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We present a simple no-go theorem for the existence of a deformation quantization of a 
homogeneous space M induced by a Drinfel’d twist: we argue that equivariant line bundles 
on M with non-trivial Chern class and symplectic twist star products cannot both exist on 
the same manifold M . This implies, for example, that there is no symplectic star product 
on the projective space CPn−1 induced by a twist based on U (gln(C))�h� or any sub-
bialgebra, for every n ≥ 2.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous exposons un théorème de non-existence concernant la quantification par déformation 
d’un espace homogène M , induite par un twist de Drinfel’d : nous montrons qu’un fibré 
en droites équivariant sur M avec une classe de Chern non triviale et un produit étoile 
symplectique ne peuvent coexister sur une même variété M . Ceci implique, par exemple, 
qu’il n’y a pas de produit étoile symplectique sur l’espace projectif complexe induit par un 
twist basé sur U (gln(C))�h�, ou sur toute sous-algébre, pour tout n ≥ 2.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Drinfel’d twists [15] are powerful functorial tools to simultaneously deform bialgebras together with all of their modules 
and module algebras. Given an action of a Lie algebra g on a smooth manifold M by derivations, one can use a twist based 
on U (g)�h� to obtain a formal deformation quantization of M (Definition 1). A star product obtained by a twist will be 
called a twist star product.

The idea of quantization induced by symmetries has always been appealing in mathematical physics. The approach to 
quantization via Drinfel’d twist was popularized by several mathematical physicists, among which Aschieri, Dimitrijevic, 
Fiore, Lizzi, Meyer, Vitale, Wess and many others (see, e.g., [1–4,19] and references therein), and its interest is testified by 
the number of papers on the subject.
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The existence of star products for arbitrary Poisson manifolds is a celebrated result by Kontsevich [22], who improved 
previous results by DeWilde and Lecomte [14], Omori, Maeda and Yoshioka [25], and Fedosov [18], who proved the existence 
in the symplectic case (for a historical account see, e.g., the recent review [31]). While every Poisson manifold admits a 
deformation quantization, it is not clear when a manifold admits a deformation quantization by Drinfel’d twist. If M is 
a compact and connected symplectic manifold, we know that it admits a deformation quantization by a twist based on 
U (g)�h� only if it is a homogeneous space [5, Thm. 1]. This condition unfortunately is only necessary, not sufficient: the 
symplectic 2-sphere is an example of homogeneous space that admits no deformation quantization induced by a twist [5, 
Cor. 3.12].

In this short note, we comment on how formal Morita equivalence can be used to prove a “no-go” theorem for the 
existence of twist star products. We will prove the following theorem.

Theorem. Let G be a Lie group, g its Lie algebra, M a homogeneous G-space and ω a symplectic form on M. The following two 
properties are mutually exclusive:

(i) there exists a G-equivariant smooth complex line bundle on M with non-trivial Chern class;
(ii) there exists a deformation quantization of (M, ω) induced by a twist based on U (g)�h�.

Using this theorem, one can show, for example, that there is no deformation quantization of a symplectic projective 
space CPn−1 induced by a twist based on U (gln(C))�h� or any sub-bialgebra (for every n ≥ 2). The symplectic 2-torus, on 
the other hand, provides an example where symplectic twist star products exist, and non-trivial R2-equivariant line bundles 
do not.

It is worth noticing that if one works in the more general setting of bialgebroids, then any deformation quantization of 
any Poisson manifold (not only symplectic) is induced by a twist [32]: one can indeed interpret the formal Poisson bivector 
as a cocycle twist based on the topological bialgebroid of formal power series of differential operators on M (with base 
algebra C∞(M)�h�).

Notations

In the following, algebras will be either over the field C of complex numbers or over the ring C�h� of formal power 
series in h with complex coefficients. They are always assumed to be unital and associative. If V is a complex vector space, 
we denote by V �h� the C�h�-module of formal power series in h with coefficients in V .

2. Deformation quantization and Morita equivalence

Let us recall some basic definitions.

Definition 1 (Star product). A star product on a Poisson manifold M is a C�h�-bilinear associative binary operation ∗ on 
C∞(M)�h� of the form:

f ∗ g =
∞∑

k=0

hk Bk( f , g) , ∀ f , g ∈ C∞(M),

where each Bk : C∞(M) × C∞(M) → C∞(M) is a bi-differential operator, B0( f , g) = f g is the pointwise multiplication,

B1( f , g) − B1(g, f ) = i { f , g} ,

is the Poisson bracket, and the constant function 1 is the neutral element of this product:

f ∗ 1 = 1 ∗ f = f , ∀ f ∈ C∞(M).

