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RESUME

Aucune estimation précise de l'expression |apas — as2| pour la classe C des fonctions
presque convexes n'était connue jusqu’a présent. Dans cette Note, nous présentons des es-
timations de cette expression, nommée deuxiéme déterminant de Hankel pour la classe Cp,
c'est-a-dire la sous-classe C, composée des fonctions f qui vérifient, dans le disque unité,
I'inégalité Re (zf'(z)/g(2)) > 0 avec une fonction étoilée g.
De plus, nous formulons quelques remarques a propos du deuxiéme déterminant de Hankel
pour la classe S des fonctions univalentes. Nous démontrons que max{|aas —as?|: f € S}
est plus grand que 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A denote the family of all analytic functions f in the open unit disk A ={z € C: |z| < 1} normalized by f(0) =0,
f’(0) = 1. Hence the functions in A are of the form

f@)=z+m2+a+.... (1)
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The Hankel determinant for a given function f of the form (1) is defined as follows

an an+1 ... Onyg-—1
an+1 dp42 ... (n+
Hoy=| 700 00 o T
an+g-1 Qntq --- O(ni2g-2

where n, q are fixed positive integers.

The investigations of Hankel determinants for various classes of analytic functions started in the 1960s. It was Pom-
merenke [19], [20] who first studied Hankel’s determinant for the class S of univalent functions given by (1). He proved for
functions in S that [Hq(n)| < Kn=(1/2+#)d+3/2 where n,q €N, g > 2, § > 1/4000 and K depends only on g. Similar findings,
but for different classes, were reported by Hayman [6] and Noor [17], [18].

Many recent papers have been devoted to the problem of finding the exact bounds of |Hg(n)| for various subfamilies
of A. The majority of the results were obtained for H(2) = ayas — az2, which is called the second Hankel determinant
(see, for example, [1], [7], [8], [13], [22], [23]). There are, however, few papers that discuss the third Hankel determinant
H3(1) (see, for example: [2], [21], [24]). Although many estimates of |H;(2)| are sharp, for example for the classes S* or K
consisting of starlike or convex functions, respectively, the exact bound of |H,(2)| for S or for the class C of close-to-convex
functions is still not known.

In this paper, we focus our discussion on C. It is known (see [5]) that f € C if there exist a starlike function g and a real
number 8 € (—n/2,1/2) such that

Re (eiﬁzf’(z)/g(z)) ~0. )

We distinguish subclasses of C according to a fixed number B. Namely, a function f of the form (1) is called close
to convex with argument f if there exists g € S* such that the condition (2) holds. Let Cg denote the class of all such
functions. It is obvious that

c= |J .
Be(—m/2,m/2)

Taking into account (2), we can write

ezf'(z)/g(z) = p(z) cos B +isin B , (3)

with p € P, where P is the well-known class of functions with positive real part that are normalized by p(0) = 1.
If g€ S* and p € P in (3) are given by

g2)=z+by® + b3z + ... (4)
and
p@=14piz+p22+..., (5)
then
o0 o0 . o0
z+2nanz" = (z—i—anz") (1 +ei8 cosﬂZp,ﬂ") ) (6)
n=2 n=2 n=1
Therefore,
) n—1
na, =bn + e # cos B pn_1+ijpn_j . n>2. (7)
j=2

If n =2, then the sum in the parentheses vanishes.

It is clear that the maximum of |H,(2)| while f varies in the whole class S or C is greater than or equal to 1 because
of the result of Janteng et al. [7]. The estimation of |H,(2)| for the functions f given by (1) belonging to C is difficult to
obtain, because it involves the coefficients of both functions g € S*, p € P and a constant 8 (see, Remark 3 in [15]). For
this reason, it is somewhat easier to estimate the second Hankel determinant if 8 =0, i.e. in the class Cy. Even for Cy, the
known bounds of |H3(2)| are not sharp. The best known result (excluding erroneous ones) was obtained by Prajapat et al.
in [21]. They proved that |H»(2)| <85/36 =2.361... in Cp. In Theorem 1, we essentially improve this result. Moreover, we
discuss an example of univalent functions that shows that the maximum of |H,(2)| for S is actually greater than 1.
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2. Preliminary results

At the beginning, let us discuss the invariance property of the class C.
Let f be given by (1) and let

fo(z) =e ¥ f(ze!9),p cR. (8)

Directly from the definition of a close-to-convex function, it follows that f € C if and only if f, € C. The same remains true
if we replace C by S* or S. Moreover, we can prove the following lemma.

