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In fluid mechanics, the RANS modeling (Reynolds Averaged Navier–Stokes equation) 
assumes that the period of the averaged solutions to the Navier–Stokes equations is several 
orders of magnitude larger than the turbulent fluctuations. A type of simple model often 
used by engineers is a mixing-length model called “Smagorinsky modeling”. In this paper, 
we present some theoretical and numerical results on a mixing-length model in which the 
eddy viscosity is depending on the strain tensor and on the distance to the wall of the 
fluid flow domain. In particular, we show that the so-called von Karman model becomes 
an ill-posed problem when the laminar viscosity tends to zero.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

En mécanique des fluides, la décomposition de Reynolds appliquée aux équations de 
Navier–Stokes suppose que la période des solutions moyennées est bien plus grande que 
les fluctuations turbulentes locales. Un modèle de longueur de mélange populaire chez les 
ingénieurs est appelé « modèle de Smagorinsky ». Dans cette courte note, nous présentons 
quelques résultats théoriques et numériques sur un modèle de longueur de mélange dont 
la viscosité turbulente dépend à la fois du tenseur des déformations et de la distance à 
la paroi la plus proche. En particulier, nous montrons que le modèle dit de von Karman 
devient mal posé lorsque la viscosité laminaire tend vers zéro.
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1. Introduction

If u and p are the velocity and the pressure of an incompressible viscous fluid of density ρ , submitted to a force f , 
flowing in a cavity � ⊂R

3 with boundary ∂�, the Navier–Stokes equations on � take the form

ρ
∂u

∂t
+ ρ(u · ∇)u − div(2με(u)) + ∇p = f , (1)

div(u) = 0, (2)

with u = 0 on ∂�, where here ε(u) = 1
2 (∇u + ∇uT) and f is a given smooth force field.

In Smagorinsky’s models [8], the viscosity μ depends on ε(u) and on a length scale, which is usually function of the 
discretization mesh size and the distance d∂�(x) of a point x ∈ � to the boundary ∂�, to reflect the fact that turbulence 
near walls is different. In this paper, we treat Smagorinsky models in which the viscosity takes the form

μ = ρ(ν0 + l2−α�αdα
∂� |ε(u)|), (3)

where ν0 > 0 corresponds to a laminar kinematic viscosity, |ε| = (�3
i, j=1ε

2
i, j)

1/2, � = 0.41 is the von Kármán constant, α is 
a positive constant and l is a characteristic length of �.

The cases with α = 0 can be treated in usual Sobolev spaces and their analysis can be found in some papers (Baranger, 
[1]). At the opposite, the cases with α > 0 have to be treated in weighted Sobolev spaces and present several difficulties.

In particular, a very popular model for treating a fluid flow in-between two plates is the von Kármán model correspond-
ing to α = 2. We show that this model becomes ill posed when the kinematic laminar viscosity ν0 is vanishing. Moreover, 
for α = 2, Korn’s inequality is probably missing (see Remark 3 below). The well-posed character of the problem is an open 
problem.

2. Main results

In this short note, we start by presenting some results proven in [7] concerning the analysis of a stationary Stokes 
problem with a viscosity given by (3). To do this, let us consider the stationary Stokes problem with renormalized p and f
by ρ (p := p/ρ, f := f/ρ):

−2 div[(ν0 + l2−α�αdα
∂� |ε(u)|)·ε(u)] + ∇p = f , in �, (4)

div(u) = 0, in �, (5)

u = 0, on ∂�. (6)

Here, � is a bounded domain in R3 with a Lipschitz boundary ∂�, f ∈ L2 (�)3 and 0 ≤ α < 2. In the following, L3
dα (�) will 

denote the set of measurable functions g : � →R such that 
∫
�

|g|3 dα
∂�dx < ∞ and W 1,3

dα,0(�) will be the set of functions of 
L3

dα (�) whose first derivatives are in L3
dα (�) with vanishing trace on ∂� (see [6]). The space W 1,3

dα (�) is provided with the 
norm ‖g‖W 1,3

dα (�)
= (

∫
�
(|g|3 + |∇g|3)dα

∂�(x)dx)
1
3 . In order to obtain a natural formulation of Equation (4), we have to define 

the reflexive Banach space X = H1
0(�)3 ∩ W 1,3

dα,0(�)3 provided with the norm ‖ · ‖H1(�) + ‖ · ‖W 1,3
dα (�)

. Moreover, we denote 
by Xdiv the space Xdiv := {u ∈ X : div(v) = 0}.

