EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Complex analysis

Second Hankel determinant for close-to-convex functions

Deuxième déterminant de Hankel pour les fonctions presque convexes

Dorina Răducanu^a, Paweł Zaprawa^b

- ^a Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu 50, 500091 Braşov, Romania
- b Faculty of Mechanical Engineering, Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland

ARTICLE INFO

Article history: Received 31 March 2017 Accepted after revision 6 September 2017 Available online 17 October 2017

Presented by the Editorial Board

ABSTRACT

So far, the sharp bound of the expression $|a_2a_4-a_3|^2$ for the class $\mathcal C$ of close-to-convex functions has remained unknown. In this paper, we obtain the estimation of this expression, called the second Hankel determinant, for $\mathcal C_0$, i.e. the subset of $\mathcal C$ consisting of functions f that satisfy in the unit disk the inequality $\operatorname{Re}\left(zf'(z)/g(z)\right)>0$ with a starlike function g.

Moreover, some remarks on the second Hankel determinant for the class S of univalent functions are made. It is proven that $\max\{|a_2a_4-a_3|^2: f \in S\}$ is greater than 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Aucune estimation précise de l'expression $|a_2a_4 - a_3|^2$ pour la classe $\mathcal C$ des fonctions presque convexes n'était connue jusqu'à présent. Dans cette Note, nous présentons des estimations de cette expression, nommée deuxième déterminant de Hankel pour la classe $\mathcal C_0$, c'est-à-dire la sous-classe $\mathcal C$, composée des fonctions f qui vérifient, dans le disque unité, l'inégalité Re (zf'(z)/g(z)) > 0 avec une fonction étoilée g.

De plus, nous formulons quelques remarques à propos du deuxième déterminant de Hankel pour la classe $\mathcal S$ des fonctions univalentes. Nous démontrons que $\max\{|a_2a_4-a_3^2|:f\in\mathcal S\}$ est plus grand que 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $\mathcal A$ denote the family of all analytic functions f in the open unit disk $\Delta=\{z\in\mathbb C:|z|<1\}$ normalized by f(0)=0, f'(0)=1. Hence the functions in $\mathcal A$ are of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$
 (1)

E-mail addresses: draducanu@unitbv.ro (D. Răducanu), p.zaprawa@pollub.pl (P. Zaprawa).

The Hankel determinant for a given function f of the form (1) is defined as follows

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+q} \\ \dots & \dots & \dots & \dots \\ a_{n+q-1} & a_{n+q} & \dots & a_{n+2q-2} \end{vmatrix},$$

where n, q are fixed positive integers.

The investigations of Hankel determinants for various classes of analytic functions started in the 1960s. It was Pommerenke [19], [20] who first studied Hankel's determinant for the class S of univalent functions given by (1). He proved for functions in S that $|H_q(n)| < Kn^{-(1/2+\beta)q+3/2}$, where $n, q \in \mathbb{N}$, $q \ge 2$, $\beta > 1/4000$ and K depends only on q. Similar findings, but for different classes, were reported by Hayman [6] and Noor [17], [18].

Many recent papers have been devoted to the problem of finding the exact bounds of $|H_q(n)|$ for various subfamilies of \mathcal{A} . The majority of the results were obtained for $H_2(2) = a_2a_4 - a_3^2$, which is called the second Hankel determinant (see, for example, [1], [7], [8], [13], [22], [23]). There are, however, few papers that discuss the third Hankel determinant $H_3(1)$ (see, for example: [2], [21], [24]). Although many estimates of $|H_2(2)|$ are sharp, for example for the classes \mathcal{S}^* or \mathcal{K} consisting of starlike or convex functions, respectively, the exact bound of $|H_2(2)|$ for \mathcal{S} or for the class \mathcal{C} of close-to-convex functions is still not known.

In this paper, we focus our discussion on \mathcal{C} . It is known (see [5]) that $f \in \mathcal{C}$ if there exist a starlike function g and a real number $\beta \in (-\pi/2, \pi/2)$ such that

$$\operatorname{Re}\left(e^{\mathrm{i}\beta}zf'(z)/g(z)\right) > 0. \tag{2}$$

We distinguish subclasses of $\mathcal C$ according to a fixed number β . Namely, a function f of the form (1) is called close to convex with argument β if there exists $g \in \mathcal S^*$ such that the condition (2) holds. Let $\mathcal C_\beta$ denote the class of all such functions. It is obvious that

$$C = \bigcup_{\beta \in (-\pi/2, \pi/2)} C_{\beta} .$$

Taking into account (2), we can write

$$e^{i\beta}zf'(z)/g(z) = p(z)\cos\beta + i\sin\beta, \qquad (3)$$

with $p \in \mathcal{P}$, where \mathcal{P} is the well-known class of functions with positive real part that are normalized by p(0) = 1. If $g \in \mathcal{S}^*$ and $p \in \mathcal{P}$ in (3) are given by

$$g(z) = z + b_2 z^2 + b_3 z^3 + \dots (4)$$

and

$$p(z) = 1 + p_1 z + p_2 z^2 + \dots,$$
 (5)

then

$$z + \sum_{n=2}^{\infty} n a_n z^n = \left(z + \sum_{n=2}^{\infty} b_n z^n\right) \left(1 + e^{-i\beta} \cos\beta \sum_{n=1}^{\infty} p_n z^n\right). \tag{6}$$

