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RESUME

En 1934, ]. Leray a construit des solutions faibles u(-, t) € L°([0, 00), L (R*)) N €%, ([0, 00),
L2(R3)) N L2([0, 00), H'(R3)) pour les équations de Navier-Stokes avec des données
initiales u(-,0) € L(Z,(R3) arbitraires, ot il a laissé non résolue la question de savoir
si lut, Oll 2 gs3) tendrait toujours vers zéro quand t — oo, a laquelle a été répondu
positivement en 1984 par T. Kato, au moyen d’une autre approche. Ici, on reconsidére le
probléme de Leray et quelques-unes de ses extensions, qui sont résolus en n’employant
que des idées développées par Leray en 1934 et des techniques classiques, trés utilisées
déja a cette époque.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this work, we derive some old and new results concerning the important solutions introduced by Leray in [6] for the
incompressible Navier-Stokes equations in three-dimensional space,

u:+u-Vu+Vp=Au, V-u(,t)=0, (1.1a)
u(-,0) =ug € L2(R), (1.1b)
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where L2 (R3) denotes the space of functions u = (uy, uy, u3) € L>(R?) with V-u=0 in distributional sense. As shown
in [6], Leray’s solutions are globally defined and weakly continuous in L2(R3), satisfying (1.1a) as distributions and
(1.1b) in the sense that [[u(-,t) — utol| 23, — 0 as t \, 0. Moreover, u(-,t) € L°([0, 00), L2 (R3)) N L%([0, 00), H!(R?)), with
lul, Ol 2 g3 monotonically decreasing in t € [0, c0) \ E (for some bounded set E C (0, o0) of zero Lebesgue measure) and
such that the energy inequality

t
G, 1172 gs) +2 / IDUC, )15 g3, ds < luollFa s, (12)
0

holds for all t > 0. (Other properties are also obtained in [G]. See Section 2 for a quick review of Leray’s construction.)
Furthermore, Leray showed that, for some t, > 1, one actually has u € C ®(R3 X [ty, 00)), and, for each m > 1,

u(-,t) € C([ts, 00), H™(R?)) (1.3)

(see [6], p. 246)," where, as usual, H™(R3) denotes the Sobolev space of functions (in this case, with values in R3) belonging
to L2(R?) and such that all their distributional derivatives of order m are also in L2(R3). Regarding the asymptotic (t — 00)
limit of the eventually decreasing functional W (t) := |u(., t)||i2(R3>, Leray observed that (cf. [6], p. 248):
Jignore si W (t) tend nécessairement vers 0 quand t augmente indéfiniment.
[J. Leray, 1934]

While the uniqueness of the solutions [6] remains a fundamental open question to this day, it has been shown by Kato [4]
and Masuda [8] in 1984 (and later by other authors as well, see, e.g., [3,11]) that all Leray’s solutions, whether uniquely
defined by their initial data or not, do possess this property, that is, one always has

lim [lu(, )| 2gs) =0. (1.4)
t—o00
(For more decay results and a broader discussion that goes beyond Leray’s solutions [6], see, e.g., [2-5,8,9,11] and references
therein.) It appears that Leray was not very worried about this question regarding his solutions, for — as it will become

clear in Sections 2 and 3 — he had already laid out all that was actually needed to show (1.4) affirmatively. In addition, it
would have not been hard after Leray’s work [6] to obtain, for his solutions,

lim /4)|u(, )|l g3, =0 (1.5)
t—o0

and more involving properties as (1.7), (1.8), (1.9b) below. Note that (1.4), (1.5) are easy to get (see e.g. [1], Theorem 3.3) for
solutions v (-, t) € L®([to, 00), L2(R3)) of the associated linear heat flow problems
V= Av, t > to, (1.6a)
v(-, to) = u(-, to), (1.6b)
given to > 0 (arbitrary). The solution to (1.6) is, using modern notations: v(-,t) = e2(~0y(., ty), where 2%, T > 0, is the
heat semigroup. This suggests a close relationship between the solutions to (1.1) and (1.6), and one has indeed

lim Y4u¢,0) — v(, Ol 2@ = 0, (1.7)
t— oo

as shown by Wiegner (see [11], Theorem (c), p. 305) in arbitrary space dimension and for a broader solution class using
a very involved argument based on Fourier splitting techniques [9]. In low dimension (n = 2, 3), estimates like (1.7) can
be derived in a much simpler way in the case of Leray’s solutions [6] using Leray’s original ideas, which can be similarly
adapted to give us the important supnorm result

