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We present a theory of well-posedness and a priori estimates for bounded distributional 
(or very weak) solutions of

∂t u −Lσ ,μ[ϕ(u)] = g(x, t) in R
N × (0, T ), (0.1)

where ϕ is merely continuous and nondecreasing, and Lσ ,μ is the generator of a general 
symmetric Lévy process. This means that Lσ ,μ can have both local and nonlocal parts like, 
e.g., Lσ ,μ = � − (−�)

1
2 . New uniqueness results for bounded distributional solutions to 

this problem and the corresponding elliptic equation are presented and proven. A key role 
is played by a new Liouville type result for Lσ ,μ . Existence and a priori estimates are 
deduced from a numerical approximation, and energy-type estimates are also obtained.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons l’unicité, l’existence, et des estimations a priori pour des solutions distri-
butionnelles bornées de (0.1), où ϕ est continue et croissante et Lσ ,μ est le générateur 
d’un processus de Lévy symétrique général. Cela veut dire que Lσ ,μ peut avoir des parties 
locales et non locales, comme par exemple Lσ ,μ = � − (−�)

1
2 . Nous présentons et mon-

trons des nouveaux résultats d’unicité pour des solutions distributionnelles bornées de ce 
problème. Un nouveau résultat de type Liouville pour Lσ ,μ joue un rôle clé. L’existence et 
des estimations a priori sont déduites d’une approximation numérique ; des inégalités de 
type énergie sont aussi obtenues.
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Version française abrégée

Nous étudions le problème de Cauchy pour l’équation de diffusion non linéaire de type Lévy (1.1). Ici u est la solution, 
u0 la donnée initiale, ϕ :R →R une fonction continue croissante quelconque, g le terme du membre de droite de l’équation, 
et T > 0. L’opérateur de diffusion Lσ ,μ est défini par (1.3), (1.4) et (1.5), et pourrait être le générateur d’un processus de 
Lévy quelconque, comme le laplacien ou le laplacian fractionaire.

Dans cette note, nous donnons des résultats d’existence, d’unicité, et des estimations a priori pour les solutions distribu-
tionelles de (1.1)–(1.2) dans L1 ∩ L∞ , ainsi que pour son équation elliptique associée (1.6). Les preuves sont liée à l’article [1]
et à des extentions récentes de [5].

Les résultats d’unicité de la première partie de cette note jouent un rôle clé dans les preuves de convergence des mé-
thodes numériques de [3]. Dans la deuxième partie, nous annonçons quelques résultats de [3]. Nous obtenons l’existence des 
solutions distributionelles via une approximation numérique de (1.1)–(1.2), ainsi qu’un principe de contraction dans L1, un 
principe de comparaison, la décroissance des normes L1 et L∞ , et la continuité en temps pour la norme L1. Ensuite, d’après 
les résultats de [4], nous héritons d’une famillie d’inegalitées d’énergie, ce qui implique, en particulier, la décroissance des 
normes Lp pour chaque 1 < p < ∞.

1. Introduction

We study the Cauchy problem for the nonlinear Lévy-type diffusion equation

∂t u −Lσ ,μ[ϕ(u)] = g(x, t) in Q T := R
N × (0, T ), (1.1)

u(x,0) = u0(x) on R
N , (1.2)

where u = u(x, t) is the solution, u0 the initial data, ϕ : R → R an arbitrary continuous nondecreasing function, g the 
right-hand side, and T > 0. For smooth functions ψ , the diffusion operator Lσ ,μ is defined as

Lσ ,μ[ψ] := Lσ [ψ] +Lμ[ψ], (1.3)

where the local and nonlocal parts are given by

Lσ [ψ](x) := tr
(
σσ T D2ψ(x)

) =
P∑

i=1

∂2
σi

ψ(x) where ∂σi := σi · D, (1.4)