Therefore,

$$na_n = b_n + e^{-i\beta}\cos\beta \left(p_{n-1} + \sum_{j=2}^{n-1} b_j p_{n-j}\right), \ n \ge 2.$$
 (7)

If n = 2, then the sum in the parentheses vanishes.

It is clear that the maximum of $|H_2(2)|$ while f varies in the whole class $\mathcal S$ or $\mathcal C$ is greater than or equal to 1 because of the result of Janteng et al. [7]. The estimation of $|H_2(2)|$ for the functions f given by (1) belonging to $\mathcal C$ is difficult to obtain, because it involves the coefficients of both functions $g \in \mathcal S^*$, $p \in \mathcal P$ and a constant β (see, Remark 3 in [15]). For this reason, it is somewhat easier to estimate the second Hankel determinant if $\beta = 0$, i.e. in the class $\mathcal C_0$. Even for $\mathcal C_0$, the known bounds of $|H_2(2)|$ are not sharp. The best known result (excluding erroneous ones) was obtained by Prajapat et al. in [21]. They proved that $|H_2(2)| \leq 85/36 = 2.361...$ in $\mathcal C_0$. In Theorem 1, we essentially improve this result. Moreover, we discuss an example of univalent functions that shows that the maximum of $|H_2(2)|$ for $\mathcal S$ is actually greater than 1.

2. Preliminary results

At the beginning, let us discuss the invariance property of the class C. Let f be given by (1) and let

$$f_{\varphi}(z) = e^{-i\varphi} f(ze^{i\varphi}), \varphi \in \mathbb{R}$$
 (8)

Directly from the definition of a close-to-convex function, it follows that $f \in \mathcal{C}$ if and only if $f_{\varphi} \in \mathcal{C}$. The same remains true if we replace \mathcal{C} by \mathcal{S}^* or \mathcal{S} . Moreover, we can prove the following lemma.

Lemma 1. The equivalence

$$f \in \mathcal{C}_{\beta} \Leftrightarrow f_{\omega} \in \mathcal{C}_{\beta}$$

holds for every $\varphi \in \mathbb{R}$ and a fixed $\beta \in (-\pi/2, \pi/2)$.

Proof. If f_{φ} is in \mathcal{C}_{β} for every $\varphi \in \mathbb{R}$, so it is true also for $\varphi = 0$. For this reason, it is enough to prove only that $f \in \mathcal{C}_{\beta} \Rightarrow f_{\varphi} \in \mathcal{C}_{\beta}$. But for f in \mathcal{C}_{β} , there exists $g \in \mathcal{S}^*$ such that (2) holds. Writing $z e^{i\varphi}$ instead of z in (2), we obtain

$$\operatorname{Re}\left(e^{i\beta}zf'(ze^{i\varphi})/e^{-i\varphi}g(ze^{i\varphi})\right) > 0, \tag{9}$$

which means that $f_{\varphi} \in \mathcal{C}_{\beta}$ with $\mathrm{e}^{-\mathrm{i}\varphi} \mathrm{g}(z\mathrm{e}^{\mathrm{i}\varphi})$ as a starlike function. \square

Suppose that a given class A of analytic functions is invariant under rotation. Let $f \in A$ be given by (1) and $f_{\varphi}(z) = z + \alpha_2 z^2 + \dots$ is defined by (8). Hence,

$$|\alpha_2 \alpha_4 - \mu \alpha_3|^2 = \left| a_2 e^{i\varphi} \cdot a_4 e^{3i\varphi} - \mu \cdot \left(a_3 e^{2i\varphi} \right)^2 \right| = |a_2 a_4 - \mu a_3|^2.$$
 (10)

For this reason (or applying a similar argument), we have the following lemma.

Lemma 2. If A is one of the classes: C, C_{β} , S^* , S and $\Phi(f)$ is one of the following functionals: $|a_2a_4 - \mu a_3|^2$, $|a_4 - \mu a_2a_3|$, $|a_3 - \mu a_2|^2$ defined on $f \in A$ given by (1) with a fixed real number μ . Then $\Phi(f) = \Phi(f_{\varphi})$ for every $\varphi \in \mathbb{R}$.