The algebra (C∞(M)�h�, ∗) is called a deformation quantization of the Poisson manifold M .

If M is a symplectic manifold, we call ∗ a symplectic star product (for short). From now on, we will be interested in the 
symplectic case.

Definition 2 (Equivalence). Two star products ∗ and ∗′ on the same symplectic manifold M are equivalent if there are linear 
maps Tk : C∞(M) → C∞(M) such that T := Id + ∑∞

k=1 hk Tk satisfies T (1) = 1 and:

T ( f ∗ g) = T ( f ) ∗′ T (g) , ∀ f , g ∈ C∞(M).
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The maps Tk in Definition 2 are automatically differential operators [21, Thm. 2.22].
The map T gives an isomorphism of algebras (C∞(M)�h�, ∗) → (C∞(M)�h�, ∗′) by extension of scalars, but notice that 

not every isomorphism is of this form. Any isomorphism that is continuous in the h-adic topology can be written as a 
combination of a change of parameter, an equivalence T as above, and the pullback of a symplectomorphism [21, Prop. 9.4].

A weaker notion is that of Morita equivalence of star products, inspired by the notion of (algebraic) Morita equivalence.

Definition 3 (Morita equivalence). Given two rings (resp. two algebras) A and B , a Morita equivalence A–B bimodule is a 
finitely generated projective right B-module N equipped with a ring (resp. algebra) isomorphism φ : A → EndB(N). If such 
a module exists, we say that A and B are Morita equivalent.

One can see, e.g., [23, §18] for alternative equivalent definitions of Morita’s equivalence.
Let L → M be a smooth complex line bundle, M a symplectic manifold, and ∗ a star product on M . The space �∞(L) of 

smooth sections is a symmetric C∞(M)-bimodule, with left and right module structure given by pointwise multiplication, 
and by extension of scalars �∞(L)�h� is a C∞(M)�h�-bimodule. It was proved in [10] (in the more general setting of formal 
deformations of C-algebras and projective modules) that �∞(L)�h� can be deformed into a right module for the algebra 
(C∞(M)�h�, ∗), i.e. there is a C�h�-bilinear map:

• : �∞(L)�h� × C∞(M)�h� → �∞(L)�h� ,

unique modulo equivalences, such that

(s • f ) • g = s • ( f ∗ g) , s • 1 = s , s • f = sf mod h ,

for all f , g ∈ C∞(M), s ∈ �∞(L). The line bundle determines a second star product ∗′ on M , unique modulo equivalences, 
such that there is an isomorphism of C�h�-algebras:

φ : (C∞(M)�h�,∗′) → End(C∞(M)�h�,∗)(�
∞(L)�h�,•) , (2.1)

where the latter is the set of all right module endomorphisms, with product given by composition. The isomorphism can 
be chosen in such a way that it deforms the action of functions on sections by pointwise multiplication [9, §4]:

φ( f )s = f s mod h , ∀ f ∈ C∞(M), s ∈ �∞(L).

We stress that ∗ and ∗′ are deformation quantizations of the same symplectic structure on M [9, Lemma 3.4]. One can prove 
that the deformed right module above is projective and finitely generated [10], so that (C∞(M)�h�, ∗) and (C∞(M)�h�, ∗′)
are Morita equivalent in the ring-theoretic sense.

By [11, Thm. 3.1] the relative class t(∗, ∗′) of the two-star products and the Chern class c1(L) of the line bundle are 
proportional: t(∗, ∗′) = 2πic1(L). As a consequence,

Lemma 4. The star products ∗ and ∗′ are equivalent if and only if c1(L) = 0.

3. Cocycle twists

We refer to [24] for general definitions about bialgebras and module algebras.

Definition 5 (Equivariant module). Let U be a C-bialgebra and A and B two U -module algebras. An A–B bimodule N is 
called U -equivariant if it is equipped with a left action 	 of U such that:

x 	 (aξb) = (x(1) 	 a)(x(2) 	 ξ)(x(3) 	 b) , ∀ x ∈ U ,a ∈ A,b ∈ B, ξ ∈ N. (3.1)

We will use the same symbol 	 for the actions of U on A, B and N , when there is no risk of confusion; we will also use 
the standard Sweedler notation for the coproduct; for example, above x(1) ⊗ x(2) ⊗ x(3) stands for (� ⊗ Id)�(x).