Lemma 1. The equivalence
feCs& fpely
holds for every ¢ € R and a fixed 8 € (—n/2,1/2).

Proof. If f, is in Cg for every ¢ € R, so it is true also for ¢ = 0. For this reason, it is enough to prove only that f € Cg =
fo €Cg. But for f in Cg, there exists g € S* such that (2) holds. Writing zel? instead of z in (2), we obtain

Re (eiﬁzf/(zei‘/’) /e’i‘pg(zei‘p)) >0, 9)
which means that f, € Cg with e % g(zel?) as a starlike function. O

Suppose that a given class A of analytic functions is invariant under rotation. Let f € A be given by (1) and f,(2) =
Z+ 7% + ... is defined by (8). Hence,

2
lap0g — pas”| =

i 3i 2ig)? 2
ae'? . age ‘/’—,u-(age ‘/’) = |apaq — pas”| . (10)
For this reason (or applying a similar argument), we have the following lemma.

Lemma 2. If A is one of the classes: C, Cg, S*, S and & (f) is one of the following functionals: |aya4 — nas?|, |as — paxas), las — paz?|
defined on f € A given by (1) with a fixed real number . Then ®(f) = ®(fy) forevery ¢ € R.

To prove the main results, we need a few lemmas. The first one is by Libera and Zlotkiewicz.
Lemma 3. [14] Let p; € [0, 2]. A function p given by (5) belongs to P if and only if

2p2 = p1? +x(4—p1?)
and
4p3 =p1°> +2p1(4 — p1)x — p1(4— p1)X +2(4 — p1*)(1 — |x*)z

for some x and z such that |x| <1, |z] < 1.

Let g € §* be given by (4). Applying the correspondence between functions in $* and P

/
Zg(z):q(z) , g8€8*,qeP (1)
g2
we get
n—1
(n—Dby=Y bjgn-j . n=2,3,... (12)
j=1

where q(z) =1+ qiz+q22% +....
In particular,

by=q1, b3=21(@2+q1?) . ba= 33+ 3q192 + 3a1°) . (13)
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Lemma4. If g € S* is given by (4) and . € R, then

1+ (1/2=wlb2l*  foru<3/4,

2 (14)
14 (= 1)|by| foru>3/4.

b3 — ub2?| < {

Proof. From (13) we get

bs — pubo? = (1/2 — g% +q2/2.

By Lemma 2, we can assume that g1 € [0, 2]. Applying Lemma 3,

bs — pub2? = 3/4 — g1 + (4—q1)y/4, forsome y,|y| <1;

hence we obtain (14). O

As a simple consequence of Lemma 4, we get the well-known Fekete-Szegd inequality |bs — pby?| < max{1, [4u — 3|}
for S*.

Lemma 5. If g € S* is given by (4), then

|bs — §babs| < H(lb2l) , (15)
where
1 T p2 4 2553
Hb)=1{3 (2+ 18D + 35D ) forbe[0,6/7], (6
§(11b —2b3) forbe[6/7,2].

Proof. From (13), we have
bs — Zbabs =1 <613 +3q102 — %CIlB) .
In view of Lemma 2, we write q instead of qq, q € [0, 2]. From Lemma 3,
by — Jbobs = % [ 34" +8a(4 — Py — 3q(4 — P)y? +6(4 — g (1 - yP)z] .
Denoting |y| =r and applying the triangle inequality, we obtain
lba — §babs| < 55 30 + 894 — gD +3(4 — g)r* + 64 — (1 =) | .
Let us denote the expression in square brackets in the above inequality by h(r). Since h’(r) =0 only for rg = %, we

conclude that max{h(r) : r € [0, 1]} is equal to h(rg) if q € [0,6/7] and is equal to h(1) if g € [6/7, 2]. This completes the
proof. O

Lemma 6. If g € S* is given by (4), then
|babs — §bs*| < §(4 — b2*) 2 + |b2]) - (17)
Proof. In view of Lemma 2, we assume q = q; € [0, 2]. From (13) and from Lemma 3
baba — §b3% = 354~ ¢ [3¢%y — @ +8)y* +6q(1 — |y>)z] .
Hence, writing r = |y|,
Ibzbs — §b5%| < 554 — 4% [34%r + (¢* +8)r? + 691 — )] .
The result follows if we take r=1. O

