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In this paper, we prove that if L(x, u, v) ∈ C3(R3 → R), Lv v > 0 and L ≥ α|v| + β , α > 0, 
then all problems (1), (2) admit solutions in the class W 1,1[a, b], which are in fact 
C3-regular provided there are no pathological solutions to the Euler equation (5). Here 
u ∈ C3[c, d[ is called a pathological solution to equation (5) if the equation holds in [c, d[, 
|u̇(x)| → ∞ as x → d, and ||u||C[c,d] < ∞. We also prove that the lack of pathological 
solutions to the Euler equation results in the lack of the Lavrentiev phenomenon, see 
Theorem 9; no growth assumptions from below are required in this result.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Dans cette Note, nous démontrons que si L(x, u, v) ∈ C3(R3 → R), Lv v > 0 et L ≥ α|v| + β , 
α > 0, alors tous les problèmes (1)–(2) admettent des solutions dans la classe W 1,1[a, b], 
qui sont en fait C3-régulières pourvu que l’équation d’Euler (5) n’ait pas de solution 
pathologique. Ici, une solution u ∈ C3[c, d[ de (5) est dite pathologique si l’équation est 
satisfaite dans [c, d[, |u̇(x)| → ∞ lorsque x → d et ‖u‖C[c,d] < ∞. Nous montrons également 
(voir Théorème 9), que l’absence de solution pathologique à l’équation d’Euler entraîne 
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l’absence de phénomène de Lavrentiev ; aucune hypothèse de croissance minimale n’est 
requise pour ce résultat.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

In this paper we consider classical one-dimensional variational problems

J (u) =
b∫

a

L(x, u(x), u̇(x))dx → min, (1)

u(a) = A, u(b) = B. (2)

We assume that L(x, u, v) : R × R × R → R is of class C3 and Lv v(x, u, v) > 0 everywhere. These assumptions on the 
integrand L will be regarded as basic throughout this article.

Under these assumptions, given a compact set G ⊂ R2, we have that

L(x, u, v) ≥ −α|v| + β, α > 0, (3)

for (x, u) ∈ G , v ∈ R . Therefore, given a function u ∈ W 1,1[a, b], we have that the function L(·, u(·), ̇u(·)) is measurable and 
its negative part is integrable. Therefore, the integral J (u) is defined and is either a finite value or +∞.

In the case when the solution u : [a, b] → R is Lipschitz and L ∈ C1 only, the Euler–Lagrange equation holds:

Lv(x, u(x), u̇(x)) =
x∫

a

Lu(t, u(t), u̇(t))dt + c, (4)

see, e.g., [2]. In case additionally L satisfies the basic assumptions, we have u ∈ C3[a, b] and the equation (4) can be resolved 
with respect to the second derivative of the function u:

u′′ = Lu − Lxv − Luv u̇

Lv v
, (5)

which is the Euler equation, see again [2].
The basic update approach to studying the existence and regularity of minimizers is Tonelli’s theory.

Theorem 1 (Tonelli, [14]). If, in addition to the basic assumptions, L(x, u, v) has superlinear growth in v, i.e. L ≥ θ(v), where 
θ(v)/|v| → ∞ as |v| → ∞, then each problem (1), (2) admits a solution in the class W 1,1[a, b].

Theorem 2 (Tonelli, [15]; Ball–Mizel [1]). If in the problem (1), (2) with L satisfying the basic assumptions, there exists a solution 
u0 in the class W 1,1[a, b], then each such solution has everywhere a classical derivative (possibly infinite) which is continuous as a 
function with values in R̄ = R ∪ {−∞, ∞}. In particular, u0 is of class C3 in an open set of full measure where it also satisfies the Euler 
equation (5).

Corollary 3. Suppose L satisfies the conditions of Theorem 1. Suppose also that there are no pathological solutions to the Euler equa-
tion (5) on the interval [a, b], i.e. ones such that u ∈ C3[c, d[ ([c, d[⊂ [a, b] and possibly d < c), u satisfies (5) in [c, d[, and |u̇(x)| → ∞
as x → d. Then each problem (1), (2) admits a solution in the class W 1,1[a, b] and all such solutions are C3-regular functions.

Therefore the assumptions of Tonelli’s theory are the basic assumptions on L, the superlinear growth of L(x, u, v) in v , 
and the lack of pathological solutions to the Euler equation (5). Superlinear growth is needed to state weak compactness 
in W 1,1 of minimizing sequences; existence then follows from lower semicontinuity of the functional J with respect to 
weak convergence in W 1,1, which is guaranteed by convexity of L in v , see, e.g., [13] for a modern proof of this fact. This 
existence/regularity theory became the basic one in the literature, see, e.g., [3]. Singular solutions to minimization problems 
were constructed comparably recently, see the papers of Ball–Mizel [1], Clarke–Vinter [4], Davie [5], Sychev [10,11], Gratwick 
[6,7].