It was shown in a seminal paper by Drinfel’d [15] that one can modify the coproduct of U by conjugation with an 
invertible 2-tensor F ∈ U ⊗ U , thus getting a quasi-bialgebra. This is an ordinary bialgebra if the coassociator of F commutes 
with the image of the iterated coproduct. A special case, recalled below, is obtained when the coassociator is trivial. In this 
case, we talk about cocycle twist, since the defining condition can be interpreted as the vanishing of the coboundary of F in 
a suitable non-abelian cohomology associated with the bialgebra U (see, e.g., [13, §2.3–2.4] and references therein).

Definition 6 (Cocycle twist). Let U be a C-bialgebra. An invertible element F ∈ U ⊗ U is called a cocycle twist (or simply a 
twist) based on U , if it satisfies:

(F ⊗ 1)(� ⊗ Id)(F ) = (1 ⊗ F )(Id ⊗ �)(F ) (cocycle condition) (3.2a)

(ε ⊗ Id)(F ) = (Id ⊗ ε)(F ) = 1 (counitality) (3.2b)

where � is the coproduct and ε the counit of U .
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Remark 7. We adopt the convention of [12,24]. A different convention is that in [17,20], where (3.2a) is replaced by the 
condition (� ⊗ Id)( J )( J ⊗ 1) = (Id ⊗ �)( J )(1 ⊗ J ), which is satisfied by the inverse J = F −1 of any 2-cocycle F .

Cocycle twists have the advantage, over more general Drinfel’d twists, that they can be used to obtain associative defor-
mations of U -module algebras.

Given a bialgebra U and a twist F based on U , we denote by U F the new bialgebra that is given by U as an algebra, 
with the same counit, and with coproduct �F given by

�F (x) := F�(x)F −1 , ∀ x ∈ U .

Let now A and B be two U -module algebras and N a U -equivariant A–B bimodule like in Definition 5. Denote by 
mA : A ⊗ A → A the multiplication map of A, λA : A ⊗ N → N the left A-module action, by mB the multiplication map of B
and ρB : N ⊗ B → N the right B-module action.

Let A F be the algebra given by A as a vector space, with the same unit element and with product:

mA F := mA ◦ F −1 .

That is mA F (a ⊗ b) = mA
(

F −1(	 ⊗ 	)(a ⊗ b)
)

for all a, b ∈ A. Similarly, let B F be the algebra given by B as a vector space, 
with the same unit and with product mB F := mB ◦ F −1. Both A F and B F are U F -module algebras (see, e.g., [24]), w.r.t. the 
undeformed action 	.

Lemma 8. Let N be a U -equivariant A-B bimodule as in Definition 5. Then N is a U F -equivariant A F –B F bimodule w.r.t. the actions:

λA F : A F ⊗ N → N , λA F (a ⊗ ξ) := λA
(

F −1(	 ⊗ 	)(a ⊗ ξ)
)
,

ρB F : N ⊗ B F → N ; ρB F (ξ ⊗ b) := ρB
(

F −1(	 ⊗ 	)(ξ ⊗ b)
)
,

for all a ∈ A, b ∈ B, ξ ∈ N.

Proof. Note that

λA F (Id ⊗ λA F ) = λA ◦ F −1 ◦ (Id ⊗ λA) ◦ (Id ⊗ F −1) ,

where we think of F −1 as a linear map on tensors, and the action symbol 	 is omitted (in this notation 1 	 becomes the 
identity endomorphism Id). The equivariance of the module means that F −1 ◦ (Id ⊗ λA) = (Id ⊗ λA) ◦ (Id ⊗ �)(F −1). Thus,

λA F (Id ⊗ λA F ) = λA ◦ (Id ⊗ λA) ◦ (Id ⊗ �)(F −1) ◦ (Id ⊗ F −1)

= λA ◦ (mA ⊗ Id) ◦ (� ⊗ Id)(F −1) ◦ (F −1 ⊗ Id)

= λA ◦ F −1 ◦ (mA ⊗ Id) ◦ (F −1 ⊗ Id) = λA F (mA F ⊗ Id) ,

where we used the fact that λA is a left action, the cocycle property of F , and the module algebra property telling us that 
(mA ⊗ Id) ◦ (� ⊗ Id)(F −1) = F −1 ◦ (mA ⊗ Id).