lim ¢ [lu(,t) = v(, O3y = 0. (1.8)
t— o0
In this note, we show how to use Leray’s approach [6] to get such easy derivations of (1.4), (1.5), (1.7), (1.8) for his

solutions. Although we restrict our attention to dimension n = 3, it will be clear that our analysis can also be used in the
case n = 2. The results obtained for n =2, 3 can be summarized as follows. One has, for each 2 < q < oo (and n =2, 3):

n_n
lim t4  24{u(,t)||pa@n = 0, (1.9a)
t— oo
n—1_n
im ¢ 2 2u(,t) = v(, Dlagn) = 0, (1.9b)
— 00

uniformly for 2 < q < co, where v(-, t) =2t~ u(., tg), to > 0 arbitrary, see (1.6), assuming only that ug € L2 (R").

1 See also [7,10] and Theorem 2.3 in Section 2 below. From [5], p. 235, it follows that one always has t, < 0.212 - ||u0H‘L'2(R3).
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Remark. The algebraic rates in (1.5), (1.7), (1.8), (1.9) are consistent with previous findings, e.g., [2,5,9,11]. For example, if
ug € LZ(R") is so that [[e*ug||;2gn = O (%), 0 < & < 1/2, Wiegner obtained t %@ [lu(-,t) — v(., Ollj2gny = 0(1), d(@) =
n/4+2a —1/2 ([11], p. 305). Whether d(«) or the rate values in (1.7), (1.8), (1.9b) are optimal remains unresolved.

Notation. As indicated above, boldface letters will be used for vector quantities, as in u(x,t) = (ui(x,t), ua(x,t), us(x,t)).
Also, Dj = 9/dx;j, | - |2 is the Euclidean norm, and

3

1/q
GOl = | 3 /|ui(x,r>|"dx} , (110a)
1_]
3 1/q
1DUC, Ol g, = | ) /|D,~u,-(x,r) fax) " (1.10b)
, N
1D2uC, Ol ) = | Z ID;Deui(x,6) [ dx } (1100)
Q=15

if 1 <q<oo,and [u(,t)lljeogs) =max {|[ui(-, )| w3 : 1 <i <3} if g=oc. It will be also convenient to define
lu(-, )l = ess sup { [u(x, 0|2 : x e R?}. (1.10d)
2. Mathematical preliminaries

In this section, we recall Leray’s construction [6] and some basic properties of the resulting solutions, which we refer to
as Leray’s solutions. An important new result (Theorem 2.2 below) is also established here, taking advantage of Leray’s ideas.
For the construction of his solutions, Leray used an ingenious regularization procedure, which, for convenience, we briefly
review: taking (any) G € C°(R") nonnegative with Jz3 G(x)dx =1 and setting i1g s(-) € C*®(R3) by convolving ug(-) with
Gs(x) =8 "G(x/8), 8 > 0, one defines us, ps € C®°(R3 x [0, oo[) as the (unique, globally defined) classical L% solutions to
the regularized equations

ad
" U + us(-,t) - Vus + Vps = Aug, V-us(,t) =0, (2.1a)

oo
us(-,0) = ilg s := Gs xup € [ | H"(R?), (2.1b)
m=1
where u5(-, t) ;== G5 * u5(-, t). It was then shown by Leray that, for some sequence §' — 0, one has the weak convergence
uy(-,t) — u(-,t) as 8 =0, Vit>0, (2.2)

that is, ug(-,t) — u(-.t) weakly in L*(R3), for every t >0 (see [6], p. 237). This gives u(-,t) € L([0, 00), L2 (R?)) N
L2([0, 00), H(R?)) N €Y,([0, 00), L2(R3)), with u(-,t) continuous in L? at t =0 and solving the Navier-Stokes equations
(1.1) in the distributional sense. Moreover, the energy inequality (1.2) is satisfied for all t > 0, so that, in particular,