To prove the main results, we need a few lemmas. The first one is by Libera and Złotkiewicz.

Lemma 3. [14] Let $p_1 \in [0, 2]$. A function p given by (5) belongs to \mathcal{P} if and only if

$$2p_2 = p_1^2 + x(4 - p_1^2)$$

and

$$4p_3 = p_1^3 + 2p_1(4 - p_1^2)x - p_1(4 - p_1^2)x^2 + 2(4 - p_1^2)(1 - |x|^2)z$$

for some x and z such that $|x| \le 1$, $|z| \le 1$.

Let $g \in S^*$ be given by (4). Applying the correspondence between functions in S^* and P

$$\frac{zg'(z)}{g(z)} = q(z) \quad , \quad g \in \mathcal{S}^* \,, \, q \in \mathcal{P} \tag{11}$$

we get

$$(n-1)b_n = \sum_{j=1}^{n-1} b_j q_{n-j} \quad , \quad n=2,3,\dots$$
 (12)

where $q(z) = 1 + q_1 z + q_2 z^2 + \dots$

In narticular

$$b_2 = q_1, b_3 = \frac{1}{2}(q_2 + q_1^2), b_4 = \frac{1}{3}(q_3 + \frac{3}{2}q_1q_2 + \frac{1}{2}q_1^3).$$
 (13)

Lemma 4. If $g \in S^*$ is given by (4) and $\mu \in \mathbb{R}$, then

$$|b_3 - \mu b_2^2| \le \begin{cases} 1 + (1/2 - \mu)|b_2|^2 & \text{for } \mu \le 3/4, \\ 1 + (\mu - 1)|b_2|^2 & \text{for } \mu \ge 3/4. \end{cases}$$

$$(14)$$

Proof. From (13) we get

$$b_3 - \mu b_2^2 = (1/2 - \mu)q_1^2 + q_2/2$$
.

By Lemma 2, we can assume that $q_1 \in [0, 2]$. Applying Lemma 3,

$$b_3 - \mu b_2^2 = (3/4 - \mu)q_1^2 + (4 - q_1^2)y/4$$
, for some $y, |y| \le 1$;

hence we obtain (14). \square

As a simple consequence of Lemma 4, we get the well-known Fekete–Szegő inequality $|b_3 - \mu b_2|^2 \le \max\{1, |4\mu - 3|\}$ for S^* .

Lemma 5. If $g \in S^*$ is given by (4), then

$$|b_4 - \frac{7}{9}b_2b_3| < H(|b_2|) \,, \tag{15}$$

where

$$H(b) = \begin{cases} \frac{1}{3} \left(2 + \frac{7}{18} b^2 + \frac{25}{36} b^3 \right) & \text{for } b \in [0, 6/7] ,\\ \frac{1}{9} \left(11b - 2b^3 \right) & \text{for } b \in [6/7, 2] . \end{cases}$$
 (16)

Proof. From (13), we have

$$b_4 - \frac{7}{9}b_2b_3 = \frac{1}{3}\left(q_3 + \frac{1}{3}q_1q_2 - \frac{2}{3}q_1^3\right)$$
.

In view of Lemma 2, we write q instead of q_1 , $q \in [0, 2]$. From Lemma 3,

$$b_4 - \tfrac{7}{9}b_2b_3 = \tfrac{1}{36}\left[-3q^3 + 8q(4-q^2)y - 3q(4-q^2)y^2 + 6(4-q^2)(1-|y|^2)z \right] \,.$$

Denoting |y| = r and applying the triangle inequality, we obtain

$$|b_4 - \frac{7}{9}b_2b_3| \le \frac{1}{36} \left[3q^3 + 8q(4-q^2)r + 3q(4-q^2)r^2 + 6(4-q^2)(1-r^2) \right].$$

Let us denote the expression in square brackets in the above inequality by h(r). Since h'(r) = 0 only for $r_0 = \frac{4q}{3(2-q)}$, we conclude that $\max\{h(r): r \in [0,1]\}$ is equal to $h(r_0)$ if $q \in [0,6/7]$ and is equal to h(1) if $q \in [6/7,2]$. This completes the proof. \square

Lemma 6. If $g \in S^*$ is given by (4), then

$$|b_2b_4 - \frac{8}{9}b_3^2| \le \frac{1}{9}(4 - |b_2|^2)(2 + |b_2|^2). \tag{17}$$

Proof. In view of Lemma 2, we assume $q = q_1 \in [0, 2]$. From (13) and from Lemma 3

$$b_2b_4 - \frac{8}{9}b_3^2 = \frac{1}{36}(4 - q^2) \left[3q^2y - (q^2 + 8)y^2 + 6q(1 - |y|^2)z \right].$$

