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We present a semi-implicit scheme for a two-dimensional multilayer shallow water system 
with density stratification, formulated on general staggered meshes. The main result of the 
present note concerns the control of the mechanical energy at the discrete level, principally 
based on advective fluxes implying a diffusion term expressed in terms of the gradient 
pressure. The scheme is also designed to capture the dynamics of low-Froude-number 
regimes and offers interesting positivity and well-balancing results. A numerical test is 
proposed to highlight the scheme’s efficiency in the one-layer case.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous proposons un schéma semi-implicite destiné à un modèle shallow water multicouches 
2d avec stratification en densité, formulé sur maillages décalés généraux. Le principal 
résultat de cette note concerne le contrôle de l’énergie mécanique au niveau discret, qui 
se base principalement sur des flux advectifs faisant intervenir un terme de diffusion 
exprimé en fonction du gradient de pression. Le schéma est aussi conçu pour capturer 
les dynamiques des régimes à faible nombre de Froude et offre d’intéressantes propriétés 
en termes de positivité et préservation des états d’équilibre. Un test numérique est proposé 
pour illustrer l’efficacité du schéma dans le cas monocouche.
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open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The present note introduces a staggered scheme designed to approximate the two-dimensional multilayer Shallow Water 
equations. This system is intended to account for the variations of the vertical density profile and correlated non-trivial 
pressure distribution, which characterize large scale oceanic flows. More precisely, the model considered here describes the 
dynamics of a superposition of N inviscid and immiscible layers with constant density, each of which being assumed to 
satisfy the hydrostatic pressure condition. Denoting Hi(X, t) > 0 the effective mass (that is ρihi , where ρi is the density and 
hi the layer thickness) and ui(X, t) the horizontal velocity field attached to the i-th layer, function of the space and time 
variables (X, t), the model is expressed as follows (see [14]):{

∂t Hi + div(Hiui) = 0 ,

∂t(Hiui) + div(Hiui ⊗ ui) = −Hi∇φi .
(1)

Note that this model applies to a large range of physical contexts, depending on the definition of the scalar potential φi and 
the number of layers N required to capture the flow dynamics. When the number of layers is greater than one, the pressure 
gradient ∇φi involves a coupling between the layers, which is generally not conservative, which considerably complexifies 
the mathematical structure of the system. In the particular context of the multi-layer Shallow Water equations, and taking 
into account the topography z, we have:

φi = g

⎛
⎝z +

N∑
j=1

ρ j

ρmax(i, j)
h j

⎞
⎠ , (2)

g being the gravity constant. Thus, as soon as N ≥ 2, we loose conservativity and the well-posedness of the problem must 
be subject to particular attention. The hyperbolicity is indeed closely linked to weak stratification contrast hypothesis and 
smallness assumptions on the velocity shear, as it is detailed in [10,3].

Returning to a more general point of view, the kinetic energy associated with the system (1) is defined by Ki = 1

2
Hi ‖ui‖2

at the level of each layer i, and the potential energy is assumed to satisfy the relation

∂HiE = φi . (3)

Based on (2), this leads to the following potential energy:

E = g
N∑

i=1

⎛
⎝

⎛
⎝z + 1

2

N∑
j=1

ρ jh j

ρmax(i, j)

⎞
⎠ρihi

⎞
⎠ ,

which generalizes the classical shallow water case. Of course, we should note that other physical systems may satisfy (3), 
as is the case for barotropic fluids for instance (see [11]). We also need to define H the Hessian of the potential energy, (i.e.
the N × N matrix Hi, j = ∂Hi H jE ), which can be expressed as a function of the mass vector H = (H1, · · · , H N) and of the 
spatial position. In what follows, H will be supposed symmetric and positive-definite. Note that this condition is trivially 
satisfied in the present context, since it is clear from (2) that H is constant with respect to t and X (see [11,2]).

