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We consider the elliptic–elliptic, focussing Davey–Stewartson equations, which have an 
explicit bright line soliton solution. The existence of a family of periodic solitons, which 
have the profile of the line soliton in the longitudinal spatial direction and are periodic 
in the transverse spatial direction, is established using dynamical systems arguments. We 
also show that the line soliton is linearly unstable with respect to perturbations in the 
transverse direction.
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r é s u m é

Nous considérons les équations de Davey–Stewartson focalisantes dans le cas elliptique–
elliptique, lorsqu’elles possèdent une solution unidimensionnelle de type soliton. En 
utilisant des méthodes de la théorie des systèmes dynamiques, nous montrons l’existence 
d’une famille de solutions bidimensionnelles qui ont le profil d’un soliton dans la direction 
spatiale longitudinale et sont périodiques dans la direction spatiale transverse. Nous 
montrons également que le soliton unidimensionnel est linéairement instable vis-à-vis des 
perturbations transverses.
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1. Introduction

The Davey–Stewartson equations

iAt + εAxx + A yy + (γ1|A|2 + γ2φx)A = 0, (1)

γ3φxx + φyy − γ3|A|2x = 0, (2)

where ε = ±1, γ1, γ2, γ3 ∈ R \ {0} with γ2 + γ3 = ±2, arise in the modelling of wave packets on the surface of a three-
dimensional body of water; the variables A = A(x, y, t) and φ = φ(x, y, t) are the complex wave amplitude and real mean 
flow and the signs of the parameters depend upon the particular physical regime under consideration (see Ablowitz & Segur 
[2, §2.2]). In the literature the cases γ1 +γ2 = 2 and γ1 +γ2 = −2 are termed respectively focussing and defocussing, and the 
system is classified as hyperbolic–hyperbolic, hyperbolic–elliptic, elliptic–hyperbolic or elliptic–elliptic according to the signs 
of ε and γ3. Certain special cases of the mixed-type systems are often referred to as DS-I and DS-II and are known to be 
completely integrable (see Ablowitz & Clarkson [1, p. 60]). Note that solutions of (1), (2) which are spatially homogeneous 
in the y-direction satisfy the cubic nonlinear Schrödinger equation

iAt + Axx + (γ1 + γ2)|A|2 A = 0 (3)

(where φ is recovered from (2)).
Solutions of (3) which converge to an equilibrium as x → ±∞ and are 2π-periodic in t are referred to as line solitons. 

In the defocussing case the equation admits a ‘dark’ line soliton which decays to a nontrivial equilibrium, while in the 
focussing case it has the ‘bright’ line soliton

A�(x, t) = eit sech(x) (4)

which satisfies A�(x, t) → 0 as x → ±∞. In this note we examine periodic solitons which decay as x → ±∞ and are periodic 
in y and t , and in particular consider how they emerge from line solitons in a dimension-breaking bifurcation. Explicit 
formulae for dark periodic solitons have been obtained for the integrable versions of the equations by Watanabe & Tajiri [9]
and Arai, Takeuchi & Tajiri [3]; here we establish the existence of bright periodic solitons to the elliptic–elliptic, focussing 
equations (ε = 1, γ1 + γ2 = 2, γ3 > 0) under the additional condition γ2 > 0 by dynamical-systems methods.

Theorem 1.1. Suppose that ε = 1, γ1 + γ2 = 2 and γ2, γ3 > 0. There exist an open neighbourhood N of the origin in R, a positive 
real number ω0 and a family of periodic solitons {eitus(x, y), φs(x, y)}s∈N to (1), (2) which emerges from the bright line soliton in a 
dimension-breaking bifurcation. Here

us(x, y) = sech(x) + u′
s(x, y), φs(x, y) = tanh(x) + φ′

s(x, y),

in which u′
s(·, ·), φ′

s(·, ·) are real, have amplitude O (|s|) and are even in both arguments and periodic in their second with frequency 
ω0 + O (|s|2).

We also present a corollary to this result which asserts that the bright line soliton is transversely linearly unstable and 
thus confirms the prediction made by Ablowitz & Segur [2, §3.2].