Lμ[ψ](x) :=
∫

RN \{0}

(
ψ(x + z) − ψ(x) − z · Dψ(x)1|z|≤1

)
dμ(z), (1.5)

and σ = (σ1, ...., σP ) ∈R
N×P , P ∈ N and σi ∈ R

N , and μ are nonnegative symmetric Radon measures. This class of diffusion 
operators coincides with the class of operators of symmetric Lévy processes. Examples are the classical Laplacian �, the 
fractional Laplacians (−�)

α
2 with α ∈ (0, 2), the relativistic Schrödinger-type operators mα I − (m2 I − �)

α
2 with α ∈ (0, 2)

and m > 0, the strongly degenerate operators, and, surprisingly, the numerical discretizations of Lσ ,μ . Due to the general 
assumptions on ϕ , (generalized) porous medium, fast diffusion, and Stefan-type problems are included in (1.1)–(1.2).

In this note, we present new existence and uniqueness results and a priori estimates for distributional solutions of 
(1.1)–(1.2) in L1 ∩ L∞ . In particular, we present and prove new uniqueness results for bounded distributional solutions of 
both (1.1)–(1.2) and the related elliptic equation

w −Lσ ,μ[ϕ(w)] = f (x) on R
N . (1.6)

The proofs are inspired by the seminal work [1] and the later extension to the nonlocal setting in [5]. Most of the other prop-
erties generalize well-known results both for the local case Lσ ,μ = � (cf. [6]) and for the nonlocal case Lσ ,μ = −(−�)

α
2

with α ∈ (0, 2) (cf. [2]).
These uniqueness results will play a crucial role in the convergence proofs for numerical methods in [3]. In this note, 

we also announce some of the results of [3]. From a novel numerical approximation of (1.1)–(1.2), we obtain existence of 
distributional solutions, L1 contraction, comparison principle, decay of the L1 and L∞ norms, and continuity in time of the 
L1 norm. Moreover, by adapting the results of [4], we also inherit a family of energy estimates that, in particular, allow us 
to show decay of any Lp norm for 1 < p < ∞.

2. Main results

We use the following assumptions:

ϕ : R →R is nondecreasing and continuous. (Aϕ)

g ∈ L1(Q T ) ∩ L1(0, T ; L∞(RN)). (Ag)
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u0 ∈ L1(RN) ∩ L∞(RN). (Au0 )

μ is a nonnegative symmetric Radon measure on R
N \ {0} satisfying

∫
|z|>0 min{|z|2,1}dμ(z) < ∞. (Aμ)

The notation ( f , g) := ∫
RN f g dx is used whenever the integral is well defined. If f , g ∈ L2, we write ( f , g)L2 .

Definition 2.1. Let u0 ∈ L1
loc(R

N ) and g ∈ L1
loc(Q T ). We say that a function u ∈ L∞(Q T ) is a distributional (or very weak) 

solution of (1.1)–(1.2) if

T∫
0

∫
RN

(
u∂tψ + ϕ(u)Lσ ,μ[ψ] + gψ

)
dx dt = 0 for all ψ ∈ C∞

c (Q T ), (2.1)

and ess limt→0+
∫
RN u(x, t)ψ(x, t) dx = ∫

RN u0(x)ψ(x, 0) dx for all ψ ∈ C∞
c (RN × [0, T )).

Under our assumptions ‖Lσ ,μ[ψ]‖L1 ≤ C‖ψ‖W 2,1 , see Lemma 3.5 in [5], so (2.1) is well defined for u ∈ L∞ .

Remark 2.2.

(a) Associated with the operator Lσ ,μ is a bilinear form defining an energy: for φ, ψ ∈ C∞
c (RN ), Eσ ,μ[φ, ψ] :=

−(φ, Lσ ,μ[ψ]). Equivalently (cf. [4, Section 4]),

Eσ ,μ[φ,ψ] =
P∑

i=1

∫
RN

∂σi φ(x)∂σi ψ(x)dx + 1

2

∫
RN

∫
|z|>0

(φ(x + z) − φ(x)) (ψ(x + z) − ψ(x))dμ(z)dx.

