASP [8]).

The purpose of this note is to present a modification of the PAW method for which we can provide, for a 1D toy model, 
accurate theoretical estimates in excellent agreement with numerical tests. This method is variational and seems to be more 
accurate than the usual PAW method. We first briefly present the variational PAW (VPAW) method applied to KS equations 
in Section 1. Detailed expositions of the original PAW method can be found in [1,6,10]. In Section 2, we apply the VPAW 
formalism to the double Dirac potential with periodic boundary conditions in one dimension. The eigenfunctions of this 
model have a derivative jump at the positions of the Dirac potentials that is similar to the electronic wave function cusp. 
Furthermore, the eigenvalues and eigenfunctions are known analytically, so it is possible to compute exactly the error of the 
numerical method.

1. PAW vs VPAW methods

1.1. General setting

In order to simplify the formalism, we describe the PAW and VPAW methods for finite molecular systems in R3. The 
periodic setting will be presented in [2]. The KS equations are (here, Nat is the number of atoms, n the number of electrons, 
Z I , R I the charge and position of the I-th nucleus):

Hψk = Ekψk, E1 ≤ E2 ≤ E3 ≤ . . . ,

∫
R3

ψkψl = δkl,

with

H = −1

2
� −

Nat∑
I=1

Z I

|r − RI | +
(
ρ �

1

| · |
)

(r) + V xc[ρ](r), ρ(r) =
n∑

k=1

|ψk(r)|2,

where ρ is the ground-state electronic density and V xc the exchange-correlation potential.
Following the idea of the PAW method, an invertible transformation (Id + T ) is applied to the eigenvalue problem, where 

T is the sum of operators T I acting locally around each nucleus. To build the operator T I , the atomic KS eigenvalue problem 
is solved:

H Iφ
I
k = εkφ

I
k, ε I

1 ≤ ε I
2 ≤ ε I

3 ≤ . . . ,

∫
R3

φ I
kφ

I
l = δkl,

with

H I = −1

2
� − Z I

|r| +
(
ρI �

1

| · |
)

(r) + V xc[ρI ](r), ρI (r) =
Z I∑

k=1

∣∣∣φ I
k(r)

∣∣∣2
.

The pseudo wave functions (φ̃ I
k)1≤k≤NI , with NI ≤ Z I , are defined such that:

(i) for |r| ≥ rc, φ̃ I
k(r) = φ I

k(r);
(ii) for |r| < rc, φ̃ I

k is smooth and matches φ I
k and several of its derivatives on the sphere {|r| = rc}.

The parameter rc is called the cut-off radius and is chosen such that balls of radius rc at two different nuclei do not 
intersect. Finally, we define the projector functions (p̃ I

k)1≤k≤NI :

(i) the projector functions are supported in B(0, rc),
(ii) they form a dual family to the pseudo wave functions: 

〈
p̃ I

k , φ̃ I
k′
〉 = δkk′ .

The operator T I is then defined by:

T I =
NI∑

k=1

(φ I
k(r − RI ) − φ̃ I

k(r − RI ))
〈
p̃ I

k(· − RI ) ,•
〉
. (1)

By our choice of the pseudo wave functions φ̃ I and of the projectors p̃ I , T I acts locally in the ball B(RI , rc).
k k
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The VPAW equations to solve are then:

H̃ψ̃ = E S̃ψ̃,

where H̃ = (Id + T )∗H(Id + T ), S̃ = (Id + T )∗(Id + T ) and T = ∑
I T I . Thus, if (Id + T ) is invertible, it is easy to recover 

the eigenfunctions of H by the formula ψ = (Id + T )ψ̃ , and the eigenvalues are identical. By construction, (Id + T I )φ̃
I
k = φ I

k . 
So, if locally around each nucleus, the functions ψ “behave” like the atomic wave functions φ I

k , we can hope that the cusp 
behavior of ψ is captured by the operator T . Thus ψ̃ is smoother than ψ and the plane-wave expansion of ψ̃ converges 
faster than the expansion of ψ .

The classical PAW equations solved in materials science codes are different. As in [3], the construction of T I involves 
“complete” infinite sets of functions φ I

k , φ̃ I
k and p̃ I

k , which yields the following PAW equations:

HPAWψ̃ = E SPAWψ̃,

with (SPAW is obtained by replacing H by Id in the equation below):

HPAW = (Id + T ∗)H(Id + T ) = H +
Nat∑
I=1

∞∑
i, j=1

p̃ I
i (· − RI )

(〈
φ I

i (· − RI ) , Hφ I
j(· − RI )

〉
−

〈
φ̃ I

i (· − RI ) , Hφ̃ I
j(· − RI )

〉) 〈
p̃ I

j(· − RI ) ,•
〉
.