[o.¢]
2
/ IDuC, )2 gs dt < ||uo||L2 . (2.3)
A similar estimate for the regularized solutions us(-,t) is also valid, since we have, from (2.1) above, that
||u5('at)|| L2(R3) + 2/ ”Du(S( S)”LZ(RB) s< ||UO||f2(R3) (24)

for all t > 0 (and & > 0 arbitrary). Another important property shown in [6] is that u € C*®°([t,, oo[) for some t, > 1, with
D™u(-,t) € LY ([ t4, 00), L2(R3)) for each m > 1, cf. (1.3). This fact, together with Theorems 2.2 and 2.3, will greatly simplify
our main analysis in Section 3. Other results needed there have to do with the Helmholtz projection of —u(-,t) - Vu(.,t)
into L2 (R?), that is, the divergence-free field Q (-,t) € L2 (R3) given by

Q(,t):= —u(,t)-Vu(-,t) —Vp(,t), ae.t>0. (2.5)

Of similar interest is the quantity Q (-, t) := —us(-, t) - Vus(-, t) — Vps(-, t), which will be important in Theorem 2.2 below.
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Theorem 2.1. For almost every s > 0 (and every s > t,, with t, given in (1.3) above), one has

€29 Q (-, )l 2@3) < Kt — )7 *u(, 9)ll 23 IDUC, )| 2 g3) (2.6a)
and

129 Q (-, 9)lloe < K(t =)/ u(-, ) ool DUC, 9l 2R3, (2.6b)
forallt > s, where K = (8m)~3/4,
Proof. This is shown in [5], p. 236, using Fourier transforms. The following more direct argument was suggested by the
reviewer, as follows. Let P be the Helmholtz projection. Since, by definition, P is an orthogonal projection in the Hilbert
space of L2-vector fields, we have |Pf|,2 < | fll,2 for any L?-vector field f. Hence we also have [e2 =9 Q (-, s)|2 =
leA P[—u(.,s) - VU, 9)]1ll2 = [P[eA (—u(,s) - Vul, sl < 1e2 (—u(,s) - Vut, )2 < [T = 9)ll2luc,s) -
Vu(-,s)|;1, where T' denotes the heat kernel, so that [e*=9Q (-, )|z < |T(t — )| 2lluC,s)|2[IVu(, )| 2. This is

(2.6a). Similarly, €279 Q (-, s)[[1> < [Tt =) 112 Q (-, )l 2 < [IT(t — $) |2 U, 8) - VU, $) |2 < T (E =) 2[luC, )]~ x
[Vu(-, s)ll;2, which is (2.6b). O

In a completely similar way, considering the solutions to the regularized Navier-Stokes equations (2.1), one obtains
€29 Q5(. 9l 23y < Kt =) *[lus (. )l 23 I DUs (-, )l 23 (2.8)

for all t > s > 0 (and similarly for [|e2¢=9 Q 5(-, 5)|loo), Where K = (8m) /4, Q 5(-,5) = —ut5(-, s) - Vus(-,s) — Vps(-, 5).

Theorem 2.2. Let u(-, t), t > 0, be any particular Leray’s solution to (1.1). Given any pair of initial values ty > to > 0, one has

- K 2 z 1/2 p _ 7 \—3/4
Iv(, ) — v, D@3y < Wi ||"0||L2(R3) (to — to) /= (t — to) (2.9)
and
< r 2 = 1/2 = \—3/2
V(C,8) — VDl peomsy < 7 ||u0||L2(R3)(fo —to) "“(t —to) (2.10)

forallt > fo, where v(-, t) = A0 u(. o), ¥(-, t) = ety (.. {y) are the corresponding heat flows associated with to, fo, respec-
tively, and K = (8m)=3/4, I' = (4m)~3/2.

Proof. The following argument combines Leray’s construction [6] with the widely used strategy of handling nonlinear terms
as a Duhamel-type correction. We start by writing v(-, t) = e [u(., tg) — us(-, to)] + e2E"u; (-, to), t > to, with us(-, t)
given in (2.1), § > 0. Because

to
sCoto) =0 + [ €4079Q, . 9)ds,
0
where 11p, s = Gs xug and Q 5(-,5) = —us(-, s) - Vus(-, s) — Vps(-, s), we get
to
v(,t) =e* (o) —us(,to) ] + eMito 5 + f e Q (-, 5)ds,
0

for t > to. A similar expression holds for v(-,t) as well, giving
fo
V0 = v, ) =X 0u( o) —us(, fo) ] — AT, to) — us( to)] + f e Q (., 5)ds.
to