We recall here that for smooth solutions the total energy E = E +
N∑

i=1

Ki satisfies the following conservation law:

∂t E +
N∑

i=1

div
(
(Hiφi +Ki)ui

)
= 0 . (4)

In the following lines, we introduce a semi-implicit scheme on staggered grids for the model (1) and study its stability in 
the sense of numerical control of the total energy (i.e. we aim at obtaining a discrete equivalent of (4)). To address such an 
issue, and based on the formalism introduced in [4], followed later to treat the multilayer system in a collocated framework 
[11], the idea is to work on a regularized model, for which a shifted velocity is introduced in the mass and momentum 
equations:{

∂t Hi + div (Hi(ui − δui)) = 0 ,

∂t(Hiui) + div (Hiui ⊗ (ui − δui)) = −Hi∇φi ,
(5)

where δui stands for a generic perturbation. For regular solutions, it results a modified energy equation:

∂t E +
N∑

i=1

div
(
(Hiφi +Ki)(ui − δui)

)
= −

N∑
i=1

δui · ∇φi . (6)

Then, at least at the continuous level, we immediately see that a calibration of δui in terms of the pressure gradient 
(formally δui = γ∇φi with γ > 0) is expected to have regularizing virtues. We now seek for a discrete equivalent to this 
formal result.
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Fig. 1. Geometry associated with the Rannacher–Turek discretization.

2. Numerical scheme

We consider a partition T of the computational domain � ⊂ R
2 composed of NT non-overlapping polygonal elements. 

The area of a generic cell K will be denoted by mK and we denote by ∂ K its boundary. For any edge e belonging to 
∂ K , we denote by Ke the corresponding adjacent cell and ne,K the outward normal pointing to Ke (see Fig. 1). In what 
follows, me will stand for the length of the corresponding boundary interface. The concept of staggered discretizations 
is based on an evaluation of the velocity at locations that differs from the mass centers of the primal mesh, generally 
providing interesting stability properties. Historically, most of previsional platforms devoted to multiscale modelling make 
use of such environments. In the context of oceanic circulation, one can note HYCOM, ROMS [12] or NEMO [8,9] for instance. 
Many possibilities can be considered, such as the Rannacher–Turek (RT), Crouzeix–Raviart (CR) or Marker-And-Cell (MAC) 
discretizations, for instance. A general formalism attached to these discretizations has been developed and used within the 
implicit approaches [5,6] in the case of a one-layer system and in [7] for one- and two-phase pressure correction schemes, 
providing significant stability and consistency results. For the sake of clarity, we will illustrate the present approach in 
the frame of general RT grids, specifying that the forthcoming developments can easily be adapted to the other types of 
discretizations mentioned above. In this framework, the velocity unknowns are located at the faces of the primal mesh T , 
standing for a representation of the average velocity computed over a dual mesh T ∗ . At the level of an edge e, a dual 
element De ∈ T ∗ consists of a quadrilateral admitting e as diagonal and connecting the mass centers of the adjoining cells 
K and Ke , as illustrated in Fig. 1 in the case of a general polygonal grid. Let us finally introduce some useful notations. For 

a generic scalar function w , the notation w± = 1

2
(w ± |w|) will refer to the positive and negative parts of w , and we set:

we = 1

2

(
w Ke + w K

)
, δwe = 1

2

(
w Ke − w K

)
ne,K .

Similarly, for a vectorial piecewise function w:

we = 1

2

(
wKe + wK

)
, δwe = 1

2

(
wKe − wK

) · ne,K .

Equipped with these notations, the numerical scheme we consider is the following:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hn+1
K ,i = Hn

K ,i − �t

mK

∑
e∈∂ K

Fn+1
e,i · ne,K me

Hn+1
De,i

un+1
De,i

= Hn
De,i

un
De,i

− �t

mDe

∑
f ∈∂ De

(
un

De,i

(
Fn+1

f ,i · n f ,De

)+ + un
D f

e ,i

(
Fn+1

f ,i · n f ,De

)−)
m f − �t Hn+1

De,i
(∇�)e,i .