The energy of a function φ is then defined as Eσ ,μ[φ] := Eσ ,μ[φ, φ].
(b) Lσ ,μ is a Fourier multiplier operator, F(Lσ ,μ[ψ])(ξ) = −L̂σ ,μ(ξ)F(ψ)(ξ), where

L̂σ ,μ(ξ) := L̂σ (ξ) + L̂μ(ξ) =
P∑

i=1

(σi · ξ)2 +
∫

|z|>0

(1 − cos(z · ξ)) dμ(z).

The square-root operator (Lσ ,μ)
1
2 is defined as the operator with Fourier symbol −(L̂σ ,μ(ξ))

1
2 .

Theorem 2.3 (Well-posedness). Assume (Aϕ), (Ag), (Au0 ), and (Aμ).

(a) There exists a unique distributional solution u ∈ L1(Q T ) ∩ L∞(Q T ) ∩ C([0, T ]; L1
loc(R

N )) of (1.1)–(1.2).
(b) If u, v are solutions with data u0, v0 and g, h satisfying resp. (Au0 ) and (Ag), then, for every t ∈ [0, T ],

(i) (L1 contraction) 
∫
RN (u(x, t) − v(x, t))+ dx ≤ ∫

RN (u0(x) − v0(x))+ dx + ∫ t
0

∫
RN (g(x, τ ) − h(x, τ ))+ dx dτ ;

(ii) (Comparison) if u0 ≤ v0 a.e. and g ≤ h a.e., then u ≤ v a.e.;
(iii) (Lp estimate 1) for 1 ≤ p ≤ ∞, ‖u(·, t)‖Lp(RN ) ≤ ‖u0‖Lp(RN ) + ∫ t

0 ‖g(·, τ )‖Lp(RN ) dτ ;

(iv) (Lp estimate 2) for 1 < p < ∞, ‖u(·, t)‖p
Lp(RN )

≤ ‖u0‖p
Lp(RN )

+ p 
∫ t

0

∫
RN |u(x, τ )|p−2u(x, τ )g(x, τ ) dx dt;

(v) (Energy estimate) if � :R →R is defined by �(ξ) := ∫ ξ

0 ϕ(η) dη, then

∫
RN

�(u(x, t))dx +
t∫

0

Eσ ,μ[ϕ(u(·, τ ))]dτ ≤
∫
RN

�(u0(x))dx +
t∫

0

∫
RN

g(x, τ )ϕ(u(x, τ ))dx dτ ;

(vi) (Time regularity) for every t, s ∈ [0, T ] and every compact set K ⊂R
N ,

‖u(·, t) − u(·, s)‖L1(K ) ≤ 2λ
(|t − s| 1

3
) + C

(|t − s| 1
3 + |t − s|) + |K |

t∫
s

‖g(·, τ )‖L∞(RN ) dτ ,

where λ(δ) = max|h|≤δ ‖u0 − u0(· + h)‖L1(RN ) and C = C(K , u0, ϕ) > 0;
(vii) (Conservation of mass) if, in addition, there exist L, δ > 0 such that |ϕ(r)| ≤ L|r| for |r| ≤ δ, then

∫
RN

u(x, t)dx =
∫
RN

u0(x)dx +
t∫

0

∫
RN

g(x, τ )dx dτ .
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3. Uniqueness of distributional solutions

We obtain uniqueness for a class of bounded distributional solutions of (1.1)–(1.2) and (1.6). One of the key tools in the 
proof of these results is the Liouville-type result given by Theorem 3.3.

Theorem 3.1 (Uniqueness 1). Assume (Aϕ), (Aμ), g ∈ L1
loc(Q T ), and u0 ∈ L∞(RN ). Then there is at most one distributional solution u

of (1.1)–(1.2) such that u ∈ L∞(Q T ) and u − u0 ∈ L1(Q T ).