Theorem 1.2. Suppose that ε = 1, γ1 +γ2 = 2 and γ2, γ3 > 0. For each sufficiently small positive value of λ the linearisation of (1), (2)
at A�(x, t) = eit sech(x), φ�(x, y) = tanh(x) has a solution of the form eλt+it(A(x, y), φ(x, y)), where (A(x, y), φ(x, y)) is periodic 
in y and satisfies (A(x, y), φ(x, y)) → (0, 0) as x → ±∞.

In the remainder of this article we suppose that ε = 1, γ1 + γ2 = 2 and γ2, γ3 > 0. Equations (1), (2) with these coeffi-
cients arise when modelling water waves with weak surface tension. The existence and transverse linear instability of peri-
odic solitons for the water-wave problem in this physical regime has recently been established by Groves, Sun & Wahlén [6].

2. Spatial dynamics

The equations for solutions of (1), (2) for which A(x, y, t) = eit
(
u1(x, y, t) + iu2(x, y, t)

)
(and u1, u2 are real-valued) can 

be formulated as the evolutionary system

u1y = v1, (5)

v1y = u2t − u1xx + u1 − (γ1u2
1 + γ1u2

2 + γ2φx)u1, (6)

u2y = v2, (7)

v2y = −u1t − u2xx + u2 − (γ1u2
1 + γ1u2

2 + γ2φx)u2, (8)

φy = ψ, (9)

ψy = −γ3φxx + γ3(u2 + u2)x, (10)
1 2
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where the spatial direction y plays the role of time. To identify an appropriate functional-analytic setting for these equations, 
let us first specialise to stationary solutions, so that

u1y = v1, (11)

v1y = −u1xx + u1 − (γ1u2
1 + γ1u2

2 + γ2φx)u1, (12)

u2y = v2, (13)

v2y = −u2xx + u2 − (γ1u2
1 + γ1u2

2 + γ2φx)u2, (14)

φy = ψ, (15)

ψy = −γ3φxx + γ3(u2
1 + u2

2)x. (16)

Equations (11)–(16) constitute a semilinear evolutionary system in the phase space X = H1(R) × L2(R) × H1(R) ×
L2(R) × H1(R) × L2(R); the domain of the linear part of the vector field defined by their right-hand side is D =
H2(R) × H1(R) × H2(R) × H1(R) × H2(R) × H1(R). This evolutionary system is reversible, that is invariant under 
y �→ −y, (u1, v1, u2, v2, φ, ψ) �→ S(u1, v1, u2, v2, φ, ψ), where the reverser S : X → X is defined by S(u1, v1, u2, v2, φ, ψ) =
(u1, −v1, u2, −v2, φ, −ψ). It is also invariant under the reflection R : X → X given by R(u1(x), v1(x), u2(x), v2(x), φ(x), ψ(x))
= (u1(−x), v1(−x), u2(−x), v2(−x), −φ(−x), −ψ(−x)), and one may seek solutions which are invariant under this symme-
try by replacing X and D by respectively

Xr := X ∩ Fix R = H1
e(R) × L2

e(R) × H1
e(R) × L2

e(R) × H1
o(R) × L2

o(R)

and

Dr := D ∩ Fix R = H2
e(R) × H1

e(R) × H2
e(R) × H1

e(R) × H2
o(R) × H1

o(R),

where

Hn
e(R) = {w ∈ Hn(R) : w(x) = w(−x) for all x ∈R},

Hn
o(R) = {w ∈ Hn(R) : w(x) = −w(−x) for all x ∈ R}.

It is also possible to replace Dr by the extended function space

D� := H2
e(R) × H1

e(R) × H2
e(R) × H1

e(R) × H2
�,o(R) × H1

o(R),

where

H2
�,o(R) = {w ∈ L2

loc(R) : wx ∈ H1(R), w(x) = −w(−x) for all x ∈R}
(a Banach space with norm ‖w‖�,2 := ‖wx‖1). This feature allows one to consider solutions to (11)–(16) whose 
φ-component is not evanescent; in particular solutions corresponding to line solitons fall into this category (see below).