Hence, writing r = |y|,

$$|b_2b_4 - \tfrac{8}{9}{b_3}^2| \leq \tfrac{1}{36}(4-q^2) \left\lceil 3q^2r + (q^2+8)r^2 + 6q(1-r^2) \right\rceil \,.$$

The result follows if we take r = 1. \square

It is easy to check that $\max\{\frac{1}{9}(4-b^2)(2+b^2):b\in[0,2]\}=1$. Therefore, the result in Lemma 6 generalizes the result obtained in [25] (Theorem 3, for $\mu=8/9$); according to this paper, if $g\in\mathcal{S}^*$, then $|b_2b_4-\frac{8}{9}b_3^2|\leq 1$.

3. Main results

Taking into account Lemma 1, we can rotate $f \in \mathcal{C}_{\beta}$ in such a way that after this operation the second coefficient of f is real and non-negative. But, in this case, the coefficients b_2 and p_1 are not necessarily real. From now on, we proceed in a different manner. A function $f \in \mathcal{C}_{\beta}$ is rotated in such a way that p_1 in formula (5) is real and non-negative. Under this assumption, we cannot expect that a_2 and b_2 are real numbers.

Now, we are ready to prove the main theorem of this paper.

Theorem 1. If $f \in C_0$ is given by (1), then

$$|a_2a_4 - a_3^2| < 1.242\dots (18)$$

Proof. From (7) it follows for $f \in C_0$ that

$$2a_2 = b_2 + p_1 \tag{19}$$

$$3a_3 = b_3 + b_2 p_1 + p_2 \tag{20}$$

$$4a_4 = b_4 + b_3 p_1 + b_2 p_2 + p_3. (21)$$

Hence,

$$a_{2}a_{4} - a_{3}^{2} = \frac{1}{8}(b_{2} + p_{1})(b_{4} + b_{3}p_{1} + b_{2}p_{2} + p_{3}) - \frac{1}{9}(b_{3} + b_{2}p_{1} + p_{2})^{2}$$

$$= \frac{1}{8}(b_{2}b_{4} - \frac{8}{9}b_{3}^{2}) + \frac{1}{8}p_{1}(b_{4} - \frac{7}{9}b_{2}b_{3}) + \frac{1}{8}(p_{1}p_{3} - \frac{8}{9}p_{2}^{2})$$

$$+ \frac{1}{9}p_{1}^{2}(b_{3} - \frac{8}{9}b_{2}^{2}) - \frac{2}{9}p_{2}(b_{3} - \frac{9}{16}b_{2}^{2}) + \frac{1}{9}b_{2}(p_{3} - \frac{7}{9}p_{1}p_{2}).$$

Taking into account Lemma 1 and formula (9), we can assume that p_1 is a non-negative real number; for this reason we write p instead of p_1 . Applying Lemma 3, we get

$$\frac{1}{8}p^2(b_3 - \frac{8}{9}b_2^2) - \frac{2}{9}p_2(b_3 - \frac{9}{16}b_2^2) = \frac{1}{72}p^2(b_3 - \frac{7}{2}b_2^2) - \frac{1}{9}(4 - p^2)(b_3 - \frac{9}{16}b_2^2)x,$$

and

$$\begin{split} &\frac{1}{8}(pp_3 - \frac{8}{9}p_2^2) = \frac{1}{288}p^4 + \frac{1}{144}p^2(4-p^2)x - \frac{1}{288}(4-p^2)(32+p^2)x^2 + \frac{1}{16}p(4-p^2)(1-|x|^2)z \,, \\ &\frac{1}{8}b_2(p_3 - \frac{7}{9}pp_2) = \frac{1}{32}b_2\left[-\frac{5}{9}p^3 + \frac{4}{9}p(4-p^2)x - p(4-p^2)x^2 + 2(4-p^2)(1-|x|^2)z \right] \,, \end{split}$$

where $|x| \le 1$ and $|z| \le 1$. Therefore,

$$\begin{split} a_2 a_4 - a_3{}^2 &= \tfrac{1}{8} (b_2 b_4 - \tfrac{8}{9} b_3{}^2) + \tfrac{1}{8} p (b_4 - \tfrac{7}{9} b_2 b_3) + \tfrac{1}{72} p^2 (b_3 - \tfrac{7}{2} b_2{}^2 - \tfrac{5}{4} b_2 p + \tfrac{1}{4} p^2) \\ &- \tfrac{1}{9} (4 - p^2) \left[b_3 - \tfrac{9}{16} b_2{}^2 - \tfrac{1}{8} b_2 p - \tfrac{1}{16} p^2 \right] x \\ &- \tfrac{1}{288} (4 - p^2) (32 + 9 b_2 p + p^2) x^2 + \tfrac{1}{16} (b_2 + p) (4 - p^2) (1 - |x|^2) z \;. \end{split}$$