Theorem 3.2 (Uniqueness 2). Assume (Aϕ), (Aμ), and f ∈ L∞(RN ). Then there is at most one distributional solution w of (1.6) such 
that w ∈ L∞(RN ) and w − f ∈ L1(RN ).

Theorem 3.3 (“Liouville”). Assume (Aμ) and that either σ 	≡ 0 or suppμ 	= ∅. If v ∈ C0(R
N ) solves Lσ ,μ[v] = 0 in D′(RN ), then 

v ≡ 0 in RN .

Proof. If σ ≡ 0, then Lσ ,μ = Lμ and the result follows by Theorem 3.9 in [5]. Assume that σ 	≡ 0, and note that by a 
change of coordinates we may also assume that Lσ = �l := ∑l

i=1 ∂2
xi

for some 1 ≤ l ≤ N .
Let ωδ be a standard mollifier in RN and define vδ := v ∗ ωδ ∈ C0(R

N ) ∩ C∞
b (RN ). As shown in the proof of Theorem 3.9 

in [5], 
∫
RN v(y)Lμ[ωδ(x − ·)](y) dy = Lμ[vδ](x). We also have that 

∫
RN v(y)�l[ωδ(x − ·)](y) dy = �l[vδ](x). In this way, 

taking wδ(x − y) as a test function in the distributional formulation we get that

�l[vδ](x) +Lμ[vδ](x) = 0 for every x ∈R
N . (3.1)

Now we multiply (3.1) by vδ , integrate over RN , integrate by parts, and use Plancherel’s theorem to get

0 = −
l∑

i=1

∫
RN

vδ(x)∂2
xi

vδ(x)dx −
∫
RN

vδ(x)Lμ[vδ](x)dx =
l∑

i=1

∫
RN

∣∣∂xi vδ(x)
∣∣2 dx + ‖(Lμ)

1
2 [vδ]‖2

L2(RN )
.

Since all the terms in the last expression are nonnegative, they are all zero. In particular 
∫
RN

∣∣∂x1 vδ(x)
∣∣2 dx = 0, and 

then ∂x1 vδ(x) = 0 for every x ∈ R
N . Hence 0 = ∫ b

x1
∂x1 vδ(s, x′) ds = vδ(b, x′) − vδ(x1, x′) for every x1 < b and every x′ =

(x2, · · · , xN ) ∈R
N−1. Since vδ ∈ C0(R

N ), we send b → ∞ in the previous expression to see that vδ(x1, x′) = vδ(b, x′) → 0 as 
b → ∞. Hence vδ(x) = 0 for every x ∈ R

N . By properties of mollifiers, vδ → v locally uniformly in RN as δ → 0+ , which 
means that also v(x) = 0 for every x ∈R

N . �
Proof of Theorem 3.1. Step 1: The resolvent Bσ ,μ

ε of Lσ ,μ
. Formally, the resolvent of Lσ ,μ is given as Bσ ,μ

ε = (ε I −Lσ ,μ)−1

for ε > 0. But to give a rigorous meaning to this operator even when Lσ ,μ is strongly degenerate, we define it as 
Bσ ,μ

ε [γ ](x) := vε(x) where vε is the solution of the linear elliptic equation

εvε(x) −Lσ ,μ[vε](x) = γ (x) in R
N . (3.2)

To be able to apply Bσ ,μ
ε to L1, L∞ , and smooth γ , we need to prove existence and uniqueness for L1 and L∞ distributional 

and C∞
b classical solutions of (3.2) along with the following estimates

ε‖Bσ ,μ
ε [γ ]‖L1 ≤ ‖γ ‖L1 , ε‖Bσ ,μ

ε [γ ]‖L∞ ≤ ‖γ ‖L∞ , and ε‖Dβ Bσ ,μ
ε [γ ]‖L∞ ≤ ‖Dβγ ‖L∞ ∀β ∈N

N . (3.3)