It is easy to check that max{%(4 —b2)(2 4+ b2) : b € [0,2]} = 1. Therefore, the result in Lemma 6 generalizes the result
obtained in [25] (Theorem 3, for ;= 8/9); according to this paper, if g € §*, then |bybs — gb32| <1.
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3. Main results

Taking into account Lemma 1, we can rotate f e Cg in such a way that after this operation the second coefficient of f
is real and non-negative. But, in this case, the coefficients b, and p; are not necessarily real. From now on, we proceed in
a different manner. A function f € Cg is rotated in such a way that p; in formula (5) is real and non-negative. Under this
assumption, we cannot expect that a, and b, are real numbers.

Now, we are ready to prove the main theorem of this paper.

Theorem 1. If f € Cy is given by (1), then
lazas —az?| <1.242... . (18)

Proof. From (7) it follows for f € Cp that

2a; =by + p1 (19)

3az =b3 +bap1 + p2 (20)

4ag =bs+b3p1 +baps +p3. (21)
Hence,

a2a4 — a3® = F (b + p1)(ba + b3p1 + bapz + p3) — (b3 + bap1 + p2)*
= g (babg — 8b3®) + L p1(ba — Jbab3) + §(p1p3 — $p2?)
+gp1%(b3 — §b2?) — 2pa(bs — $kb2) + gb2(p3 — §p1p2).

Taking into account Lemma 1 and formula (9), we can assume that p; is a non-negative real number; for this reason we
write p instead of p;. Applying Lemma 3, we get

2p%(bs — 8b2%) — Zpa(bs — %ba%) = F5p*(bs — 3b2%) — §(4 — p*)(bs — kba?)x,
and
§(Pp3 — §p2*) = 55 p* + P> (4 — PP)X — 554 — P32+ pP)X* + Fep(d— pH(1 — XDz,
§b2(p3 — §pp2) = bz [~ 37 + §p(4— pHx— p(4 — P2 + 24— pH(1 - xD)z] |
where |x| <1 and |z| < 1. Therefore,
a2a4 — as® = §(bobs — §b3?) + §p(bs — Ibabs) + &5 p?(bs — 1by* — 3bap + 1p?)
54— p?)[bs — b2 — §bop — F5p?|x
—1 (4—p? 21,2 ;1 201 (w2
788 p7)(32+9byp + p)x” + 15 (b2 + P)(4 — p)(1 — [x[7)z.
Let us denote |by| by b and |x| by o; hence, b € [0, 2], o € [0, 1]. The triangle inequality leads to
(0204 = a3%| = § [ Ib2ba — §b3?| + plba — Fbabs| | + Fp%Ibs — Jba? — §bop + 02|
+3(4—p?) ’b:s — by? — $bap — 11—5172' 0
+ 555 (4= p*)(32 4+ 9bp + p*)0* + {5 (b + p)(4 — p>)(1 — 0?) .
Applying Lemmas 4-6, we can write
laza4 — as*| < F(p,b.0)
where
F(p.b,o)=A+Bo+Co®> . p.be[0,2], 0€[0.1], (22)
C=yg(@—pH2~p)(16—p—9b)
B = 1 (4— p®)(16 — b + 2bp + p?)
A= 5@ —Db*)Q2+b%) + §pH(b) + 555 p*(4+ 10b* +5bp + p?) + {5(b+ p)(4— p?) .
and H(b) is defined by (16).
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Now we shall show that F is an increasing function of g € [0, 1]. We have

oF

5g = T~ PO[16 = +20p+p? + 2= p)16—p— 9o
If 16 — p — 9b > 0, then %zo. For 16 —p —9b <0,

aF

32 2 74— pHh(p.b),
where
h(p,b) =48+ 2p?> —18p —b> —18b+ 11pb .

It is not a difficult task to prove that h(p,b) > 0 for all (p,b) € [0, 2] x [0, 2]. This proves that ‘g—g >0 in [0, 2] x [0, 2].
Therefore,

F(p,b,0) <F(p,b,1)=A+B+C. (23)
Let us denote F(p, b, 1) by G(p, b). Hence,
G(p.b) = 55 [(4 — p%)(64 + 3p? +13pb — 2b%) + 4(4 — b*)(2 + b?)
+36pH(b) + p*(4+ 10b2 + 5bp + pz)] . p.bel0,2]. (24)

To obtain the declared result, we divide the set of variability of (p,b), i.e. 2 =[0,2] x [0,2] into two subsets: Q1 =
[0,2] x [0,6/7] and 2, =[0, 2] x [6/7, 2].