Let us denote $|b_2|$ by b and |x| by ϱ ; hence, $b \in [0, 2]$, $\varrho \in [0, 1]$. The triangle inequality leads to

$$\begin{split} |a_2a_4-a_3| & \leq \tfrac{1}{8} \left[|b_2b_4-\tfrac{8}{9}b_3|^2 |+p|b_4-\tfrac{7}{9}b_2b_3| \right] + \tfrac{1}{72}p^2|b_3-\tfrac{7}{2}b_2|^2 - \tfrac{5}{4}b_2p + \tfrac{1}{4}p^2| \\ & + \tfrac{1}{9}(4-p^2) \left| b_3-\tfrac{9}{16}b_2|^2 - \tfrac{1}{8}b_2p - \tfrac{1}{16}p^2 \right| \varrho \\ & + \tfrac{1}{288}(4-p^2)(32+9bp+p^2)\varrho^2 + \tfrac{1}{16}(b+p)(4-p^2)(1-\varrho^2) \; . \end{split}$$

Applying Lemmas 4–6, we can write

$$|a_2a_4 - a_3^2| \le F(p, b, \varrho)$$
,

where

$$F(p, b, \varrho) = A + B\varrho + C\varrho^{2} , \quad p, b \in [0, 2], \ \varrho \in [0, 1],$$

$$C = \frac{1}{288}(4 - p^{2})(2 - p)(16 - p - 9b)$$

$$B = \frac{1}{144}(4 - p^{2})(16 - b^{2} + 2bp + p^{2})$$

$$A = \frac{1}{17}(4 - b^{2})(2 + b^{2}) + \frac{1}{8}pH(b) + \frac{1}{188}p^{2}(4 + 10b^{2} + 5bp + p^{2}) + \frac{1}{16}(b + p)(4 - p^{2}),$$
(22)

and H(b) is defined by (16).

Now we shall show that F is an increasing function of $\rho \in [0, 1]$. We have

$$\frac{\partial F}{\partial \varrho} = \frac{1}{144} (4 - p^2) \left[16 - b^2 + 2bp + p^2 + (2 - p)(16 - p - 9b)\varrho \right] \, .$$

If $16 - p - 9b \ge 0$, then $\frac{\partial F}{\partial \rho} \ge 0$. For 16 - p - 9b < 0,

$$\frac{\partial F}{\partial \rho} \ge \frac{1}{144} (4 - p^2) h(p, b) ,$$

where

$$h(p,b) = 48 + 2p^2 - 18p - b^2 - 18b + 11pb$$
.

It is not a difficult task to prove that $h(p,b) \ge 0$ for all $(p,b) \in [0,2] \times [0,2]$. This proves that $\frac{\partial F}{\partial \varrho} \ge 0$ in $[0,2] \times [0,2]$. Therefore,

$$F(p, b, \rho) < F(p, b, 1) = A + B + C$$
. (23)

Let us denote F(p, b, 1) by G(p, b). Hence,

$$G(p,b) = \frac{1}{288} \left[(4 - p^2)(64 + 3p^2 + 13pb - 2b^2) + 4(4 - b^2)(2 + b^2) + 36pH(b) + p^2(4 + 10b^2 + 5bp + p^2) \right] , \quad p, b \in [0, 2] . \quad (24)$$

To obtain the declared result, we divide the set of variability of (p, b), i.e. $\Omega = [0, 2] \times [0, 2]$ into two subsets: $\Omega_1 = [0, 2] \times [0, 6/7]$ and $\Omega_2 = [0, 2] \times [6/7, 2]$.

I. First, assume that $(p, b) \in \Omega_2$. Then $G(p, b) = \frac{1}{288}G_2(p, b)$, where

$$G_2(p,b) = -2p^4 - 8p^3b + 12p^2b^2 - 48p^2 - 8pb^3 + 96pb - 4b^4 + 288.$$
 (25)

Our task is to find

$$\max\{G_2(p,b): (p,b) \in \Omega_2\}$$
. (26)

Instead of (26), we shall derive

$$\max\{G_2(p,b):(p,b)\in\Omega\}. \tag{27}$$

Observe that the critical points of G_2 satisfy the following system of equations

$$\begin{cases} -p^3 - 3p^2b + 3pb^2 - 12p - b^3 + 12b = 0\\ -p^3 + 3p^2b - 3pb^2 + 12p - 2b^3 = 0 \end{cases}$$
 (28)

For the point (0,0), (28) is fulfilled. Assume now that $b \neq 0$. Summing both equations in (28) we obtain

$$2p^3 = 3b(4 - b^2). (29)$$

Applying it in one of the equations of (28), we get

$$6bp^{2} + 6(4 - b^{2})p - b(12 + b^{2}) = 0. (30)$$

Hence,

$$p = \frac{1}{6b} \left(3(b^2 - 4) + \sqrt{15b^4 + 144} \right) \tag{31}$$

is the positive solution to (30).