The proof can be deduced by following the ideas of the proof of Theorem 3.1 in [5]. The idea is to approximate Lσ ,μ by a 
bounded nonlocal operator Lνh

, and then approximate (3.2) by the equation

εvh,ε(x) −Lνh [vh,ε](x) = γ (x) in R
N . (3.4)

Because of the local terms, we have to modify the choice of νh from [5] and take

νh(z) := νh
σ (z) + νh

μ(z) = 1

h2

P∑
i=1

(
δhσi (z) + δ−hσi (z)

) + μ(z)1|z|>h, (3.5)

where δa is the delta-measure supported at a. By a similar argument as in Lemma 5.2 in [5], νh is a nonnegative symmetric 
Radon measure satisfying νh(RN ) < ∞ and ‖Lνh [ψ] − Lσ ,μ[ψ]‖Lp(RN ) → 0 as h → 0+ for all ψ ∈ C∞

c (RN ) and p = {1, ∞}. 
Note that Lνh

is in the class of operators (1.5) with μ = νh satisfying (Aμ), and thus, (3.4) has already been studied 
in [5]. In particular, we have existence, uniqueness and estimates (3.3) for solutions of (3.4) by Theorem 3.1 in [5]. The 
corresponding results for equation (3.2) then follow using compactness arguments to pass to the limit as h → 0+ and then 
verifying that the limit satisfies equation (3.2). There are three different cases, L1, L∞ , and smooth, but all arguments follow 
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as in [5] with only easy modifications. To give an idea, we investigate the case of smooth solutions when γ ∈ C∞
b (cf. 

Proposition 6.12 in [5]). The Arzelà–Ascoli theorem and the third estimate in (3.3) ensure that there is a function vε such 
that (vh,ε, D vh,ε, D2 vh,ε) → (vε, D vε, D2 vε) locally uniformly as h → 0+ . To see that vε is a classical solution of (3.2), it 
remains to show that Lνh [vh,ε](x) → Lσ ,μ[vε](x) in RN . Indeed,

|Lνh [vh,ε](x) −Lσ ,μ[v̄ε](x)| ≤ |Lνh
σ [vh,ε](x) − Lσ [v̄ε](x)| + |Lνh

μ [vh,ε](x) −Lμ[v̄ε](x)|.
The second term on the right-hand side converges to zero as in the proof of Proposition 6.12 in [5], while for the remaining 
one we have:

|Lνh
σ [vh,ε](x) − Lσ [v̄ε](x)| ≤ |Lνh

σ [v̄ε](x) − Lσ [v̄ε](x)| + |Lνh
σ [vh,ε − vε]|

≤ h2‖D4 v̄ε‖L∞(RN )

P∑
i=1

∑
|α|=4

2

α! |σi|α +
P∑

i=1

max
|ξ |≤h

|D2(vh,ε − v̄ε)(x + ξσi)|
∑

|α|=2

2

α! |σi|α.

This concludes the proof of existence since D2 vh,ε → D2 vε locally uniformly as h → 0+ . Repeating the compactness argu-
ment for higher derivatives and passing to the limit, we find that vε also satisfies the third estimate in (3.3). Uniqueness is 
a trivial consequence of the linearity of (3.2) and the estimates in (3.3).

Step 2: εBσ ,μ
ε [q] → 0 a.e. as ε → 0+

for q ∈ L1(RN ) ∩ L∞(RN ). Let γ ∈ C∞
c (RN ) and �ε := εBσ ,μ

ε [γ ]. We first show that all 
subsequences {�ε j } j∈N converging in L∞

loc as ε j → 0+ converge to � ≡ 0. Indeed, by (3.2)