Each point in phase space corresponds to a function on the real line which decays as x → ∞, and the dynamics of 
equations (11)–(16) in y describes the behaviour of their solutions in the y-direction. In particular, equilibria correspond to 
line solitons (the equilibrium

(u�
1(x), v�

1(x), u�
2(x), v�

2(x),φ�(x),ψ�(x)) = (sech(x),0,0,0, tanh(x),0)

corresponds to the line soliton (4)), while periodic orbits correspond to periodic solitons (see Fig. 1). In Section 4 we 
construct dimension-breaking bifurcations by writing

(u1, v1, u2, v2, φ,ψ) = (u�
1, v�

1, φ
�, u�

2, v�
2, φ

�,ψ�) + (u′
1, v ′

1, u′
2, v ′

2, φ
′,ψ ′) (17)

and seeking small-amplitude periodic solutions of the resulting evolutionary system

w y = Lw + N(w) (18)

for w = (u′
1, v

′
1, u

′
2, v

′
2, φ

′, ψ ′), where

L

⎛
⎜⎜⎜⎜⎜⎝

u1
v1
u2
v2
φ

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

v1
−u1xx + u1 − (3γ1 + γ2) sech2(x)u1 − γ2 sech(x)φx

v2
−u2xx + u2 − 2 sech2(x)u2

ψ

⎞
⎟⎟⎟⎟⎟⎠

,

ψ −γ3φxx + 2γ3(sech(x)u1)x
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Fig. 1. A family of periodic solutions surrounding a nontrivial equilibrium solution to (11)–(16) in its phase space (left) corresponds to a dimension-breaking 
bifurcation of a branch of periodic solitons from a line soliton (right, plot of u(x, y)).

N

⎛
⎜⎜⎜⎜⎜⎝

u1
v1
u2
v2
φ

ψ

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
−3γ1 sech(x)u2

1 − γ1 sech(x)2u2
2 − γ2u1φx − γ1u3

1 − γ1u1u2
2

0
−2γ1 sech(x)u1u2 − γ2u2φx − γ1u3

2 − γ1u2
1u2

0
γ3(u2

1 + u2
2)x

⎞
⎟⎟⎟⎟⎟⎠

and we have dropped the primes for notational simplicity. Note that (18) has the invariant subspace X̃ = {(u2, v2) = (0, 0)}, 
and we define X̃r = Xr ∩ X̃ , D̃r = Dr ∩ X̃ and D̃� = D� ∩ X̃ .

Returning to (5)–(10), observe that these equations constitute a reversible evolutionary equation with phase space 
H1((−t0, t0), X); the domain of its vector field is H2((−t0, t0), X) ∩ H1((−t0, t0), D) and its reverser is given by the point-
wise extension of S : X → X to H1((−t0, t0), X). Seeking solutions of the form (17), we find that

w y = T wt + Lw + N(w),

where T (u1, v1, u2, v2, φ, ψ) = (0, u2, 0, −u1, 0, 0) and we have again dropped the primes. In Section 5 we demonstrate 
that the solution (u�

1, v�
1, u

�
2, v

�
2, φ

�, ψ�) of (5)–(10) is transversely linearly unstable by constructing a solution of the linear 
equation

w y = T wt + Lw (19)

of the form eλt uλ(y), where uλ ∈ C1
b(R, X) ∩ Cb(R, D) is periodic, for each sufficiently small positive value of λ.

3. Spectral theory

In this section we determine the purely imaginary spectrum of the linear operator L : D ⊆ X → X . To this end we study 
the resolvent equations

(L − ikI)w = w† (20)

for L, where w = (u1, v1, u2, v2, φ, ψ), w† = (u†
1, v

†
1, u

†
2, v

†
2, φ

†, ψ†) and k ∈ R \ {0}; since L is real and anticommutes with 
the reverser S it suffices to examine non-negative values of k, real values of u1, u2, φ, v†

1, v†
2, ψ† and purely imaginary 

values of u†
1, u†

2, φ†, v1, v2, ψ . Observe that (20) is equivalent to the decoupled equations

(A1 + k2 I)

(
u1
φ

)
=

(
v†

1 + iku†
1

ψ† + ikφ†

)
, (A2 + k2 I)u2 = v†

2 + iku†
2,

where A1 : H2(R) × H2(R) ⊆ L2(R) × L2(R) → L2(R) × L2(R) and A2 : H2(R) ⊆ L2(R) → L2(R) are defined by

A1

(
u1
φ

)
=

(−u1xx + u1 − (3γ1 + γ2) sech2(x)u1 − γ2 sech(x)φx

−γ3φxx + 2γ3(sech(x)u1)x

)
,

A2u2 = −u2xx + u2 − 2 sech2(x)u2;
the values of v1, v2 and ψ are recovered from the formulae

v1 = u†
1 + iku1, v2 = u†

2 + iku2, ψ = φ† + ikφ.