(7)

In the expression above, D f
e refers to the dual cell sharing the edge f with De , and we use mDe and m f to design the cell 

areas and edge lengths of the corresponding dual elements, following the notations of the primal mesh. The formula for the 
pressure gradient is directly deduced from the discrete grad/div duality with respect to the L2 inner product (see also [6]):

(∇�)e,i = me

mDe

(
	n+1

Ke,i
− 	n+1

K ,i

)
ne,K = 2

me

mDe

δ	n+1
e,i . (8)

The auxiliary water height Hn+1
De,i

is defined as a weighted average implying the adjoining cells of the primal mesh:

mDe Hn+1
De,i

= mD K
e

Hn+1
K ,i + mD Ke

e
Hn+1

Ke,i
, (9)

and we suppose that the evolution of this quantity is governed by the following scheme:

Hn+1
De,i

− Hn
De,i

= − �t

mDe

∑
Fn+1

f ,i · n f ,De m f . (10)

f ∈∂ De
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This discrete conservation equation is fundamental to attach an energy budget to the numerical system. The numerical fluxes 
Fn+1

f ,i are actually expressed in terms of combinations of the original fluxes Fn+1
e,i , with varying coefficients depending on 

the mesh discretization. These construction aspects can be found in [1]. We now define the numerical fluxes:

Fn+1
e,i = Hn+1

De,i
un

De,i
− 
n+1

e,i , (11)

where


n+1
e,i = 2γ �t

me

mDe

Hn+1
De,i

δ	n+1
e,i , γ ≥ 1 , (12)

is a stabilization term designed to ensure a discrete energy control. Note that this term is somehow expressed in terms of 
numerical gradient pressure (through δ	n+1

e,i ), which stands for a discrete equivalent of δui introduced at the continuous 
level to control the energy budget (see (6) and discussion below). For future developments, we lastly need the time evolution 
of the velocity, which is derived from the momentum equations using (10):

un+1
De,i

= un
De,i

− �t

mDe

∑
f ∈∂ De

un
D f

e ,i
− un

De,i

Hn+1
De,i

(
Fn+1

f ,i · n f ,De

)−
m f − �t(∇�)e,i . (13)

3. Main result: control of the mechanical energy

The following section is intended to show that the present approach prevents from non-physical production of mechani-

cal energy. More precisely, defining En
K and Kn

De ,i
= 1

2
Hn

De,i
‖un

De,i
‖2 the local potential and kinetic energies, available at the 

primal and dual meshes respectively, the discrete total energy corresponds to:

En =
∑
K∈T

mKEn
K +

∑
De∈T ∗

mDe

( N∑
i=1

Kn
De,i

)
, (14)

and we have the following result.

Theorem 3.1. We consider the scheme (7), together with the numerical fluxes (11), (12), and the discrete gradient pressure (8). Suppose 
that the time step satisfies the following CFL condition:

�t

mDe

∑
f ∈∂ De

− (
Fn+1

f ,i · n f ,De

)−
m f <

1

2
Hn+1

De,i
. (15)

We have:

En+1 − En ≤ 0 .

The proof is organized around the following steps:

(A) estimation of the kinetic energy production (Lemma 3.1);
(B) estimation of the potential energy production (Lemma 3.2);
(C) control of the total energy: we gather the two inequalities resulting from #A and #B to deduce the sufficient condition 

γ ≥ 1 in the advective fluxes (12) (proof of Theorem 3.1).

Lemma 3.1. Estimation of the kinetic energy production. We have the following inequality:

Kn+1
De,i

−Kn
De,i

+ �t

mDe

∑
f ∈∂ De

(
Gn+1
K, f ,i · n f ,De

)
m f ≤ RK,e,i −QK,e,i , (16)

with

Gn+1
K, f ,i · n f ,De = 1

2
‖un

De,i
‖2(Fn+1

f ,i · n f ,De

)+ + 1

2

∥∥∥∥un
D f

e ,i

∥∥∥∥
2 (

Fn+1
f ,i · n f ,De

)−
,

QK,e,i = �t Hn+1
De,i

un
De,i

· (∇�)e,i ,

RK,e,i = (�t)2 Hn+1
De,i

∥∥(∇�)e,i
∥∥2

.
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Proof. Using the equation on the velocity (13), we have:

Hn+1
De,i

(un+1
De,i

− un
De,i

) · un
De,i

= − �t

mDe

∑
f ∈∂ De

(un
D f

e ,i
− un

De,i
) · un

De,i

(
Fn+1

f ,i · n f ,De

)−
m f − �t Hn+1

De,i
(∇�)e,i · un

De,i
.