Therefore, given any K ¢ R® compact, we get, for each t > fg, § > 0:

to
1VC.0) — v(, Dl 2y < Js() + / €29 Q 5(, )l 2 ds
to

to
<Js®) + K / (t =97 us(, 9)ll 23 I Dus (-, )l 2 g3 ds
to
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K . I 2 5
= Js(®) + 5 (to —to) ” lluoll 2 g3 (t — to)

V2
by (2.4) and (2.8), where K = (8m)">4 and J(t) = |e® ) [u(-, f) — s, o)l 2, + €O Lu(-, to) — us (-, to)]ll 2
Taking § = 8’ — 0 according to (2.2), we get Js(t) — 0, since, by Lebesgue’s Dominated Convergence Theorem and (2.2),

we have, for any, ot > 0: ||e®T[u(-,0) — uy (-, )]l 2k — 0 as 8’ — 0. This shows (2.9). The proof of (2.10) is entirely
similar. O

W

Theorem 2.3. Let u(-, t), t > 0, be any particular Leray’s solution to (1.1). Then limy _, oo t'/2[| Du(-, t)| ;2 (3, = 0.

Proof. The following argument is taken from [5], p. 236. From Leray’s theory, ||[Du(-,t)|| L2(R3) is monotonically decreasing
everywhere on [tg, c0) if to > t, (see (1.3)) and ||u(~,t0)||Lz(]R3)||Du(-,t0)||Lz(]R3) < 1. Therefore, by (1.2), there must exist
tyx >ty such that ||Du(-, t)lle(Rz) is a smooth decreasing function of t on [t,, 00). Recalling (2.3), this immediately gives
the result. O

3. Leray’s problem in LZ(R3) and L™ (R3)

In this section, we derive (1.4), (1.5), (1.7) and (1.8) above. Let t, >> 1 be given in (1.3). Taking to > t, (arbitrary), we then
have the representation

t
u(,t) = e2u( o) + / e Q (,5)ds, t>to 3.1)
to

(in modern notation), by Duhamel’s principle, where Q (-, s) is defined in (2.5).
Theorem 3.1 (LERAY'S CLASSICAL L? PROBLEM). One has
lim |u(,t =0 3.2
t—>oo” G, )||L2(]R3) (3.2)
and, for any ty > 0:

lim t'/*luC, t) — e*Cu(, to)[| ;23 = 0. (33)
t— o0

Proof. It is sufficient to show (3.3); moreover, by (2.9), Theorem 2.2, we need only consider ty > t,, so that (3.1) is valid.
Now, given € > 0 arbitrary, let t¢ > tg be taken large enough that, by Theorem 2.3, we have

t'/2 || Du-, )| € Vt>te. (3.4)

<
L2(R3) —

We then get

(t =t u(, ) — eACuc o) 2 g3y

t
<=t [ 1629 QC iz ds Dby (31)

to
t
<I(t,te) + K(t —te)'/* / (t =) *u(, 9)ll 23 IDUC, 9l 23y ds  [by (2.62)]
te

t
<I(t,te) + Kol 2 g3€ (¢ — te)]/4/(t—s)_3/4s_1/2 ds  [by(1.2),(3.4)]
te

< I(¢, te) + 0.636 |1l 2 3, €

for all t > t., where K = (8m)~3/4 and
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te
I(t,te) = K(t —te)'* f (€ =) uC, )l 2@s) I DuC, 5) [ 23, ds
to

te

< K toll 2 gy (€ — £0) 112 f 1DuC, )2z ds.

to

Therefore, (t —t)V/4|u(-, t) — eA=u(. to) |23y < ol 2r3)€ for all t > te sufficiently large. This shows (3.3). O
Theorem 3.2 (LERAY’'S L° PROBLEM). One has
lim /4 u(, )l gz = 0 (3.5)
t— o0
and, for any tg > 0:

lim tlluC,t) — e u(, to)|l o3y = 0. (3.6)
t— o0

Proof. Again, it is sufficient to show (3.6), which can be done as follows. (For an alternative derivation, see [10].) By
(2.10), Theorem 2.2, we need only consider the case to > t, [see (1.3)], to which (3.1) applies. Given € > 0 small, let (by
Theorem 2.3) te > to be so large that (3.4) holds. Setting w(t) := (t — t¢)>/2||u(-, t) — e u(. tg)|loo, p(t) 1= (t +te)/2,
V(- t) ;= eA=)y(. ty), we have w(t) < I(t) + J(t) for t > t., where (using elementary heat kernel estimates):
() wu(t)
_ _ _ 1 A—
I(t) = (t — te)*/? / 1e2CQ (-, ) loods < (4m) /4t — 1)/ / (t =972 29 Q (-, 9|23 ds
to to
()
< (@m 3 —te)?? / (t — )72 U, )l 2@ I DUC. )|l 23y ds  [by (2.62)]
fo
pu(t)
< (4m) 72 luo |1 s, (te — )" + 2m) > %€ luoll 2 3, / s71/2ds [by(12),(34)]