Combining (29) with (31), and dividing the obtained equation by b^3 , we get

$$2\left[\frac{1}{2}\left(1 - \frac{4}{b^2}\right) + \frac{1}{6}\sqrt{15 + \left(\frac{12}{b^2}\right)^2}\right]^3 = 3\left(\frac{4}{b^2} - 1\right). \tag{32}$$

Substituting $t = 3(4/b^2 - 1)$, $t \ge 0$, equation (32) takes the form

$$2\left(-\frac{1}{6}t + \frac{1}{6}\sqrt{24 + 6t + t^2}\right)^3 = t, \tag{33}$$

or equivalently,

$$\sqrt{24 + 6t + t^2} - t = 3\sqrt[3]{4t} \ . \tag{34}$$

Now, it is not difficult to show that (34) has only one positive solution. Indeed, a function $f_1(t) = \sqrt{24+6t+t^2} - t$ is decreasing and a function $f_2(t) = 3\sqrt[3]{4t}$ is increasing for $t \ge 0$. Moreover, $f_1(0) = 2\sqrt{6} > 0 = f_2(0)$ and $f_1(2) = 2(\sqrt{10}-1) < 6 = f_2(2)$. It means that the only positive solution to (34) belongs to (0, 2). Its numerical value is $t_0 = 0.899...$

For the reason presented above, we know that (28) has exactly one critical point such that p > 0 and b > 0; namely,

$$p_0 = 1.343...$$
 , $b_0 = 1.754...$ (35)

for which $G_2(p_0, b_0) = 357.819...$

On the boundary of Ω , we discuss the following cases. For $b \in [0,2]$, $G_2(0,b) = 288 - 4b^4 \le 288$. Similarly, for $p \in [0,2]$, $G_2(p,0) = 288 - 48p^2 - 2p^4 \le 288$. If p = 2, then $G_2(2,b) = 64 + 128b + 48b^2 - 16b^3 - 4b^4$ is an increasing function because its derivative (4+b)(1+b)(2-b) is greater than or equal to 0. For $p \in [0,2]$, $G_2(p,2) = 224 + 128p - 16p^3 - 2p^4$. The derivative of this function is equal to $8(2+p)(8-4p-p^2)$. Now, we deduce that the greatest value of $G_2(p,2)$ for $p \in [0,2]$ is equal to $G_2(2(\sqrt{3}-1),2) = 352$.

Summing up,

$$\max\{G_2(p,b):(p,b)\in\Omega\} = G_2(p_0,b_0). \tag{36}$$

But $(p_0, b_0) \in \Omega_2$, so

$$\max\{G_2(p,b):(p,b)\in\Omega_2\} = G_2(p_0,b_0). \tag{37}$$

II. Let $(p, b) \in \Omega_1$. Then $G(p, b) = \frac{1}{288}G_1(p, b)$, where

$$G_1(p,b) = -2p^4 - 8p^3b - 12(4-b^2)p^2 + \left(\frac{25}{3}b^3 + \frac{14}{3}b^2 + 52b + 24\right)p - 4b^4 + 288.$$
 (38)

Let us denote $f_3(p,b) = -2p^4 - 8p^3b - 4b^4 + 288$ and $f_4(p,b) = \left(\frac{25}{3}b^3 + \frac{14}{3}b^2 + 52b + 24\right)p - 12(4-b^2)p^2$. Hence, $f_3(p,b) \le 288$ for all $(p,b) \in \Omega_1$.

The quadratic function f_4 of the variable p takes the greatest value for

$$p_* = \frac{\frac{25}{3}b^3 + \frac{14}{3}b^2 + 52b + 24}{24(4 - b^2)} \ .$$

Since $p_* \in [0, 2]$ for $b \in [0, 6/7]$, so

$$f_4(p,b) \le f_4(p_*,b) = \frac{\left(\frac{25}{3}b^3 + \frac{14}{3}b^2 + 52b + 24\right)^2}{48(4-b^2)}.$$

If $b \in [0, 6/7]$, then the last expression is increasing; consequently

$$f_4(p_*,b) \le f_4(p_*,6/7) = 38.072...$$

Hence, for $(p, b) \in \Omega_1$,

$$G_1(p,b) \le 326.072... < G_2(p_0,b_0)$$
 (39)

Comparing the bounds obtained for Ω_1 and Ω_2 , we deduce (18). \square

The result obtained in Theorem 1 is not sharp. Under the additional assumption that b_2 is real, this bound can be improved. This improved value is a little bit greater than 1, but still it is not sharp. We can pose the natural conjecture that $|H_2(2)| \le 1$ for all functions in C_0 . The same inequality likely holds also for C.