We then use the relation (a − b) · b = 1

2
‖a‖2 − 1

2
‖b‖2 − 1

2
‖a − b‖2, to write:

Hn+1
De,i

(1

2

∥∥∥un+1
De,i

∥∥∥2 − 1

2

∥∥∥un
De,i

∥∥∥2 − 1

2

∥∥∥un+1
De,i

− un
De,i

∥∥∥2 )

= − �t

mDe

∑
f ∈∂ De

(1

2

∥∥∥∥un
D f

e ,i

∥∥∥∥
2

− 1

2

∥∥∥un
De,i

∥∥∥2 − 1

2

∥∥∥∥un
D f

e ,i
− un

De,i

∥∥∥∥
2 )(

Fn+1
f ,i · n f ,De

)−
m f − �t Hn+1

De,i
(∇�)e,i · un

De,i
.

Reorganizing this expression, and using the auxiliary mass equation (10), the previous equality becomes:

Kn+1
De,i

−Kn
De,i

= − �t

mDe

∑
f ∈∂ De

(1

2

∥∥∥un
De,i

∥∥∥2 (
Fn+1

f ,i · n f ,De

)+ + 1

2

∥∥∥∥un
D f

e ,i

∥∥∥∥
2 (

Fn+1
f ,i · n f ,De

)−)
m f

+ 1

2
Hn+1

De,i

∥∥∥un+1
De,i

− un
De,i

∥∥∥2 + �t

mDe

∑
f ∈∂ De

1

2

∥∥∥∥un
D f

e ,i
− un

De,i

∥∥∥∥
2 (

Fn+1
f ,i · n f ,De

)−
m f

− �t Hn+1
De,i

(∇�)e,i · un
De,i

.

(17)

We then set:

Se,i = 1

2
Hn+1

De,i

∥∥∥un+1
De,i

− un
De,i

∥∥∥2 + �t

mDe

∑
f ∈∂ De

1

2

∥∥∥∥un
D f

e ,i
− un

De,i

∥∥∥∥
2 (

Fn+1
f ,i · n f ,De

)−
m f .

An upper bound can be deduced for the first term of Se,i with the use of Jensen’s inequality:

1

2
Hn+1

De,i

∥∥∥un+1
De,i

− un
De,i

∥∥∥2 ≤ Hn+1
De,i

(�t)2
∥∥(∇�)e,i

∥∥2 + 1

Hn+1
De,i

(
�t

mDe

)2
∥∥∥∥∥∥

∑
f ∈∂ De

(un
D f

e ,i
− un

De,i
)
(
Fn+1

f ,i · n f ,De

)−
m f

∥∥∥∥∥∥
2

.

Then, invoking the Cauchy–Schwarz inequality, we have:∥∥∥∥∥∥
∑

f ∈∂ De

(un
D f

e ,i
− un

De,i
)
(
Fn+1

f ,i · n f ,De

)−
m f

∥∥∥∥∥∥
2

=

≤
( ∑

f ∈∂ De

∥∥∥∥un
D f

e ,i
− un

De,i

∥∥∥∥
2 (

Fn+1
f ,i · n f ,De

)−
m f

)( ∑
f ∈∂ De

(
Fn+1

f ,i · n f ,De

)−
m f

)

Thus:

Se,i ≤Hn+1
De,i

(�t)2
∥∥(∇�)e,i

∥∥2 + �t

mDe

∑
f ∈∂ De

∥∥∥∥un
D f

e ,i
− un

De,i

∥∥∥∥
2 (

Fn+1
f ,i · n f ,De

)−
m f

×
[

1/2 − �t

mDe

∑
f ∈∂ De

−(
Fn+1

f ,i · n f ,De

)−

Hn+1
De,i

m f

]

The second term being assumed negative according to the CFL condition (15), on gets the announced result injecting the 
resulting estimation of Se,i into (17). �
Remark 3.1. By reason of the semi-implicit formalism, the time step restriction (15) can actually be seen as a classical 
CFL governed by the inertial forces only, subject to an O(�t) perturbation. More precisely, one can establish a sufficient 
condition for (15) implying the collocated fluxes only, of the form:

�t

mK

∑
|Fn+1

e,i · ne,K |m f < βHn
K ,i , (18)
e∈∂ K
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where β is a constant verifying 0 < β ≤ 1, to be calibrated depending on the choice of the staggered discretization. Then, 
after basic computations, one gets that (18) is indeed ensured under a time step satisfying the local condition:

�t max

(
m∂ K

mK
,

m∂ Ke

mKe

)(
|un

De,i
· ne,K | + 2γ �t

me

mDe

|δ	n+1
e,i · ne,K |

)
<

(
β

1 + β

) min(Hn+1
K ,i , Hn+1

Ke,i
)

Hn+1
De,i

.