ε j

∫
RN

�ε j ψ dx −
∫
RN

�ε jL
σ ,μ[ψ]dx = ε j

∫
RN

γ ψ dx for all ψ ∈ C∞
c (RN),

and we send ε j → 0+ to find that Lσ ,μ[�] = 0 in D′ . Since � is Lipschitz and in L1 by (3.3), lim|x|→∞ �(x) = 0, and then 
� ≡ 0 by the Liouville-type result in Theorem 3.3. The next step is to observe that �ε is equibounded and equi-Lipschitz 
by (3.3), and use the first part and the Arzelà–Ascoli theorem to conclude that any subsequence of {�ε}ε>0 has a further 
subsequence converging to zero in L∞

loc. This implies that the whole sequence converges to zero in L∞
loc. Now we study 

Q ε := εBσ ,μ
ε [q]. By self-adjointness of Bσ ,μ

ε (cf. Lemma 3.4 in [5]), the properties of �ε , and the dominated convergence 
theorem, 

∫
RN Q εγ dx = ∫

RN q �ε dx → ∫
RN q � dx = 0, i.e. Q ε → 0 in D′ as ε → 0+ . Then since D′ and L1

loc limits coincide 
and {Q ε}ε>0 is precompact in L1

loc by (3.3) and Kolmogorov’s compactness theorem, all subsequences of {Q ε}ε>0 have 
further subsequences converging to zero in L1

loc and a.e. The full sequence thus converges to zero a.e.

Step 3: The difference U of two solutions of (1.1)–(1.2) and “energy” from Bσ ,μ
ε . Let u, ̂u ∈ L∞(Q T ) be two distributional 

solutions of (1.1)–(1.2) with initial data u0 such that u − u0, ̂u − u0 ∈ L1(Q T ). Define U := u − û and Z := ϕ(u) − ϕ(û) ∈
L∞(Q T ). Note that ‖u − û‖L1(Q T ) ≤ ‖u − u0‖L1(Q T ) + ‖u − u0‖L1(Q T ) < ∞, and thus, U ∈ L1(Q T ) ∩ L∞(Q T ). We subtract the 
equations for u and û (distributional formulation of (1.1)), and take ψ = Bσ ,μ

ε [γ ] for γ ∈ C∞
c (RN ) as a test function. By the 

properties of the solutions of (3.2), we get 
∫ T

0

∫
RN

(
U Bσ ,μ

ε [∂tγ ] +Z(εBσ ,μ
ε [γ ] − γ )

)
dx dt = 0. Thus, by the self-adjointness 

of Bσ ,μ
ε ,

∂t Bσ ,μ
ε [U] = εBσ ,μ

ε [Z] −Z in D′(Q T ). (3.6)

Now consider the “energy”-like function hε(t) =
∫
RN Bσ ,μ

ε [U ](x, t) U(x, t) dx. Note that by (3.3), hε ∈ L1(0, T ) since 
‖hε‖L1(0,T ) ≤ 1

ε ‖U‖L∞(Q T )‖U‖L1(Q T ) . As in Proposition 3.11 in [5], we get that hε is absolutely continuous and h′
ε(t) =

2 
(
∂t Bσ ,μ

ε [U ](·, t),U(·, t)
)

in D′(0, T ). By (3.6) and (3.9) below, and since ZU ≥ 0,

0 ≤ hε(t) = hε(0+) +
t∫

0

h′
ε(s)ds ≤ 0 + 2

t∫
0

(
εBσ ,μ

ε [Z](·, s),U(·, s)
)

ds. (3.7)

Let now ξ > 0. By the self-adjointness of Bσ ,μ
ε , we have for a.e. t ∈ [0, T ]

(
εBσ ,μ

ε [Z](·, t),U(·, t)
) ≤ ‖Z‖L∞(Q T )

∫
RN

∣∣εBσ ,μ
ε [U](x, t)

∣∣ 1|Z(x,t)|>ξ dx + ξ‖U(·, t)‖L1(RN ). (3.8)

Note that 
∣∣εBσ ,μ

ε [U ](x, t)
∣∣1|Z(x,t)|>ξ ≤ ‖U‖L∞(Q T )1|Z(x,t)|>ξ ∈ L1(RN ) (see [1] and also Lemma 3.13 in [5]), and hence by 