The discovery of this paper is that the lack of pathological solutions to the Euler equation (5) is by itself sufficient both 
for existence and regularity of minimizers in the class W 1,1. The following theorem holds.

Theorem 4. Let L satisfy the basic assumptions and let

L(x, u, v) ≥ α|v| + β, α > 0.
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Assume also that there are no pathological solutions u ∈ C3[c, d[ ([c, d[⊂ [a, b], where possibly d < c) to the Euler equation such that 
u̇(c) = (B − A)/(b − a). Then the problem (1), (2) admits a solution in the class W 1,1 , and all such solutions are equi-bounded in 
C3-norm.

Theorem 4 is a consequence of Theorems 8 and 9 stated below.
We will use the following definition.

Definition 5. Consider the class of functions � = {ξ : [aξ , bξ ] → R̄ = R ∪{−∞, +∞}} such that each function ξ : [aξ , bξ ] → R̄
is continuous. We say that the family � is a conditionally equa-continuous family (CEF) if for every M > 0, ε > 0 there 
exists δ = δ(M, ε) > 0 such that if |ξ(x0)| ≤ M then |ξ(x) − ξ(x0)| ≤ ε for |x − x0| ≤ δ.

Lemma 6. Let L satisfy the basic assumptions and let c > 0. For each M > 0, consider a solution uM of the problem (1), (2) in the class 
of Lipschitz functions such that ||u||C[a,b] ≤ c and ||u̇||L∞[a,b] ≤ M. Then u̇M , M > 0, is a conditionally equa-continuous family (CEF).

For a proof see, e.g., the proofs of Theorems 1.1 of [12] or [7]. CEF was introduced by Sychev in [10], and the basic 
properties of CEF are stated, e.g., in [8, §2].

Lemma 7. Let L satisfy the basic assumptions and let c1 > 0. Assume that there are no pathological solutions to the Euler equation (5)
such that u ∈ C3[c, d[ ([c, d[⊂ [a, b], possibly with d < c), u̇(c) = (B − A)/(b − a), ||u||C[c,d[ ≤ c1 . Then there exists N1 > 0 such 
that if [c, d] ⊂ [a, b], and u ∈ C3[c, d[ is a solution to the Euler equation (5) with the properties that u̇(c) = (B − A)/(b − a) and 
||u||C[c,d[ ≤ c1 , then ||u̇||C[c,d] ≤ N1 .

Proof. If the conclusion is not the case, we can find [ck, dk[⊂ [a, b] and solutions uk ∈ C3[ck, dk] of (5) such that u̇(ck) =
(B − A)/(b − a), ||u̇k||C[ck,dk] ≤ k and limx→dk |u̇k(x)| = k, k ∈ N . But then, since u̇k : [ck, dk] → R , k ∈ N , form a CEF, we 
can isolate a subsequence uk (not relabelled) such that as k → ∞, [ck, dk] → [c, d], and uk converges in C1[c, d′] for each 
d′ < d to some u ∈ C1[c, d[. Then u has the properties that u ∈ C3[c, d[ is a solution to the Euler equation (5), ||u||C[c,d] ≤ c1, 
u̇(c) = (B − A)/(b − a), and |u̇(x)| → ∞ as x → d, which is a contradiction. This proves Lemma 7. �
Theorem 8. Let L satisfy the basic assumptions. Assume there is c1 > 0 such that there is a minimizing sequence uk in the class 
W 1,∞[a, b] of the problem (1), (2), and ||uk||C[a,b] ≤ c1 , k ∈ N. Assume also that there are no pathological solutions to the Euler 
equation (5) with the following properties: u ∈ C3[c, d[ ([c, d[⊂ [a, b], possibly with d < c), u̇(c) = (B − A)/(b − a), ||u||C[c,d[ ≤ c1 , 
and |u̇(x)| → ∞ as x → d. Then the problem (1), (2) has a solution in the class W 1,∞[a, b], and this solution is C3-regular and satisfies 
||u̇||C[a,b] ≤ N1 , where N1 is as given by Lemma 7.