It follows that L − ikI is (semi-)Fredholm if A1 + k2 I and A2 + k2 I are (semi-)Fredholm and the dimension of the (gener-
alised) kernel of L − ikI is the sum of those of A1 + k2 I and A2 + k2 I .
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Lemmata 3.1 and 3.2 below record the spectra of A1 and A2; part (i) of the following proposition (see Drazin [4, 
Chapter 4.11]) is used in the proof of the former while the latter follows directly from part (ii).

Proposition 3.1.

(i) The spectrum of the self-adjoint operator 1 − ∂2
x − 6 sech2(x) : H2(R) ⊆ L2(R) → L2(R) consists of essential spectrum [1, ∞)

and two simple eigenvalues at −3 and 0 (with corresponding eigenvectors sech2(x) and sech′(x)).
(ii) The spectrum of the self-adjoint operator 1 − ∂2

x − 2 sech2(x) : H2(R) ⊆ L2(R) → L2(R) consists of essential spectrum [1, ∞)

and a simple eigenvalue at 0 (with corresponding eigenvector sech(x)).

Lemma 3.1. The spectrum of the operator A1 consists of essential spectrum [0, ∞) and an algebraically simple negative eigenvalue 
−ω2

0 whose eigenspace lies in L2
e(R) × L2

o(R).

Proof. First note that A1 is a compact perturbation of the constant-coefficient operator H2(R) × H2(R) ⊆ L2(R) × L2(R) →
L2(R) × L2(R) defined by

(u1, φ) �→ (−u1xx + u1,−γ3φxx),

whose essential spectrum is clearly [0, ∞); it follows that σess(A1) = [0, ∞) (see Kato [8, Chapter IV, Theorem 5.26]). 
Because A1 is self-adjoint with respect to the inner product 〈(u1

1, φ1), (u2
1, φ

2)〉 = 〈u1
1, u

2
1〉0 + 1

2 γ2γ
−1

3 〈φ1, φ2〉0 for L2(R) ×
L2(R) the remainder of its spectrum consists of negative real eigenvalues with finite multiplicity.

One finds by an explicit calculation that

〈A1(u1, φ), (u1, φ)〉 = 〈u1 − u1xx − 6 sech2(x)u1, u1〉0 + γ2

2

∫
R

(φx − 2 sech(x)u1)
2 dx,

which quantity is positive for (u1, φ) ∈ H2(R) × H2(R) with

〈(u1, φ), (sech2(x),0)〉 = 0

(see Proposition 3.1(ii)). It follows that any subspace of H2(R) × H2(R) upon which A1 is strictly negative definite is 
one-dimensional. The calculation

lim
R→∞〈A1(sech(x),2φR(x) tanh(x)), (sech(x),2φR(x) tanh(x))〉 = −16

3
,

where φ(R) = χ(x/R) and χ ∈ C∞
0 (R) is a smooth cut-off function equal to unity in [−1, 1], shows that inf σ(A1) < 0, so 

that the spectral subspace of H2(R) × H2(R) corresponding to the part of the spectrum of A1 in (−∞, −ε) is nontrivial and 
hence one-dimensional for every sufficiently small value of ε > 0. We conclude that A1 has precisely one simple negative 
eigenvalue −ω2

0.
Finally, the same argument shows that A1|L2

e(R)×L2
o(R) also has precisely one simple negative eigenvalue. It follows that 

this eigenvalue is −ω2
0 , whose eigenspace therefore lies in L2

e(R) × L2
o(R). �

Lemma 3.2. The spectrum of the operator A2 consists of essential spectrum [1, ∞) and an algebraically simple negative eigenvalue 
at 0 whose eigenspace lies in L2

e(R).