I First, assume that (p, b) € Q5. Then G(p, b) = 5= G2(p, b), where

288
Ga2(p,b) = —2p* — 8p>b + 12p?b* — 48p? — 8pb> + 96pb — 4b* + 288 . (25)
Our task is to find
max{Ga(p,b): (p,b) € 2} . (26)
Instead of (26), we shall derive
max{G,(p,b) : (p,b) € 2} . (27)

Observe that the critical points of G, satisfy the following system of equations

—p3—3p%b+3pb? —12p —b3+12b=0

{—p3+3p2b—3pb2+12p—2b3:o. (28)
For the point (0, 0), (28) is fulfilled. Assume now that b # 0. Summing both equations in (28) we obtain

2p° =3b(4—b?). (29)
Applying it in one of the equations of (28), we get

6bp? + 6(4 — b*)p —b(12+b%*) =0. (30)
Hence,

p= el_b (3(b2—4)+\/M) (31)

is the positive solution to (30).
Combining (29) with (31), and dividing the obtained equation by b3, we get

3
2
2[%(1—§)+% 15+(},—§)} =3(bi2—1). (32)
Substituting t = 3(4/b%* — 1), t > 0, equation (32) takes the form

1 1 2 3
2(-de+ fv2aree+e2) =t, (33)
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or equivalently,

V24 4+ 6t +2 —t =34t . (34)

Now, it is not difficult to show that (34) has only one positive solution. Indeed, a function f;(t) =+/24+ 6t +t2 —t is
decreasing and a function f>(t) = 3v/4t is increasing for t > 0. Moreover, f1(0) =2+/6 > 0= f>(0) and f;(2) =2(+/10—1) <
6 = f>(2). It means that the only positive solution to (34) belongs to (0, 2). Its numerical value is to = 0.899....

For the reason presented above, we know that (28) has exactly one critical point such that p > 0 and b > 0; namely,

po=1343... , by=1.754..., (35)

for which G,(po, bg) =357.819....

On the boundary of ©, we discuss the following cases. For b € [0, 2], G2(0, b) = 288 — 4b* < 288. Similarly, for p € [0, 2],
G2(p,0) =288 —48p% —2p* < 288. If p =2, then G»(2, b) = 64+ 128b+48b%> — 16b> —4b* is an increasing function because
its derivative (4 4+ b)(1+ b)(2 — b) is greater than or equal to 0. For p € [0, 2], G2(p, 2) = 224 + 128p — 16p> — 2p*. The
derivative of this function is equal to 8(2+ p)(8 —4p — p?). Now, we deduce that the greatest value of G, (p, 2) for p € [0, 2]
is equal to G,(2(v/3 = 1),2) =352.

Summing up,

max{Ga(p,b) : (p,b) € Q} = G2(po, bo) . (36)
But (po, bg) € 22, so

max{Gy(p,b) : (p,b) € 22} = G2(po, bo) . (37)
IL. Let (p,b) € 1. Then G(p,b) = 21@61@, b), where
Gi(p,b) = —2p* — 8p3b — 124 — b?)p? + (%%3 +18p2 4 52b 4 24) p —4b* 4288 . (38)

Let us denote f3(p,b) = —2p* — 8p3h — 4b* + 288 and fa4(p,b) = (%519 +12p2 4 52h +24) p — 12(4 — b?)p2. Hence,
f3(p,b) <288 for all (p,b) € Q1.
The quadratic function f4 of the variable p takes the greatest value for
Bp3 + Lp2 4+ 52b + 24
T 24(4 — b2)
Since p, € [0, 2] for b €[0,6/7], so

(23—5b3 + 13b2 4+ 52b + 24)2
48(4 — b2)
If b € [0,6/7], then the last expression is increasing; consequently
fa(ps,b) < fa(p«,6/7)=38.072... .
Hence, for (p, b) € Q1,
G1(p,b) <326.072... < Gz(po, bo) - (39)

fa(p,b) < fa(ps.b) =

Comparing the bounds obtained for Q1 and €5, we deduce (18). O

The result obtained in Theorem 1 is not sharp. Under the additional assumption that b, is real, this bound can be
improved. This improved value is a little bit greater than 1, but still it is not sharp. We can pose the natural conjecture that
|[H(2)| <1 for all functions in Cp. The same inequality likely holds also for C.