Step 2 with q = U(·, t) ∈ L1(RN ) ∩ L∞(RN ), the first integral on the right-hand side of (3.8) goes to zero as ε → 0+ . Then 
sending ξ → 0+ in the above estimate and using Lebesgue’s dominated convergence theorem in (3.7), we conclude that 
hε(t) → 0 as ε → 0+ for a.e. t ∈ [0, T ].
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Step 4: Deducing that U ≡ 0. Since all terms in (3.2) are in L2, for a.e. t ∈ [0, T ],
hε(t) = (

Bσ ,μ
ε [U](·, t), εBσ ,μ

ε [U](·, t) −Lσ ,μ[Bσ ,μ
ε [U]](·, t)

)
L2(RN )

= ε
∥∥Bσ ,μ

ε [U](·, t)
∥∥2

L2(RN )
+ ‖(Lσ ,μ)

1
2 [Bσ ,μ

ε [U]](·, t)‖2
L2(RN )

.
(3.9)

By the conclusion of Step 3 and since all terms in the last equality of (3.9) are nonnegative, they must all converge to zero 
as ε → 0+ . Hence, the following integrals also converge to zero for all ψ ∈ C∞

c (RN ),∣∣∣∣∣∣∣
∫
RN

Bσ ,μ
ε [U]Lσ ,μ[ψ]dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
RN

(Lσ ,μ)
1
2 [Bσ ,μ

ε [U]](Lσ ,μ)
1
2 [ψ]dx

∣∣∣∣∣∣∣ ≤ ‖(Lσ ,μ)
1
2 [Bσ ,μ

ε [U]]‖L2‖(Lσ ,μ)
1
2 [ψ]‖L2 ,

and 
∣∣∫

RN εBσ ,μ
ε [U ]ψ dx

∣∣≤‖εBσ ,μ
ε [U ]‖L2‖ψ‖L2 . We thus conclude the proof by noting that U=εBσ ,μ

ε [U ]−Lσ ,μ[Bσ ,μ
ε [U ]]→0

in D′(RN ) as ε → 0+ in D′(RN ) for a.e. t ∈ [0, T ], that is u − û = U = 0 a.e. in Q T . �
Proof of Theorem 3.2. Steps 1 and 2 from the proof of Theorem 3.1 are independent of the equation itself and remain true 
in this case since the operator is the same. Let w, ŵ ∈ L∞(RN ) be two distributional solutions of (1.6) with right-hand side 
f such that both w − f and ŵ − f belong to L1(RN ). Define W := w − ŵ ∈ L1(RN ) ∩ L∞(RN ) and Z := ϕ(w) − ϕ(ŵ) ∈
L∞(RN ). As before, we also define the quantity hε = (W, Bσ ,μ

ε [W]). Since w and ŵ are distributional solutions of (1.6), we 
have that (see Step 3 in the proof of Theorem 3.1)∫

RN

WBσ ,μ
ε [γ ]dx =

∫
RN

ZLσ ,μ[Bσ ,μ
ε [γ ]]dx =

∫
RN

Z
(
εBσ ,μ

ε [γ ] − γ
)

dx for all γ ∈ C∞
c (RN). (3.10)

In fact, γ can be replaced by W in (3.10) by the density of C∞
c (RN ) in L1(RN ) and the estimate ε‖Bσ ,μ

ε [γ ] −
Bσ ,μ

ε [W]‖L1(RN ) = ε‖Bσ ,μ
ε [γ −W]‖L1(RN ) ≤ ‖γ −W‖L1(RN ) . Then hε = ∫

RN Z
(
εBσ ,μ

ε [W] −W
)

dx goes to zero as ε → 0+ , 
like in (3.8). The rest of the proof follows as in the proof of Theorem 3.1, by replacing U by W and dropping the t depen-
dence of hε . �
4. Ideas on how to prove Theorem 2.3