Lemma 3.2. Estimation of the potential energy production. We have the following inequality:

En+1
K − En

K + �t

mK

∑
e∈∂ K

N∑
i=1

(
Gn+1
E,e,i · ne,K

)
me ≤ QE,K −RE,K , (19)

with

Gn+1
E,e,i · ne,K = 	

n+1
e,i Fn+1

e,i · ne,K ,

QE,K = �t

mK

∑
e∈∂ K

N∑
i=1

Hn+1
De,i

un
De,i

· δ	n+1
e,i me ,

RE,K = �t

mK

∑
e∈∂ K

N∑
i=1


n+1
e,i · δ	n+1

e,i me .

Proof. Denoting XK the mass center of the cell K and Hn
K the corresponding mass vector at time n, Taylor’s formula gives, 

for a certain 0 ≤ sK ≤ 1:

En+1
K − En

K =
N∑

i=1

(
Hn+1

K ,i − Hn
K ,i

)
	n+1

K ,i − 1

2

N∑
i=1

N∑
j=1

(
Hn+1

K ,i − Hn
K ,i

)
H

n+sK
i, j,K

(
Hn+1

K , j − Hn
K , j

)
,

where Hn+sK
i, j,K = Hi, j

(
sK Hn+1

K + (1 − sK )Hn
K ,XK

)
. The Hessian of the system being definite positive, the second term of the 

right-hand side is negative, and we have:

En+1
K − En

K ≤ − �t

mK

∑
e∈∂ K

N∑
i=1

	n+1
K ,i F

n+1
e,i · ne,K me .

We then proceed to the following decomposition:

	n+1
K ,i F

n+1
e,i · ne,K = Gn+1

E,e,i · ne,K − Hn+1
De,i

un
De,i

· δ	n+1
e,i + 
n+1

e,i · δ	n+1
e,i ,

to fall on the desired contributions. �
We can now establish the result stated in Theorem 3.1.

Proof of Theorem 3.1.

Terms in Q:
Summing the kinetic and potential contributions over the dual and original mesh respectively, we obtain the two follow-

ing terms:

−
∑

De∈T ∗
mDe

N∑
i=1

QK,e,i = −�t
∑

De∈T ∗

N∑
i=1

mDe Hn+1
De,i

un
De,i

· (∇�)e,i .

∑
K∈T

mKQE,K = �t
∑
K∈T

∑
e∈∂ K

N∑
i=1

Hn+1
De,i

un
De,i

· δ	n+1
e,i me .

For a given layer i and a dual element De , we are consequently in the presence of three contributions:

• one from the kinetic part:

−�tmDe Hn+1
De,i

un
De,i

· (∇�)e,i ;
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• two identical terms from the potential part, coming from each side of the interface e:

2�tme Hn+1
De,i

un
De,i

· δ	n+1
e,i = �t me Hn+1

De,i
un

De,i
·
(
	n+1

Ke,i
− 	n+1

K ,i

)
ne,K .

From this, it is straightforward to verify that the discrete pressure gradient (8) provides an exact balance of these terms.

Terms in R:
We focus now on the terms RE,K and RK,e,i . The resulting contributions are respectively:

−
∑
K∈T

mKRE,K = −�t
∑
K∈T

∑
e∈∂ K

N∑
i=1


n+1
e,i · δ	n+1

e,i me .

∑
De∈T ∗

mDe

N∑
i=1

RK,e,i =
∑

De∈T ∗

N∑
i=1

mDe Hn+1
De,i

(�t)2‖(∇�)e,i‖2 .

Again, for a given layer i and dual element De , we have three contributions:

• one from the kinetic part:

mDe Hn+1
De,i

(�t)2‖(∇�)e,i‖2 ; (20)

• two from the potential, giving:

−2�tme

n+1
e,i · δ	n+1

e,i .