4. Remarks on the second Hankel determinant for univalent functions

So far, we have not found any result concerning the estimates, even rough, of the expression |ayas — az2| for the whole
class S of univalent functions. Can it be true that |H(2)| <1 for S§?

Regarding the results of some coefficients problems one can find cases when the solutions to problems in C and S are the
same and those when the solutions are different. For example, the bounds of |a,| or |a3 —a;2| are the same for both C and S

(namely: n and 1, respectively). However, the Fekete-Szegd functional |as — iaz?|, i € [0, 1] is bounded by 142 exp (—12_—”#)

in S (see, [4]) and by 3 —4u for 0 <u <1/3,1/34+4/9u for 1/3 <u <2/3 and 1 for 2/3 < <1 in C. The latter
was obtained at first by Keogh and Merkes in [10] for Cp, and next, by Eenigenburg and Silvia in [3] (independently by
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Koepf ([11])) for the whole C. It is worth recalling another example of a problem that has two different solutions for the two
discussed classes. Namely, max{||as| — |az|| : f € C} =1 (Koepf, [11]) and max{||a3| — |az||: f € S} =1.029... (Jenkins, [9]).
Consider a family of functions f¢, ¢ € (0, 1) that map A onto the sets

C\ (=00, ~deTU (dee”. 0 < 10] <)) . (40)

Krzyz and Reade proved that the functions f, determine the Koebe set for the class ) of circularly symmetric univalent
functions, see [12]. In [16], Netanyahu showed that the maximum in S of an expression |az| - df, where df = inf{|y]:
f(2) # y,ze€ A}, is achieved by f. with properly taken ¢ € (0, 1).

Given ¢ € (0, 1), the function f, is obtained as a composition of a function s(z) satisfying

S 4¢ z
= : ; (41)
14952 (A+&)2 (1+2)72
and a function
14+¢6)?% s(1—es
W(s):(+) - s( ). (42)
4 £—5
We have s(A) = A\ [&, 1). The numbers that appear in (40) take values:
14 ¢)?
de = % and 6, =2arccose . (43)

Observe that, in the limiting case, f; is the identity function. Since both s(z) and w(s) are univalent, f, is also univalent.
From (40) we conclude that f, is not close to convex.
The function s(z) can be written as s(z) = k=1 (Ak(z)), with k(z) = —2— and A= —2£ Since k" 1(¢) = ¢ +2¢2 +5¢3 +

(1+2)2 (1+¢)2"
14¢% +42¢° + ..., we have

Z
? =7z—(2-2A)2%+ (3 —8A+5A%)2> — (4 —20A +30A% — 14A%)*

+ (5 —40A + 105A% — 112A° + 42A%2° + ... .

In a small neighbourhood of the origin

w(s) = % |:s+8(1 )Y (g)k} .
k=2

Therefore,
2(1—e)(1 +3¢ 1—¢)(3+ 156 +338% — 19¢3
fo@ =2+ ( )( ! ) o, ( )( ’ )Z3 (44)
(1+¢) (1+e)
4(1 —&)(1 4 7e + 1882 4 54¢3 — 59¢* + 11&°) ,
+ 5 A S
(1+¢)
From (44) it follows that f;(z) = z. Moreover, taking € = 0 in (44), we obtain fo(z) =z +22*+...= ﬁ In this case, the
set (40) coincides with C\ (—o0, —1/4].
For a function (44),
Hz(2)=—F(e),
where
(1—-¢)* 2 3 4
F(e) = (1+12e +134¢“ +268¢> +97¢™), € €[0,1]. (45)
(1+¢)8
Therefore, H»(2) <0 and
F'(e) 1288(1 — 68 — 2082 — 7¢3)

F(e) ~ (1—¢2)(1+ 12¢ + 134e2 + 268¢3 4+ 97s4)
Denoting by &g the only solution to 1 — 6e — 2062 —7¢3 =0 in (0, 1), i.e. £o=0.118..., we can write
max{F(¢):€€[0,1]} =F(gg) =1.175... (46)

We have proved the following theorem.

Theorem 2. If f is given by (1), then
max{|axas —az?|: f € S} >1.175... . (47)
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