Multiplying (4) by a test function v , integrating by parts on � and taking into account (5) and (6), we can show that u
is solution to the following problem: find u ∈ Xdiv satisfying

∫

�

2(ν0 + l2−α�αdα
∂� |ε(u)|)ε(u) : ε (v)dx =

∫

�

f ·vdx, ∀v ∈ Xdiv. (7)

Remark 1. When � is a polyhedral domain, it is easy to show that W 1,3
dα,0(�) ⊂ H1

0(�) with continuous injection as 0 ≤
α < 1

2 , implying that X = W 1,3
dα,0(�)3. However, when α ≥ 1

2 , W 1,3
dα,0(�) is no more contained in H1

0(�) and conversely. It is 
the reason for which X is defined with H1

0(�)3 ∩ W 1,3
dα,0(�)3.

By considering the real function A : R+ × � →R
+ defined by

A (s, x) = ν0
s2

2
+ l2−α�αdα

∂�(x)
s3

3
, (8)

we can easily show that the functional J : Xdiv → R given by
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J (v) =
∫

�

[2A (|ε(v)| , x) − f ·v]dx (9)

is C1 (Xdiv) ([6,3]) and its derivative D J in u ∈ Xdiv takes on the form

D J (u) v =
∫

�

[2(ν0 + l2−α�αdα
∂� |ε(u)|)ε(u) : ε (v) − f ·v]dx, ∀v ∈ Xdiv. (10)

By comparison with (7), we conclude that the Stokes Problem (10) can be interpreted as Euler Equation D J (u) = 0 for the 
minimization of the functional J in a “saddle point” formulation with the constraint div(u) = 0.

Using standard Korn’s inequality in H1
0(�)3 and Korn’s inequality in the weighted Sobolev space W 1,3

dα,0(�)3 with 0 <
α < 2 ([5]) together with the compactness of the embedding of W 1,3

dα,0(�)3 in L3
dα (�) ([4]), we can prove that the functional 

J is coercive on Xdiv (see [2] for the definition). After remarking that J is strictly convex, we can prove the main result of 
this paper:

Theorem 2.1. Under hypotheses 0 ≤ α < 2 and f ∈ L2 (�)3 , there exists a unique u ∈ Xdiv satisfying J (u) ≤ J (v), for every v in 
Xdiv . Moreover u is the unique solution to (7).

In order to obtain a weak solution (u, p) of equations (4)–(6), it is natural to look for p in the space Y = L2
0 ⊕ L3/2

d−α/2,0
(index zero means that the integral is vanishing) by using an inf–sup condition with the spaces X–Y . Actually this is an 
open problem when W 1,3

dα,0(�) is not embedded in H1
0(�).

However, we can prove the following relations using inf–sup conditions L2
0 − H1

0 and L3/2
d−α/2,0

− W 1,3
dα,0 (�):

Lemma 1. There exists a unique p1 in L2
0 and a unique p2 in L3/2

d−α/2,0
satisfying

∫

�

p1· div (v)dx =
∫

�

2ν0ε(u) : ε (v)dx −
∫

�

f ·vdx, ∀ v ∈ H1
0 (�)3 , (11)

∫

�

p2· div (v)dx =
∫

�

2l2−α�αdα
∂� |ε(u)|ε(u) : ε (v)dx, ∀ v ∈ W 1,3

dα,0 (�)3 . (12)

We thus immediately obtain the following existence result:

Theorem 2.2. For 0 ≤ α < 2, the couple (u, p = p1 + p2) ∈ X × Y is solution to the non-linear Stokes problem:
∫

�

2(ν0 + l2−α�αdα
∂� |ε(u)|)ε(u) : ε(v) −

∫

�

p div(v)dx =
∫

�

f ·vdx ∀v ∈ X, (13)

∫

�

q div(u)dx = 0 ∀q ∈ Y . (14)

The problem of the uniqueness of pressure p is open when W 1,3
dα,0(�) is not included in H1

0(�). This is the case when α
is close to 2.