4.1. Existence and a priori estimates via numerical approximations

Once the uniqueness given by Theorem 3.1 is available, it is possible to provide (1.1)–(1.2) with existence and suitable 
a priori estimates for initial data u0 ∈ L1(RN ) ∩ L∞(RN ) – see (a), (b)(i), (b)(ii), (b)(iii) with p = {1, ∞}, and (b)(vi) of 
Theorem 2.3. This task is one of the objectives of [3]. A crucial idea is the fact that the class of operators given by (1.5)
with μ satisfying (Aμ) is so general that it includes many monotone discretizations of the more general operator Lσ ,μ . In 
this way, we can formulate a numerical method for (1.1)–(1.2): Choose xβ = hβ, t j = kj for β ∈ Z

N , j ∈ N, and h, k > 0, and 
consider

U j(xβ) = U j−1(xβ) + k
(
Lνh

1 [ϕ(U j)](xβ) +Lνh
2 [ϕh

2(U j−1)](xβ) + G j(xβ)
)
, (4.1)

where Lνh
1 and Lνh

2 are discretizations of Lσ ,μ , νh
1 (RN ), νh

2 (RN ) < ∞, ϕh
2 approximate ϕ , G j is a time average of g , and 

U 0 is defined as a space average of u0. In fact, if we extend (4.1) to all RN , the numerical method can be seen, at every 
time step, as a nonlinear and nonlocal elliptic equation of the form (1.6) with w = U j , Lσ ,μ = kLνh

1 and f = U j−1 +
k
(
Lνh

2 [ϕh
2(U j−1)] + G j

)
. In this way, we can study the properties of the numerical scheme (4.1) by studying the nonlinear 

equation (1.6) and iterating in time. This leads to the corresponding discrete time version of the above-mentioned estimates. 
Since approximation, stability and compactness will be used to deduce such results, uniqueness of distributional solutions 
of (1.6) – that is, Theorem 3.2 – plays a crucial role. By passing to the limit (up to subsequences) as h, k → 0+ , we get 
the continuous time estimates and also the existence of L1(RN ) ∩ L∞(RN ) distributional solutions to the parabolic problem. 
Furthermore, the uniqueness result given by Theorem 3.1 ensures that the full sequence of numerical solutions converges to 
the unique distributional solution of (1.1)–(1.2).

4.2. Energy estimates and conservation of mass

A trivial adaptation of the results and proofs presented by Corollary 2.18 and Theorems 2.19 and 2.21 in [4] (where 
the case Lσ ,μ = Lμ is covered) shows that for solutions u ∈ L1(Q T ) ∩ L∞(Q T ) ∩ C([0, T ]; L1

loc(R
N )) of (1.1)–(1.2) the con-

cepts of distributional and energy solutions are equivalent, and the estimates (b)(iv) and (b)(v) of Theorem 2.3 hold. As 
a consequence of Theorem 2.3 (b)(iv), we also obtain (b)(iii) with p ∈ (1, ∞) by Hölder and Grönwall inequalities. In the 
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present setting, we must ensure the convergence of the local part of the energy, which is done using the discretization (3.5), 
summation by parts, and Theorem 2.3 (b)(v):

E0,νh
σ
[ϕ(u(·, t))] = −

∫
RN

ϕ(u)Lνh
σ [ϕ(u)]dx =

P∑
i=1

∫
RN

∣∣∣∣ϕ(u(x + hσi, t)) − ϕ(u(x, t))

h

∣∣∣∣
2

dx ≤ K ,

where K = K (ϕ, u0, g) is a constant. Since the difference quotients of ϕ(u) are uniformly bounded, the weak derivative 
∂σi ϕ(u) exists in L2, and a standard argument (like in Section 4 in [4]) shows the convergence of the local part of the 
energy). To conclude, we obtain conservation of mass by following the proof of Theorem 2.10 in [5]. Note that neither the 
local term nor the right-hand side g add any extra difficulty to the proof. See Remark 2.11 in [5] for the optimality of the 
condition on ϕ .
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