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We offer a simple proof of the Lyapunov finite-time stability theorem for Filippov systems 
which does not use any generalized derivatives to differentiate the composition of the 
Lyapunov function with absolutely continuous solutions.
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r é s u m é

On propose une démonstration simple du théorème de Lyapunov sur la stabilité en temps 
fini pour des systèmes de Filippov sans utilisation de dérivées généralisées pour dériver la 
composition d’une fonction de Lyapunov et d’une solution absolument continue.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Recall that an absolutely continuous function x is a Filippov solution to a system of differential equations continuous in 
t and piecewise continuous in x right-hand sides

ẋ = f (t, x), (1)

if, for almost all t , one has

ẋ(t) ∈ K [ f ](t, x(t)),

K [ f ](t, x) = ⋂
δ>0

⋂
μ( J )=0 co f (t, Bδ(x)\ J ),

(2)

where Br(x) is the ball of Rn of radius r and centered at x, and co C is the convex hull of C [4, p. 49, p. 61], μ( J ) is the 
Lebesgue measure of the measurable set J . For example, the solution x(t) ≡ x̄ which we get from the phase portrait of 
Fig. 1(left) is a Filippov solution to the simplest bang-bang control system given by Fig. 1(right) and governed by
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Fig. 1. Phase portrait of system (3) (left) and the respective model of a water tank with just one water level control sensor h̄ (right).

ẋ = 1 − 2 sign(x − x̄), (3)

because (2) takes the form

ẋ(t) ∈ 1 − 2 Sign(x − x̄),

where Sign(s) = K [sign](s) =
⎧⎨
⎩

1, s > 0,

[−1,1], s = 0,

−1, s < 0.

At the same time, x(t) ≡ x̄ is not a solution to (3) as one gets 0 = 1 when plugging x(t) ≡ x̄ into (3).
As one can learn from Fig. 1, finite-time convergence to an equilibrium is a natural feature of discontinuous systems. The 

most widely used method to establish the finite-time stability (say, of the origin) in a discontinuous system is the direct 
Lyapunov method with the Lyapunov function given by

V (x) = |x1| + ... + |xn|. (4)

The Lyapunov function (4) is used for stabilization of robotic manipulators [9] in mechanical engineering, formation control 
[11], consensus [6] and synchronization [7] in network science, current control in power electronics [2], and other applied 
problems. However, the available proofs are based on viewing V (x) as a Clarke’s regular function and utilizing the calculus 
for Clarke’s generalized gradients (see [9, Theorem 2] and [10, Theorem 2.2]).

In the next section of the paper, we offer a simple proof of the Lyapunov stability theorem for Lyapunov functions of 
the form (4), which does not need any new concepts beyond what we introduced in this section already. In section 3, we 
give an example (Example 3.2) that can serve as a guideline for the rigorous application of the result of section 2, which 
did not appear in the literature so explicitly. The interested reader will be able to extend our proof to any function V
given by a linear combination (with positive multipliers) of functions of the form maxi∈I gi(x) (max-functions). Here I is 
a finite set of indices and gi : Rn → R are smooth functions. Max-functions seem to be the central class of nonsmooth 
Lipschitz continuous Lyapunov functions that is used in applications to fulfill the regularity property of Clarke, under which 
assumption the Lyapunov finite-time stability theorem was originally proven by Paden and colleagues ([9, Theorem 2], 
[10, Theorem 2.2]). That is why we believe that, despite of its simplicity, our proof carries sufficient generality as far as 
applications are concerned.

We note that the asymptotic stability of a Filippov solution to discontinuous system (1) can always be investigated 
over smooth Lyapunov functions, see Clarke–Ledyaev–Stern [3] and Bacciotti–Rosier [1, Ch. 4]. Asymptotic stability further 
implies finite-time stability, e.g., for homogeneous systems (1), see, e.g., Orlov [8]. Direct Lyapunov finite-time stability 
theorems, such as the above-mentioned [9, Theorem 2] and [10, Theorem 2.2] (as well as Theorem 2.1 below), do not 
require homogeneity.