The double sums on i, j appearing in the operators HPAW and SPAW are then truncated and the so-obtained generalized 
eigenvalue problem is solved. Thus the identity ψ = (Id + T )ψ̃ does not hold anymore and the eigenvalues of the truncated 
problem are different from the exact ones. In contrast, in VPAW, one uses a finite number of wave functions φ I

i right from 
the beginning, avoiding truncation errors.

Remark 1. A further modification is used in practice. The expression of HPAW is

HPAW = Hps +
Nat∑
I=1

NI∑
i, j=1

p̃ I
i (· − RI )

(〈
φ I

i (· − RI ) , Hφ I
j(· − RI )

〉
−

〈
φ̃ I

i (· − RI ) , Hpsφ̃
I
j(· − RI )

〉) 〈
p̃ I

j(· − RI ) ,•
〉
,

where in Hps the Coulomb potential is replaced by a smoother pseudopotential. In Fig. 1, the PAW simulations are done 
with this modification.

1.2. Computational complexity

A detailed analysis of the computational cost of the PAW method can be found in [9]: the cost scales like O(N M +
M log M) where N = ∑

I NI is the total number of projectors and M the number of plane waves. Usually, N is chosen 
relatively small, but M may be large, so it is important to avoid a computational cost of order M2.

In practice, we are interested in the cost of the computation of H̃ψ̃ and S̃ψ̃ where ψ̃ is expanded in M plane waves. 
We will only focus on H̃ψ̃ as the analysis S̃ψ̃ is very similar. Let us split H̃ into four terms:

H̃ψ̃ = Hψ̃ + P D H P Tψ̃ + H
(
	 − 	̃

)
P Tψ̃ + P H

(
	 − 	̃

)T
ψ̃,

where P is the M × N matrix of the projector functions, H(	 − 	̃) the M × N matrix of the Fourier representation of 
the N functions H(φi − φ̃i), and D H is the N × N matrix 

〈
φi − φ̃i , H(φ j − φ̃ j)

〉
. Thus, the total numerical cost is of order 

O(MN + M log M), which is the same as for the PAW method.
Notice that D H depends self-consistently on ψ̃ so it has to be updated at each self-consistent iteration. This also applies 

to the matrix H(	 − 	̃). This matrix is approximated by a plane wave expansion, which may be a poor approximation 
because of the singularities of 	. However, it should be noticed that this is only an intermediate in the computation of ψ̃ , 
which is well approximated by plane waves. Hence it is not clear whether a poor approximation of this term should imply 
a poor approximation of ψ̃ .

2. The VPAW method for a one-dimensional model

2.1. A 1D periodic Schrödinger equation with double Dirac potential

We are interested in the lowest eigenvalue of the 1-D periodic Schrödinger operator H on L2
per(0, 1) := {φ ∈

L2
loc(R) | φ 1-periodic} with form domain H1

per(0, 1) := {φ ∈ L2
per(R) | φ′ ∈ L2

per(R)} defined by

H = − d2

dx2
− Z0

∑
δk − Za

∑
δk+a, (2)
k∈Z k∈Z
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where 0 < a < 1, Z0, Za > 0. The solutions to Hψk = Ekψk are known explicitly (see [2] for the details). Depending on the 
sign of Ek , the wave functions ψk are either a combination of plane waves or of real exponentials on each interval [0, a]
and [a, 1], whose coefficients may be computed using the continuity and derivative jumps at 0 and a: ψ ′(0+) − ψ ′(0−) =
−Z0ψ(0) and ψ ′(a+) − ψ ′(a−) = −Zaψ(a).

2.2. The VPAW method

The core of the VPAW method is to solve the generalized eigenvalue problem:

(Id + T )∗H(Id + T )ψ̃ = E(Id + T )∗(Id + T )ψ̃, (3)

where Id + T is an invertible operator. Thus the sought eigenvalues are identical and it is straightforward to recover the 
actual eigenfunctions

ψ = (Id + T )ψ̃. (4)

T is the sum of two local operators T0 and Ta acting near the atomic sites. To define T0, we fix an integer N0 = Na = N
2

and a radius 0 < rc < min( a
2 , 1−a

2 ) so that T0 and Ta act on non-overlapping regions.
Let H0 be the 1D-Schrödinger operator on L2

per(0, 1) with form domain H1
per(0, 1) defined by:

H0 = − d2

dx2
− Z0

∑
k∈Z

δk.

Each eigenfunction of this operator is either even or odd. The odd eigenfunctions are in fact x �→ sin(2πkx), k ∈ N
∗ , which 

are smooth and do not need to be included in the VPAW treatment. In contrast, the even ones have a derivative jump at 
each m ∈ Z. To construct T0, we will only select the even eigenfunctions and denote them by φi . We define the pseudo 
wave functions (φ̃i)1≤i≤N0 ∈ (L2

per(0, 1))N0 as follows:

(i) for rc ≤ x ≤ 1 − rc, φ̃i(x) = φi(x);
(ii) for |x| ≤ rc, φ̃i is an even polynomial of degree 2d − 2, d ≥ N0;

(iii) φ̃i is of class Cd−1 at ±rc i.e. φ̃
(k)
i (±rc) = φ

(k)
i (±rc) for 0 ≤ k ≤ d − 1.