4. Remarks on the second Hankel determinant for univalent functions

So far, we have not found any result concerning the estimates, even rough, of the expression $|a_2a_4 - a_3|^2$ for the whole class S of univalent functions. Can it be true that $|H_2(2)| \le 1$ for S?

Regarding the results of some coefficients problems one can find cases when the solutions to problems in $\mathcal C$ and $\mathcal S$ are the same and those when the solutions are different. For example, the bounds of $|a_n|$ or $|a_3-a_2|^2$ are the same for both $\mathcal C$ and $\mathcal S$ (namely: n and 1, respectively). However, the Fekete–Szegö functional $|a_3-\mu a_2|^2$, $\mu\in[0,1]$ is bounded by $1+2\exp\left(-\frac{2\mu}{1-\mu}\right)$ in $\mathcal S$ (see, [4]) and by $3-4\mu$ for $0\leq\mu\leq1/3$, $1/3+4/9\mu$ for $1/3\leq\mu\leq2/3$ and 1 for $2/3\leq\mu\leq1$ in $\mathcal C$. The latter was obtained at first by Keogh and Merkes in [10] for $\mathcal C_0$, and next, by Eenigenburg and Silvia in [3] (independently by

Koepf ([11])) for the whole \mathcal{C} . It is worth recalling another example of a problem that has two different solutions for the two discussed classes. Namely, $\max\{||a_3|-|a_2||:f\in\mathcal{C}\}=1$ (Koepf, [11]) and $\max\{||a_3|-|a_2||:f\in\mathcal{S}\}=1.029\dots$ (Jenkins, [9]). Consider a family of functions $f_{\mathcal{E}}$, $\varepsilon\in(0,1)$ that map Δ onto the sets

$$\mathbb{C} \setminus \left((-\infty, -d_{\varepsilon}] \cup \{ d_{\varepsilon} e^{i\theta}, \theta_{\varepsilon} \le |\theta| \le \pi \} \right) . \tag{40}$$

Krzyż and Reade proved that the functions f_{ε} determine the Koebe set for the class $\mathcal Y$ of circularly symmetric univalent functions, see [12]. In [16], Netanyahu showed that the maximum in $\mathcal S$ of an expression $|a_2| \cdot d_f$, where $d_f = \inf\{|\gamma| : f(z) \neq \gamma, z \in \Delta\}$, is achieved by f_{ε} with properly taken $\varepsilon \in (0, 1)$.

Given $\varepsilon \in (0, 1)$, the function f_{ε} is obtained as a composition of a function s(z) satisfying

$$\frac{s}{(1+s)^2} = \frac{4\varepsilon}{(1+\varepsilon)^2} \cdot \frac{z}{(1+z)^2} \,,\tag{41}$$

and a function

$$w(s) = \frac{(1+\varepsilon)^2}{4} \cdot \frac{s(1-\varepsilon s)}{\varepsilon - s} \,. \tag{42}$$

We have $s(\Delta) = \Delta \setminus [\varepsilon, 1)$. The numbers that appear in (40) take values:

$$d_{\varepsilon} = \frac{(1+\varepsilon)^2}{4}$$
 and $\theta_{\varepsilon} = 2\arccos \varepsilon$. (43)

Observe that, in the limiting case, f_1 is the identity function. Since both s(z) and w(s) are univalent, f_{ε} is also univalent. From (40) we conclude that f_{ε} is not close to convex.

The function s(z) can be written as $s(z) = k^{-1}(Ak(z))$, with $k(z) = \frac{z}{(1+z)^2}$ and $A = \frac{4\varepsilon}{(1+\varepsilon)^2}$. Since $k^{-1}(\zeta) = \zeta + 2\zeta^2 + 5\zeta^3 + 14\zeta^4 + 42\zeta^5 + \dots$, we have

$$\frac{s(z)}{A} = z - (2 - 2A)z^2 + (3 - 8A + 5A^2)z^3 - (4 - 20A + 30A^2 - 14A^3)z^4 + (5 - 40A + 105A^2 - 112A^3 + 42A^4)z^5 + \dots$$

In a small neighbourhood of the origin

$$w(s) = \frac{1}{A} \left[s + \varepsilon (1 - \varepsilon^2) \sum_{k=2}^{\infty} \left(\frac{s}{\varepsilon} \right)^k \right].$$