2. The main result

We say that (t, x) ∈ R × S , S = ∪n
i=1{x ∈R

n : xi = 0, x �= 0}, is a point of crossing if

x + ξ /∈ S, for all ξ ∈ K [ f ](t, x). (5)

Theorem 2.1. Let (t, x) �→ f (t, x) be continuous except probably on R × S where (t, x) �→ f (t, x) experiences discontinuities of the 
first kind with respect to x. Let W be a set of the form W = {x : |x1| + ... + |xn| < const}. Assume that there exists k > 0 such that

∑n
i=1 sign(xi)ξi ≤ −k < 0 for all ξ ∈ K [ f ](t, x),

(t, x) ∈R× W \{0}, (6)

excluding those (t, x) ∈ S, which are the points of crossing for (1). Then the origin is a finite-time stable equilibrium for (1). Specifically, 
any Filippov solution x of (1) with the initial condition x(t0) ∈ W never leaves W in the future and approaches the origin in finite time.
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Remark 2.1. If x /∈ S , then (6) just coincides with

n∑
i=1

sign(xi) f (t, x(t)),

which is the derivative of V (x(t)) with V given by

V (x) = |x1| + |x2| + ... + |xn|. (7)

The core of the proof is the following lemma. This lemma is the most essential ingredient of the Clarke’s theory-based 
proofs, but it never appeared in the literature in so simple form before.

Lemma 2.1. Assume that b : R → R is differentiable at t∗ and b(t∗) = 0. If the function a(t) = |b(t)| is differentiable at t∗, then 
a′(t∗) = b′(t∗) = 0.

Proof. If a′(t∗) exist, then

a′(t∗) = lim
�t→0−

a(t∗ + �t)

�t
= lim

�t→0+
a(t∗ + �t)

�t
, (8)

where we used that a(t∗) = 0. Computing the one-sided limits one gets

lim
�t→0−

a(t∗ + �t)

�t
= lim

�t→0−

∣∣∣∣b(t∗ + �t)

�t

∣∣∣∣ sign �t = |b′(t∗)| · (−1)

and, analogously,

lim
�t→0+

a(t∗ + �t)

�t
= |b′(t∗)| · (+1).

Substituting the computed formulas for one-sided limits to (8) gives |b′(t∗)| · (−1) = |b′(t∗)| · (+1), which is only possible 
when b′(t∗) = 0. The proof of the lemma is complete. �
Proof of Theorem 2.1. Let x be a Filippov solution to (1) with the initial condition x(t0) ∈ W . Consider

v(t) = V (x(t)) = v1(t) + ... + vn(t), where vi(t) = |xi(t)|, i = 1, ...,n.

Since a composition of a Lipschitz function and of an absolutely continuous function is an absolutely continuous function, 
we have that there exists a zero measure set J i such that both v̇ i(t) and ẋi(t) exist for any t ∈ [t0, t1)\ J i . In this instance, 
t1 = ∞ if x(t) exists on [t0, ∞), and t1 is finite or x(t) blows up at t1. We will show that t1 = ∞ later in the proof. By 
applying the above offered Lemma we can now conclude that

if t ∈ [t0, t1)\ J i,

then either [xi(t) = 0 and v̇ i(t) = 0] or xi(t) �= 0.
(9)

Since for xi(t) �= 0, such that ẋi(t) exists, one has v̇ i(t) = sign(xi(t))ẋi(t), then (9) implies:

if t ∈ [t0, t1)\ J i,

then either [xi(t) = 0 and v̇ i(t) = 0]
or [xi(t) �= 0 and v̇ i(t) = sign(xi(t))ẋi(t)] ,

which compact formulation is

if t ∈ [t0, t1)\ J i, then v̇ i(t) = sign(xi(t))ẋi(t).

Summing this up from 1 to n and denoting J = J1 ∪ ... ∪ Jn , one gets

v̇(t) =
n∑

i=1

sign(xi(t))ẋi(t), for any t ∈ [t0, t1)\ J .

Since ẋ(t) ∈ K [ f ](t, x(t)) for almost all t ∈ [t0, t1), then there exists H ⊂ [t0, t1) of measure zero such that

v̇(t) =
n∑

sign(xi(t))ξi,
i=1
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for some ξ ∈ K [ f ](t, x(t)) and any t ∈ [t0, t1)\( J ∪ H). Using the assumption (6) of the theorem, we conclude

v̇(t) ≤ −k for any t ∈ [t0, t1)\( J ∪ H ∪ C), (10)

where C ⊂ [t0, t1) is the set of times t for which either x(t) = 0 or (t, x(t)) is a point of crossing of (1). Since the discon-
tinuities of (t, x) �→ f (t, x) are discontinuities of first kind, then the sets K [ f ](t, x) are compact and thus the property (5)
holds in a neighborhood of each point of crossing. As a consequence, the times t of crossing are isolated in time. Therefore, 
the set of times of crossing is countable and has measure zero (as well as J and H). Thus, we finally get

v̇(t) ≤ −k, for almost all t ∈ [t0, t1) such that x(t) �= 0. (11)

The rest of the proof is standard.