te

and

t
JO = (t - te)*? f 16269 Q (-, 5) oo ds
Ju(t)

t
< @m A —te)*? / (t =) U, 9)lloo | DUC, 9)[| 23, ds  [by (2.6b)]

(t)

t
< (8m) e (t —te)?/? / t—s) 4712 u(,s) —v(,5) oo ds

(D)

t
+@m) e (t— o) / (€ — 53452 (., 9) oo ds

H(t)
t

<@m e / (t—5)4 (s —te) T2 w(s)ds + (2m) %€ |uol| 2 g3, (t — te)'/?

()

for all t > t,, so that (t —te)[|u(-, t) — A= u(- to) 0o < [luoll;2(p3)€ for all t > t, sufficiently large. This shows (3.6). O



J.C. Rigelo et al. / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 503-509 509

Acknowledgements
This work was partly supported by NSF (USA), Grant no. 1255622 and CAPES (Brazil), Grant no. 88881.067966/2014-01.

References

[1] P. Braz e Silva, L. Schiitz, P.R. Zingano, On some energy inequalities and supnorm estimates for advection-diffusion equations in R", Nonlinear Anal.
93 (2013) 90-96.
[2] T. Gallay, C.E. Wayne, Long-time asymptotics of the Navier-Stokes and vorticity equations on R3, Philos. Trans. R. Soc. Lond. 360 (2002) 2155-2188.
[3] R. Kajikiya, T. Miyakawa, On the L? decay of weak solutions of the Navier-Stokes equations in R", Math. Z. 192 (1986) 135-148.
[4] T. Kato, Strong LP-solutions of the Navier-Stokes equations in R™, with applications to weak solutions, Math. Z. 187 (1984) 471-480.
[5] H.-O. Kreiss, T. Hagstrom, J. Lorenz, P.R. Zingano, Decay in time of incompressible flows, J. Math. Fluid Mech. 5 (2003) 231-244.
[6] J. Leray, Essai sur le mouvement d’un fluide visqueux emplissant I'espace, Acta Math. 63 (1934) 193-248.
[7] J. Lorenz, P.R. Zingano, The Navier-Stokes equations for incompressible flows: solution properties at potential blow-up times, Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, 2003, freely available at: arXiv:1503.01767.
[8] K. Masuda, Weak solutions of the Navier-Stokes equations, Tohoku Math. J. 36 (1984) 623-646.
[9] M.E. Schonbek, Large time behaviour of solutions of the Navier-Stokes equations, Commun. Partial Differ. Equ. 11 (1986) 733-763.
[10] L. Schiitz, J.P. Zingano, P.R. Zingano, On the supnorm form of Leray’s problem for the incompressible Navier-Stokes equations, ]. Math. Phys. 56 (2015)
071504.
[11] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on R", J. Lond. Math. Soc. (2) 35 (1987) 303-313.


http://refhub.elsevier.com/S1631-073X(16)00061-3/bib4272617A53636875747A5A696E67616E6F32303133s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib4272617A53636875747A5A696E67616E6F32303133s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib47616C6C61795761796E6532303032s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib4B616A696B6979614D6979616B61776131393836s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib4B61746F31393834s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib4B72656973734861677374726F6D4C6F72656E7A5A696E67616E6F32303033s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib4C6572617931393334s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib4D617375646131393834s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib5363686F6E62656B31393836s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib53636875747A5A696E67616E6F5A696E67616E6F32303135s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib53636875747A5A696E67616E6F5A696E67616E6F32303135s1
http://refhub.elsevier.com/S1631-073X(16)00061-3/bib576965676E657231393837s1

	Leray's problem for the Navier-Stokes equations revisited
	1 Introduction
	2 Mathematical preliminaries
	3 Leray's problem in L2(R3) and L∞(R3)
	Acknowledgements
	References