Proof. Consider the solutions uM given by Lemma 6, i.e. in the class of M-Lipschitz functions with the property 
||u||C[a,b] ≤ c1. Then u̇M , M ∈ N , form a CEF and uM is a minimizing sequence for the problem (1)–(2) in the class of 
Lipschitz functions. We claim that lim supM→∞ ||u̇M ||C[a,b] ≤ N1, where N1 is given by Lemma 7. Otherwise there exists 
ε > 0 and a subsequence uMk (Mk → ∞ as k → ∞) such that limk→∞ ||u̇Mk ||C ≥ N1 + ε . Using the CEF property, it is possi-
ble to find [c,d[ ⊂ [a, b] such that a subsequence uk of the sequence uMk converges in C1 to u ∈ C3[c, d[ with the properties 
u̇(c) = (B − A)/(b − a), ||u̇||C[c,d] ≥ N1 + ε , ||u||C[c,d] ≤ c1, and u is a solution to the Euler equation (5) in [c, d[. This gives a 
contradiction with Lemma 7. Therefore indeed lim supM→∞ ||u̇M ||C[a,b] ≤ N1 and, therefore, the limit function u in C1-norm 
of a subsequence uMk is a solution to the minimization problem in the class of Lipschitz functions. Then u ∈ C3[a, b] as well 
and u satisfies the Euler equation (5). �
Theorem 9. Let L satisfy the basic assumptions. Assume also that there are no pathological solutions on the interval [a, b] such that u ∈
C3[c, d[ ([c, d[⊂ [a, b], d < c possibly), u̇(c) = (B − A)/(b − a), and |u̇(x)| → ∞ as x → d. Then there is no Lavrentiev phenomenon 
in the problem (1), (2), i.e.

I1 = I∞,

where

I1 = inf{ J (u) : u(a) = A, u(b) = B, u ∈ W 1,1[a,b]},
I∞ = inf{ J (u) : u(a) = A, u(b) = B, u ∈ W 1,∞[a,b]}.

Proof. If I∞ = −∞ then I1 = I∞ . Assume then that I∞ > −∞, and assume that the Lavrentiev phenomenon occurs, i.e.

I1 < I∞. (6)
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Then there is a function u0 ∈ W 1,1[a, b] such that

J (u0) < I∞. (7)

We have that ||u0||C[a,b] ≤ c1 for some c1 < ∞. Let N1 be the constant associated with c1 from Lemma 7.
Consider a convex function θ ∈ C∞(R → R) such that θ(v) = 0 for |v| ≤ N1 + 1, θ has superlinear growth, θv v ≥ 0 and ∫ b

a θ(u̇0(x))dx < ∞. Consider the integrands Lμ = L + μθ(v) for μ > 0. We have that Iμ∞ ≥ I∞ . There exists a minimizer uμ

of the associated functional Jμ in the class of Sobolev functions with the property ||u||C[a,b] ≤ c1 by Theorem 1, because 
of the superlinear growth of Lμ in v . We have that Jμ(uμ) < Iμ∞ for sufficiently small μ > 0, because of (7). Also uμ has 
Tonelli’s regularity, i.e. u̇μ : [a, b] → R̄ is continuous. Since ||u̇μ||L∞[a,b] = ∞, we have that in some interval [c,d[ ⊂ [a, b]
the following holds: ||uμ||C[c,d] ≤ c1, u̇μ(c) = (B − A)/(b − a), and |u̇μ(x)| → ∞ as x → d. Then for some d′ ∈ [c, d[, we 
have that ||u̇μ||C[c,d′] ≤ N1 + 1/2, and |u̇μ(d′)| = N1 + 1/2. In [c, d′] the function uμ satisfies the Euler equation (5)μ . For 
x ∈ [c, d′] we also have L = Lμ . Therefore uμ satisfies the original Euler equation (5) on [c, d′], which contradicts Lemma 7. 
This contradiction shows that (6) is incorrect. This proves the theorem. �

Now Theorem 4 follows from Theorems 8 and 9.

Proof of Theorem 4. Due to the inequality

L(x, u, v) ≥ α|v| + β, α > 0,

the conditions of Theorem 8 are satisfied. Let u0 be the solution in the class of Lipschitz functions given by Theorem 8. By 
Theorem 9, it is also a solution in the class W 1,1[a, b].

Now we have to prove that if there is another solution ũ in the class W 1,1[a, b] other than u0, then it is Lipschitz. 
Suppose not, then || ˙̃u||L∞[a,b] = ∞. Such a solution has Tonelli’s regularity, see, e.g., [8]. Therefore, there exists [c,d[ ⊂ [a, b]
such that ũ ∈ C3[c, d[, ˙̃u(c) = (B − A)/(b − a), and | ˙̃u(x)| → ∞ as x → d. But then this is a pathological solution to the 
Euler equation (5). This contradiction shows that all solutions are Lipschitz functions. Then they are also equi-bounded in 
C3-norm by Lemma 7. �

Note that the lack of pathological solutions to the Euler equation (5) is only a sufficient condition for regularity of min-
imizers. In [9] Sychev constructed examples of L satisfying the basic assumptions and having superlinear growth for which 
pathological solutions exist despite minimizers of all problems (1), (2) being C3-regular functions. Under these assumptions 
on the integrands, a condition both necessary and sufficient for full regularity of minimizers is Lipschitz continuity of the 
cost-value function

S(a, A,b, B) := inf{ J (u) : u(a) = A, u(b) = B, u ∈ W 1,1[a,b]},
see [8] or [7].
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