Step 1. Let us show that x(t) reaches the origin on [t0, t1) at least once. Assume the contrary, i.e. x(t) �= 0 for all t ∈ [t0, t1). 
Therefore, by taking the integral of (11),

v(t) ≤ v(t0) − k(t − t0), for all t ∈ [t0, t1). (12)

This implies that x(t) cannot escape from W on [t0, t1) and so t1 = ∞. In particular, v(t) is defined on [t0, t0 + v(0)/k] and 
thus it vanishes at some point of [t0, t0 + v(0)/k] by (12). The contradiction obtained proves that there exists τ ∈ [t0, t1)

such that v(τ ) = 0 (i.e. x(τ ) = 0).

Step 2. Observe that x(t) = 0 for all t ∈ [τ , t1). Indeed, otherwise there will exist τ1 ∈ [τ , t1) such that v(τ1) = 0 and v(t) �= 0
for all t ∈ (τ1, t1), so that we can integrate (11) once again as

v(t) ≤ −k(t − τ1), for all t ∈ [τ1, t1),

and obtain a contradiction with the positiveness of v(t).

Finally, since x(t) = 0 for all t ∈ [τ , t1), then x(t) cannot escape from W on [τ , t1) and so t1 = ∞.
The proof of the theorem is complete. �

3. Examples

The next example illustrates how Theorem 2.1 translates into an arbitrary target equilibrium x̄.

Example 3.1. Prove the finite-time stability of x = x̄ in the bang-bang-controlled water tank (Fig. 1).

To apply Theorem 2.1, we need to examine the expression sign(x − x̄)ξ with ξ ∈ K [1 − 2 sign(· − x̄)](x). This gives

sign(x − x̄)ξ =
{

(−1) · (1 + 2) = −3, if x < x̄,
1 · (1 − 2) = −1, if x > x̄

and Theorem 2.1 applies with k = 1 to prove the global finite-time stability of x = x̄.
Note the asymptotic stability of the equilibrium x̄ in Example 3.1 follows by utilizing the smooth (quadratic) Lyapunov 

function V (x) = (x − x̄)2.
The next example resembles switching properties typical for neural networks, see [6,5].

Example 3.2. Prove the finite-time stability of the origin in

ẋ1 = −3 sign x1 − sign x2 =: f1(x1, x2),

ẋ2 = sign x1 − 3 sign x2 =: f1(x1, x2).
(13)

To prove the finite-time stability of the origin, we will find k > 0, such that

sign(x1)ξ1 + sign(x2)ξ2 ≤ −k, for all ξ ∈ K [ f ](x), x �= 0.

There are several cases to consider.

x1 �= 0, x2 �= 0: In this case, K [ f ](x) = { f (x)} and ξ = f (x). Therefore

sign(x1) f1(x) + sign(x2) f2(x) = sign(x1)(−3 sign(x1) − sign(x2)) + sign(x2)(sign(x1) − 3 sign(x2)) ≤ −6.

x1 = 0, x2 �= 0: Here K [ f ](x) ⊂
( −3 Sign(0) − sign(x2)

Sign(0) − 3 sign(x2)

)
and so

sign(x2)ξ2 = sign(x2)(a − 3 sign(x2)), where a ∈ Sign(0).

Therefore, sign(x2)ξ2 ≤ −2.
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x1 �= 0, x2 = 0: Here K [ f ](x) ⊂
( −3 sign(x1) − Sign(0)

sign(x1) − 3 Sign(0)

)
and so

sign(x1)ξ1 = sign(x1)(−3 sign(x1) − a), where a ∈ Sign(0),

from where sign(x1)ξ1 ≤ −2.

To summarize, the finite-time stability of the origin in (13) follows by applying Theorem 2.1 with k = 2.
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