Remark 2. For 0 ≤ α < 2, we can take ν0 = 0 and minimize the functional J on Xdiv = {v ∈ W 1,3
dα,0(�)3 : div(v) = 0}. Then we 

have existence and uniqueness of the solution (u, p = p2) of the non-linear Stokes problem. This result remains true when 
ν0 is strictly positive and α is such that W 1,3

dα,0(�) ⊂ H1
0(�). Indeed, in this case L3/2

d−α/2,0
(�) ⊂ L2

0(�) and Y = L3/2
d−α/2,0

(�).

Remark 3. For α = 2 (von Karman model), there is no trace of u on ∂� when u ∈ W 1,3
d2 (�)3. An example is given by 

g(x) = ln(| ln(x)|), x ∈ (0, 12 ). So we cannot take ν0 = 0 when imposing u = 0 on the boundary. When ν0 = 0, the von 
Kármán model is ill-posed.

Remark 4. A consequence of Remark 3 is that when using a numerical method applied to the von Kármán model with ν0
small with respect to the numerical viscosity, the obtained results depend on the mesh of the method.
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Table 1
Numerical resolution of the non-linear stationary Stokes problem (4)–(6) (top) and the stationary Navier–Stokes problem (down). The domain is a rectan-
gular parallelepiped � = [0, 1] × [0, 1] × [0, 0.1] with N nodes on each side for a total of 5N3 tetrahedra. The force is given by f = (0.3 ∗ (y − 0.5)2, 0.3 ∗
(x − 0.5)2, 0) and we set l = 0.1.

α = 0 α = 2

ν0 = 1e−5 ν0 = 1e−7 ν0 = 1e−5 ν0 = 1e−7

νT umax ReT νT umax ReT νT umax ReT νT umax ReT

N 20 4.05e−4 4.84e−2 12 4.08e−4 4.86e−2 12 1.79e−4 2.01e−1 112 1.85e−4 2.07e−1 112
40 4.22e−4 5.21e−2 12 4.29e−4 5.28e−2 12 1.88e−4 2.68e−1 142 1.95e−4 2.81e−1 144
80 4.32e−4 5.32e−2 12 4.36e−4 5.38e−2 12 1.97e−4 3.20e−1 162 2.10e−4 3.45e−1 173

α = 0 α = 2

ν0 = 1e−5 ν0 = 1e−7 ν0 = 1e−5 ν0 = 1e−7

νT umax ReT νT umax ReT νT umax ReT νT umax ReT

N 20 4.01e−4 4.83e−2 12 4.06e−4 4.85e−2 12 1.61e−4 1.95e−1 121 1.68e−4 2.01e−1 121
40 4.21e−4 5.20e−2 12 4.27e−4 5.26e−2 12 1.64e−4 2.45e−1 149 1.66e−4 2.55e−1 152
80 4.30e−4 5.30e−1 12 4.34e−4 5.33e−2 12 1.62e−4 2.79e−1 172 1.69e−4 2.98e−1 177

Remark 5. Korn’s inequality is probably wrong in W 1,3
d2 (�)3 (Kalamajska’s conjecture [5]). The well-posed character of the 

von Kármán model for the stationary Stokes problem is an open question.

Remark 6. The minimization technique of a functional used above to prove the existence of a velocity field cannot be 
applied to the Navier–Stokes equations. However, the numerical computations obtained on a discretization of stationary 
Navier–Stokes equations lead to the same conclusions as those mentioned above because the turbulent viscosity gives rise 
to a small local Reynolds number (see Table 1).

3. Numerical experiments

We finish this short note with some numerical results related to the problems from the previous section, with a partic-
ular attention to the case α = 2. Indeed, from Remark 4, when using a finite element approximation on von Kármán model 
(α = 2) and when the kinematic laminar viscosity ν0 is “small” with respect to the numerical viscosity of the method, the 
obtained results can depend strongly on the mesh. In this case we take a very thin mesh close to the walls in order to 
overcome this situation.

In Table 1 we present numerical results of the non-linear stationary Stokes problem (4)–(6) discretized with the 
P1/bubble −P1 finite element method. The non-linearity is treated with Newton’s method and each linear system is solved 
with the preconditioned GMRES algorithm. We display for different values of α and ν0 the maximum normed velocity 
field umax, the numerical viscosity νT (the numerical value of l2−α�αdα

∂�|ε(umax)|) and the resulting Reynolds number 
ReT = umaxl

νT
. The numerical results depend strongly on the mesh when α = 2. The same behavior is observed for the station-

ary Navier–Stokes equations corresponding to (4)–(6).
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