Using (12) and (8), we have:

2�tme 
n+1
e,i · δ	n+1

e,i = (�t)2mDe Hn+1
De,i

γ
∥∥(∇�)e,i

∥∥2
. (21)

Gathering (20) and (21), we finally obtain that the energy control is ensured under the condition γ ≥ 1. �
Remark 3.2. Naturally, a more general result consists in keeping the previous right-hand side in the energy budget, with the 
possibility of introducing numerical dissipation for γ > 1.

En+1 − En ≤ (�t)2 Hn+1
De,i

mDe ‖(∇�)e,i‖2(1 − γ ) .

4. Additional properties

In addition of mechanical energy dissipation and positivity results, the present scheme enjoys other fundamental stability 
properties, which are the preservation of motionless steady states and the consistency with the asymptotics observed in 
low-Froude-number regimes. Regarding the preservation of the equilibrium states at rest, defined by un

K ,i = 0 , 	n
K ,i = 	̄i for 

all K ∈ T , on obtains hn+1
K ,i = hn

K ,i as the unique solution of the mass equation, and hence 	n+1
K ,i = 0. Using (8) and (11), this 

immediately gives the preservation of the initial rest state. The asymptotic preserving features can be established with the 
support of an analysis at the continuous level in space, as done in [2].

5. Numerical experiments

The following section presents some numerical results based on the Thacker’s solutions [13] in the one layer case. There 
are not many available solutions for the non-linear shallow water equations involving complex configurations, including 
non-trivial topographies and moving boundaries. In this respect, the present class of benchmarks is frequently used in the 
validation steps of operational codes. The present simulation involves a periodic flow evolving over a parabolic bathymetry:

z(x, y) = D0

(
x2

L2
+ y2

L2

)
,

for which the following analytical solution is:

ζ(x, y, t) = 2ηD0

(
x

L
cos(ωt) − y

L
sin(ωt) − 2η

L

)
u(x, y, t) = −ηω sin(ωt)
v(x, y, t) = −ηω cos(ωt)

,
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Fig. 2. Periodic evolution of the x-component of the velocity, computed at the center of the basin. Exact vs. numerical.

Fig. 3. Evolution of the sea surface height RMS error.

ζ standing for the free surface elevation with respect to the maximal depth D0. The frequency is given by ω = f /2 +√
f 2/4 + 2g D0/L2, f being the Coriolis parameter. Following the COMODO experiment, f is set to 10−4 s−1 and D0 = 10 m. 

The constant L corresponding to the basin width at rest is 80 km and the adimensional amplitude η is set to 0.1. Friction 
effects are neglected during the simulation. Computations are run on a 201 × 201 square grid with a space step of 1 km. 
The time step and gamma have been set respectively to 60 s and 1. The integration time is fixed to 3 days.

We can observe in Fig. 2 the time evolution of the horizontal component of the velocity, computed at the center of the 
basin. We obtain a very good matching with the analytical solution, highlighting a negligible rate of numerical dissipation 
throughout the simulation. A numerical error quantification is proposed in Fig. 3, with the Residual Mean Square deviation 
(RMS) of the sea surface height, formally computed from:

[
1

Nw

Nt∑
n=0

(
ζn

num − ζn
th

)2

]1/2

,

Nw being the theoretical number of wet points and Nt the number of time steps. We can observe a very moderate evolution 
of the RMS error with time, which is less than 2 cm at the end of the simulation, while it reaches around 4 cm in the 
original COMODO benchmark with HYCOM and the same set of initialization parameters.
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Fig. 4. Representation of the maximum of the Froude number in the computational domain, computed over 11 periods.

To complete the picture, Fig. 4 shows the distribution of the maximum Froude number value throughout the computa-
tional domain, computed over 11 periods. Starting from zero at the center, the Froude number tends to increase as we reach 
the moving boundary, inducing a rough regime change close to the wet/dry interface. As it has been already observed in 
the collocated framework (see [2]), the present approach is particularly well-suited to capture this quite complex dynamics, 
which explains the slight improvements with respect to the classical approaches, notably in a long time behaviour.

Additionally, in the presence of very low-Froude-number regimes, the preliminary results are in conformity with those 
obtained in the collocated context [2], in which we highlighted the considerable benefits when compared with some classi-
cal solvers, while remaining consistent with the discrete entropy inequality.
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