Therefore,

$$f_{\varepsilon}(z) = z + \frac{2(1-\varepsilon)(1+3\varepsilon)}{(1+\varepsilon)^{2}} z^{2} + \frac{(1-\varepsilon)(3+15\varepsilon+33\varepsilon^{2}-19\varepsilon^{3})}{(1+\varepsilon)^{4}} z^{3} + \frac{4(1-\varepsilon)(1+7\varepsilon+18\varepsilon^{2}+54\varepsilon^{3}-59\varepsilon^{4}+11\varepsilon^{5})}{(1+\varepsilon)^{6}} z^{4} + \dots$$
(44)

From (44) it follows that $f_1(z) = z$. Moreover, taking $\varepsilon = 0$ in (44), we obtain $f_0(z) = z + 2z^2 + \ldots = \frac{z}{(1+z)^2}$. In this case, the set (40) coincides with $\mathbb{C} \setminus (-\infty, -1/4]$.

For a function (44),

$$H_2(2) = -F(\varepsilon)$$
.

where

$$F(\varepsilon) = \frac{(1-\varepsilon)^4}{(1+\varepsilon)^8} (1+12\varepsilon+134\varepsilon^2+268\varepsilon^3+97\varepsilon^4) , \ \varepsilon \in [0,1] . \tag{45}$$

Therefore, $H_2(2) \leq 0$ and

$$\frac{F'(\varepsilon)}{F(\varepsilon)} = \frac{128\varepsilon(1 - 6\varepsilon - 20\varepsilon^2 - 7\varepsilon^3)}{(1 - \varepsilon^2)(1 + 12\varepsilon + 134\varepsilon^2 + 268\varepsilon^3 + 97\varepsilon^4)}.$$

Denoting by ε_0 the only solution to $1-6\varepsilon-20\varepsilon^2-7\varepsilon^3=0$ in (0,1), i.e. $\varepsilon_0=0.118...$, we can write

$$\max\{F(\varepsilon): \varepsilon \in [0,1]\} = F(\varepsilon_0) = 1.175\dots \tag{46}$$

We have proved the following theorem.

Theorem 2. If f is given by (1), then

$$\max\{|a_2a_4 - a_3^2| : f \in \mathcal{S}\} \ge 1.175\dots$$
(47)

References

- [1] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (1) (2013) 103-107.
- [2] D. Bansal, S. Maharana, J.K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52 (6) (2015) 1139–1148.
- [3] P.J. Eenigenburg, E.M. Silvia, A coefficient inequality for Bazilevic functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 27 (1973) 5-12.
- [4] M. Fekete, G. Szegő, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc. 8 (1933) 85–89.
- [5] A.W. Goodman, E.B. Saff, On the definition of a close-to-convex function, Int. J. Math. Math. Sci. 1 (1978) 125-132.
- [6] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. 3 (18) (1968) 77-94.
- [7] A. Janteng, S.A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2) (2006) 1–5.
- [8] A. Janteng, S.A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1 (13) (2007) 619-625.
- [9] J.A. Jenkins, On certain coefficients of univalent functions, in: Analytic Functions, in: Princeton Math. Ser., vol. 24, 1960, pp. 159–194.
- [10] F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969) 8-12.
- [11] W. Koepf, On the Fekete-Szegő problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987) 89-95.
- [12] J. Krzyż, M.O. Reade, Koebe domains for certain classes of analytic functions, J. Anal. Math. 18 (1967) 185-195.
- [13] S.K. Lee, V. Ravichandran, S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013) 281.
- [14] R.J. Libera, E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982) 225-230.
- [15] T.D.K. Marjono, The second Hankel determinant of functions convex in one direction, Int. J. Math. Anal. 10 (9) (2016) 423-428.
- [16] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969) 100–112.
- [17] K.I. Noor, On the Hankel determinant problem for strongly close-to-convex functions, I. Nat. Geom. 11 (1) (1997) 29-34.
- [18] K.I. Noor, On certain analytic functions related with strongly close-to-convex functions, Appl. Math. Comput. 197 (1) (2008) 149-157.
- [19] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, I. Lond. Math. Soc. 41 (1966) 111-122.
- [20] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967) 108-112.
- [21] J.K. Prajapat, D. Bansal, A. Singh, A.K. Mishra, Bounds on third Hankel determinant for close-to-convex functions, Acta Univ. Sapientiae Math. 7 (2) (2015) 210–219.
- [22] M. Raza, S.N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013) 412.
- [23] P. Zaprawa, Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal. 2016 (2016) 3792367.
- [24] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (1) (2017) 19.
- [25] P. Zaprawa, On the Fekete-Szegö type functionals for starlike and convex functions, Turk. J. Math., https://doi.org/10.3906/mat-1702-120, in press.