From the property x 	 1A = ε(x)1A ∀ x ∈ U and counitality of F , we deduce:

λA F (1 ⊗ ξ) = λA
(
(ε ⊗ Id)(F −1)(	 ⊗ 	)(1 ⊗ ξ)

) = λA(1 ⊗ ξ) = ξ ,

for all ξ ∈ N . The latter two equations prove that λA F is a left action. Similarly, one proves that ρB F is a right action, and 
that these left and right actions commute, that is

λA F (Id ⊗ ρB F ) = ρB F (λA F ⊗ Id) ,

as linear maps A ⊗ N ⊗ B → N . Finally, thinking of x ∈ U as a linear map and omitting the action symbol 	, one finds:

x ◦ λA F ◦ (Id ⊗ ρB F ) = x ◦ λA ◦ F −1 ◦ (Id ⊗ ρB) ◦ (Id ⊗ F −1)

= λA ◦ �(x) ◦ F −1 ◦ (Id ⊗ ρB) ◦ (Id ⊗ F −1)

= λA ◦ F −1 ◦ (
F�(x)F −1) ◦ (Id ⊗ ρB) ◦ (Id ⊗ F −1)

= λA ◦ F −1 ◦ (Id ⊗ ρB) ◦ (
(Id ⊗ �)(F ) (Id ⊗ �)�(x)(Id ⊗ �)(F −1)

) ◦ (Id ⊗ F −1)

= λA F ◦ (Id ⊗ ρB F ) ◦ (Id ⊗ �F )�F (x) ,

where we used the U -equivariance of λA and ρB . This proves the U F -equivariance of the actions λA F and ρB F . �
We will denote by N F the bimodule given by the vector space N with actions λA F and ρB F given in Lemma 8. Analogous 

definitions and constructions work for topological bialgebras over the ring C�h�, with algebraic tensor products replaced by 
tensor products completed in the h-adic topology.
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4. Twist star products

Let G be a Lie group, g its Lie algebra, π : L → M a G-equivariant line bundle over a smooth manifold M , i.e. both L
and M are G-spaces, the action of G commutes with π, and is linear on fibers. Define an action α of G on f ∈ C∞(M) and 
s ∈ �∞(L) by

αg f (x) := f (g−1x) ; αg s(x) := g s(g−1x) ,

for all x ∈ M and g ∈ G . The equivariance condition of π guarantees that αg s is still a section of L, indeed:

π
(
αg s(x)

) = π
(

gs(g−1x)
) = gπ

(
s(g−1x)

) = g(g−1x) = x ,

which means that π ◦ αg s = IdM . Note that αg( f s) = αg( f )αg(s) (equivariance condition for grouplike elements of a bialge-
bra).

By differentiating this action, we get an action of the bialgebra U (g)�h� on C∞(M)�h� and on �∞(L)�h� that turns the 
latter into a U (g)�h�-equivariant C∞(M)�h�-bimodule. It is a Morita equivalence bimodule, with isomorphism

ψ0 : C∞(M)�h� → EndC∞(M)�h�(�∞(L)�h�) ,

given by pointwise multiplication: ψ0( f )s := f s ∀ f ∈ C∞(M), s ∈ �∞(L).
Given a cocycle twist

F =
∞∑

k=0

hk Fk ,

based on U (g)�h� (here Fk ∈ U (g) ⊗ U (g) for all k ≥ 0), we can now apply the prescription in §3 and get a deformed 
multiplication on A := C∞(M)�h� (note that here, in the notations of §3, we have A = B) and a deformed bimodule structure 
on N := �∞(L)�h�.

It is worth noticing that U (g)�h� F is a deformation of the bialgebra U (g)�h� (in the sense, e.g., of [12, Def. 6.1.1])—that 
is

�F (x) = �(x) mod h ,

for all x ∈ U (g)—if and only if F0 commutes with the image of �.
As one can easily check, this implies that F̃ := F F −1

0 is a cocycle twists, and � F̃ = �F . Modulo a replacement of F by F̃ , 
we can then assume that our twist is of the form

F = 1 ⊗ 1 mod h. (4.1)

A byproduct of condition (4.1) is that f ∗ g := mA ◦ F −1(	 ⊗ 	)( f ⊗ g) is equal to f g mod h, i.e. a star product according to 
Definition 1.

As customary, we will include (4.1) in the definition of the formal twist (see, e.g., [17, §9.5]).