The projector functions (p̃i)1≤i≤N0 are obtained by an orthogonalization procedure on the functions pi(t) = ρrc(t)φ̃i(t), 
where ρrc is a 1-periodic cut-off function with support in 

⋃
k∈Z[k − rc, k + rc], in order to satisfy the duality condition: 〈

p̃i , φ̃ j
〉 := ∫ 1

0 p̃i(x)φ̃ j(x) dx = δi j . The matrix 
(〈

pi , φ̃ j
〉)

is the Gram matrix of the functions φ̃ j for the weight ρrc so the 
orthogonalization is possible if the family (φ̃i)1≤i≤N0 is free – thus necessarily d ≥ N0. The functions p̃i are obtained by 
inverting this Gram matrix.

The operators T0 and Ta are then defined according to the formulas given in (1). In the VPAW method, the generalized 
eigenvalue problem (3) is solved by expanding ψ̃ in plane waves.

2.3. Main results

We know from (4) that

ψ̃ = ψ −
N0∑

i=1

(φi − φ̃i)
〈
p̃i , ψ̃

〉
−

Na∑
i=1

(φa
i − φ̃a

i )
〈
p̃a

i , ψ̃
〉
.

So ψ̃ is a piecewise smooth function with singularities at points of Z, Z ± rc, Z + a and Z + a ± rc. Since ψ̃ is smooth 
at any other point, these singularities drive the decay of the Fourier expansion. Thus to study the Fourier convergence rate, 
it suffices to study the dependency of the different singularities with respect to N0 = Na , d and rc. Proofs of the following 
estimates will be given in [2].

Proposition 2.1 (derivative jumps at 0). There exists C > 0 independent of rc such that

∀0 ≤ j ≤ N0 − 1,

∣∣∣[ψ̃(2 j+1)
]

0

∣∣∣ ≤ Crc
2N0−2 j and ∀ j ≥ N0

∣∣∣[ψ̃(2 j+1)
]

0

∣∣∣ ≤ C .

Proposition 2.2 (d-th derivative jump at rc). There exists C > 0 independent of rc such that∣∣∣∣[ψ̃(d)
]

rc

∣∣∣∣ ≤ C

rc
d−1

.
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Fig. 1. Comparison of the PAW and VPAW methods (d = 6).

Fig. 2. Error on the 10th eigenvalue for different values of M = 2m (d = N0).

Then, using classical estimates on eigenvalue approximations, we have the following theorems.

Theorem 2.3 (estimates on the Fourier coefficients). Let ̂̃ψm be the m-th Fourier coefficient of ψ̃ . There exists C > 0 independent of rc
and m such that

∣∣∣̂̃ψm

∣∣∣ ≤ C

(
rc

2N0

m2
+ 1

rc
d−1md+1

)
.

Theorem 2.4 (estimates on the eigenvalues). Let E M be an eigenvalue of the variational approximation (3) in a basis of M plane waves 
and E the corresponding exact eigenvalue. Then there exists a constant C independent of rc and M such that

0 < E M − E ≤ C

(
rc

4N0

M
+ 1

rc
2d−2

1

M2d−1

)
. (5)

The first term has the same decay in M as the brute force discretization of the problem with the original potential. 
However, the prefactor rc

4N0 can be made small by using a small cut-off radius rc and/or a large N0. Doing so, we introduce 
another error term that decays as M1−2d , with a prefactor of order rc

2−2d . A natural strategy would thus be to balance these 
two error terms. This allows one to choose the numerical parameters in a consistent way.

2.4. Numerical tests

All numerical simulations are carried out with Z0 = Za = 10 and a = 0.4. For the PAW simulations, the Dirac potentials 
are replaced by a smooth mollifier χε ≥ 0 supported in 

⋃
k∈Z[k − ε, k + ε] such that the mass of χε in [−ε, ε] is one.

In Fig. 1, E is the lowest eigenvalue of the 1D-Schrödinger operator H . The PAW method quickly converges to a wrong 
eigenvalue. It is interesting to notice that, asymptotically, the VPAW convergence is of order O

(
1
M

)
, but that, for small 

enough values of M and rc, the second term in the RHS of (5) dominates.
In Fig. 2, the gaps between the slopes are close to the estimates given in Theorem 2.4 (around 0.3 � log(2) between the 

decreasing lines in both graphs and between the increasing lines, respectively 0.9 � 3 log(2) for N0 = 2 and 1.5 � 5 log(2)

for N0 = 3). The slopes are also in good agreement with the theoretical estimates. More evidence will be provided in [2].
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