Definition 9 (Twist star product). A star product of the form

f ∗ g := m ◦ F −1(	 ⊗ 	)( f ⊗ g) ∀ f , g ∈ C∞(M)�h� , (4.2)

with m the pointwise multiplication of C∞(M)�h� and F a twist satisfying (4.1), will be called twist star product.

Proposition 10. Let λA F and ρA F be the module actions of A F = (C∞(M)�h�, ∗) on the set N = �∞(L)�h� given in Lemma 8. The 
map

ψ : A F → EndA F (N F ) , (4.3)

from A F into the algebra of right A F -linear endomorphisms given by

ψ( f )s := λA F ( f ⊗ s) , ∀ f ∈ C∞(M), s ∈ �∞(L),

is an algebra isomorphism.

Proof. Since ψ( f )s = f s mod h, one has ψ = ψ0 + O (h). Since ψ0 is an invertible map, ψ is invertible as well (a formal 
power series is invertible iff its order zero term is invertible). Note that λA F (1 ⊗ s) = s, so that ψ is an isomorphism of 
unital algebras. �

In the terminology of [9, Def. 4.2], N F is a bimodule quantization of the line bundle L. We can now prove our main 
theorem. The technique employed is similar to that used in [8, Cor. 6.7] to prove the non-existence of formal deformations 
of “sufficiently non-trivial” principal bundles.
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Theorem 11. Let G be a Lie group, g its Lie algebra, M a homogeneous G-space and ω a symplectic form on M. The following two 
properties are mutually exclusive:

(i) there exists a G-equivariant smooth complex line bundle on M with non-trivial Chern class;
(ii) there exists a deformation quantization of (M, ω) induced by a twist based on U (g)�h�.

Proof. Let us assume that (i) and (ii) both hold, and show that we arrive at a contradiction. In the notations above, let F
be a twist, ∗ a symplectic star product induced by F , L → M an equivariant line bundle with c1(L) �= 0, A F and N F like 
in Proposition 10. The line bundle L induces a second star product ∗′ on M . On the other hand, composing (2.1) with the 
inverse of (4.3), we get an isomorphism (of unital algebras),

T := ψ−1 ◦ φ : (C∞(M)�h�,∗′) → (C∞(M)�h�,∗),

which satisfies T ( f ) = f mod h ∀ f ∈ C∞(M). It is then an equivalence between ∗ and ∗′ , in contradiction with Lemma 4, 
which states that ∗ and ∗′ are not equivalent. �
5. Applications

5.1. Complex projective spaces

As a first example, let us consider the complex projective space CPn−1, n ≥ 2. The tautological line bundle has total 
space:

L := {
(�, v) ∈CP

n−1 ×C
n : v ∈ �

}
,

where points � ∈CP
n−1 are lines through the origin in Cn . The bundle map is simply π : L →CP

n−1, π(�, v) = �.
The action of GLn(C) on Cn by row-by-column multiplication induces an action on CPn−1 (it sends 1-dimensional 

vector subspaces of Cn into 1-dimensional vector subspaces); the diagonal action on CPn−1 × C
n induces an action on 

L commuting with π. It is then an equivariant line bundle. Since c1(L) �= 0, as a corollary of Theorem 11, we obtain the 
following.

Corollary 12. There is no symplectic star product on CPn−1 induced by a twist based on U (gln(C))�h� or any sub-bialgebra.

Fuzzy projective spaces belong to this class of examples. From a mathematical point of view, fuzzy spaces are strict 
deformation quantizations of coadjoint orbits of connected compact semisimple Lie groups, obtained via covariant Berezin 
quantization (see, e.g., [26]). Alternatively, since on any such orbit there is a canonical invariant Kähler structure (see, e.g., 
[27]), they can also be obtained via Berezin–Toeplitz quantization [28]. It was shown by Schlichenmaier in [29] (see [30]
for the original reference in German), using some estimates of [7], that one can associate a natural star product with 
the Berezin–Toeplitz quantization of any compact Kähler (hence symplectic) manifold, such as CPn−1. Corollary 12 can be 
applied to such star products on CPn−1 to conclude that they are not induced by a twist based on U (gln(C))�h�.

5.2. The noncommutative 2-torus

A prototypical example of symplectic twist star product is the Moyal–Weyl product on R2n , or its compact version: the 
(formal) noncommutative torus. Let T2 := R

2/Z2, and denote by x, y the Cartesian coordinates on R2. A global frame for 
vector fields on T2 is given by the partial derivatives ∂x and ∂y . The Lie algebra generated by such derivations will be 
identified with R2.

Weyl’s star product on T2 can be written in the form (4.2), with

F := exp
ih

2
(∂y ⊗ ∂x − ∂x ⊗ ∂y) , (5.1)

a twist based on U (R2)�h�. Together with the twists in [6,20] based on the ax + b group, and to the construction in [16]
relying on Fedosov techniques, (5.1) is one of the few instances of twist that can be written down explicitly.

Using (5.1), one gets a deformation quantization of T2 w.r.t. its standard symplectic structure. As a consequence of 
Theorem 11, we get the following corollary.

Corollary 13. Every R2-equivariant smooth complex line bundle L on T2 has c1(L) = 0.

Of course, it is not difficult to give a direct proof (not relying on Theorem 11) of this simple fact. Suppose L → T
2 is 

R
2-equivariant. Denote by

	 : R2 × �∞(L) → �∞(L) ,
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the corresponding action of the Lie algebra R2 on the module of sections. Then, the formula

∇a∂x+b∂y s := a(∂x 	 s) + b(∂y 	 s) , ∀ a,b ∈ C∞(T2), s ∈ �∞(L),

defines a flat connection ∇ on L. Indeed, property (3.1) guarantees that ∇ satisfies the Leibniz rule:

∇X ( f s) = X( f )s + f ∇X (s) , ∀ X = a∂x + b∂y ∈X(T2), f ∈ C∞(T2),

and clearly the connection 1-form of ∇ is zero, that means c1(L) = 0.
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(1999) 347–392.
[22] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003) 157–216, arXiv:q-alg/9709040.
[23] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer, 1999.
[24] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.
[25] H. Omori, Y. Maeda, A. Yoshioka, Weyl manifolds and deformation quantization, Adv. Math. 85 (1991) 224–255.
[26] M.A. Rieffel, Matrix algebras converge to the sphere for quantum Gromov–Hausdorff distance, Mem. Amer. Math. Soc. 168 (2004) 67–91, 

arXiv:math/0108005.
[27] M.A. Rieffel, Dirac operators for coadjoint orbits of compact Lie groups, Münster J. Math. 2 (2009) 265–298, arXiv:0812.2884 [math.DG].
[28] M. Schlichenmaier, Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results, Adv. Math. Phys. 2010 (2010) 927280, 

arXiv:1003.2523 [math.QA].
[29] M. Schlichenmaier, Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization, in: G. Dito, D. Sternheimer (Eds.), Proc. 

Conference Moshe Flato 1999, Kluwer, 2000, pp. 289–306, arXiv:math.QA/9910137.
[30] M. Schlichenmaier, Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik: Berezin–Toeplitz-Quantisierung und globale 

Algebren der zweidimensionalen konformen Feldtheorie, Habilitation Thesis, University of Mannheim, Germany, 1996.
[31] S. Waldmann, Recent developments in deformation quantization, in: Quantum Mathematical Physics: A Bridge Between Mathematics and Physics, 

Springer, 2016, pp. 421–439, arXiv:1502.00097 [math.QA].
[32] P. Xu, Quantum groupoids, Commun. Math. Phys. 216 (2001) 539–581, arXiv:math/9905192.

http://refhub.elsevier.com/S1631-073X(17)30272-8/bib41444D573035s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib41444D573035s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib414C563037s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib414C563037s2
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4173633039s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4173633132s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4173633132s2
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib424557573136s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4254593035s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib424D533933s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib424D533933s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib424E57573037s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib424E57573037s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4275723032s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4275723032s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib42573030s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib42573032s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib42573032s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib43503934s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib44616E3135s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib44616E3135s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib44574C3833s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib44574C3833s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4472693930s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4553573136s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4553573136s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib45533032s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4665643936s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib46696F3130s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib475A3934s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib47523939s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib47523939s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4B6F6E3033s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4C616D3939s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4D616A3935s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib4F4D593931s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5269653034s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5269653034s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5269653039s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5363683039s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5363683039s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5363683030s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5363683030s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5363683936s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5363683936s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib57616C3135s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib57616C3135s1
http://refhub.elsevier.com/S1631-073X(17)30272-8/bib5058753939s1

	Twist star products and Morita equivalence
	1 Introduction
	2 Deformation quantization and Morita equivalence
	3 Cocycle twists
	4 Twist star products
	5 Applications
	5.1 Complex projective spaces
	5.2 The noncommutative 2-torus

	Acknowledgements
	References