Corollary 3.3. The purely imaginary number ik belongs to the resolvent set of L for k ∈R \ {0, ±ω0} and ±iω0 are algebraically simple 
purely imaginary eigenvalues of L whose eigenspace lies in X̃r.

4. Application of the Lyapunov–Iooss theorem

Our existence theory for periodic solitons is based upon an application of the following version of the Lyapunov centre 
theorem for reversible systems (see Iooss [7]) which allows for a violation of the classical nonresonance condition at the 
origin due to the presence of essential spectrum there (a feature typical of spatial dynamics formulations for problems in 
unbounded domains) provided that the ‘Iooss condition at the origin’ (hypothesis (viii)) is satisfied.

Theorem 4.1 (Iooss–Lyapunov). Consider the differential equation

wτ = L(w) + N(w), (21)

in which w(τ ) belongs to a real Banach space X . Suppose that Y , Z are further real Banach spaces with the properties that
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(i) Z is continuously embedded in Y and continuously and densely embedded in X ,
(ii) L :Z ⊆X →X is a closed linear operator,

(iii) there is an open neighbourhood U of the origin in Y such that L ∈ L(Y, X ) and N ∈ C3
b,u(U , X ) (and hence N ∈

C3
b,u(U ∩Z, X )) with N(0) = 0, dN[0] = 0.

Suppose further that

(iv) equation (21) is reversible: there exists an involution S ∈ L(X ) ∩ L(Y) ∩ L(Z) with SLw = −L S w and S N(w) = −N(S w)

for all w ∈ U ,

and that the following spectral hypotheses are satisfied.

(v) ±iω0 are nonzero simple eigenvalues of L;
(vi) inω0 ∈ ρ(L) for n ∈ Z \ {−1, 0, 1};

(vii) ‖(L − inω0 I)−1‖X→X = o(1) and ‖(L − inω0 I)−1‖X→Z = O (1) as n → ±∞;
(viii) For each w† ∈ U the equation

Lw = −N(w†)

has a unique solution w ∈Y and the mapping w† �→ w belongs to C3
b,u(U , Y).

Under these hypotheses there exist an open neighbourhood I of the origin in R and a continuously differentiable branch
{(v(s), ω(s))}s∈I of reversible, 2π/ω(s)-periodic solutions in C1

per(R, Y ⊕ X ) ∩ Cper(R, Y ⊕ Z) to (21) with amplitude O (|s|). 
Here the direct sum refers to the decomposition of a function into its mode 0 and higher-order Fourier components, the subscript ‘per’ 
indicates a 2π/ω(s)-periodic function and ω(s) = ω0 + O (|s|2).

Theorem 1.1 is proved by applying the Iooss–Lyapunov theorem to (18), taking X = X̃r, Y = D̃� , Z = D̃r and U = D̃�

(and of course τ = y and S(u1, v1, φ, ψ) = (u1, −v1, φ, −ψ)). The spectral hypotheses (v) and (vi) follow from Corollary 3.3, 
while (vi) and (vii) are verified in respectively Lemma 4.2 and 4.3 below.

Lemma 4.2. The operator L satisfies the resolvent estimates ‖(L − ikI)−1‖ X̃r→ X̃r
= O (|k|−1) and ‖(L − ikI)−1‖ X̃r→D̃r

= O (1) as 
|k| → ∞.

Proof. Notice that

L(u1, v1, φ,ψ) = (B1(u1, v1),B2(φ,ψ)) + C(u1, v1, φ,ψ),

where B1(u1, v1) = (v1, −u1xx + u1), B2(φ, ψ) = (ψ, −γ3φxx + γ3φ) and

C(u1, v1, φ,ψ) = (0,−(3γ1 + γ2) sech2(x)u1 − γ2 sech(x)φx,0,−γ3φ + 2γ3(sech(x)u1)x).

Writing X̃r = X̃1 × X̃2, D̃r = Ỹ1 × Ỹ2 and equipping X̃1 with the usual inner product and X̃2 with the inner product 
〈(φ1, ψ1), (φ2, ψ2)〉 = 〈φ1, φ2〉1 + γ −1

3 〈ψ1, ψ2〉0, observe that B j : Ỹ j ⊂ X̃ j → X̃ j is self-adjoint, so that

‖(B j − ikI)−1‖ X̃ j→ X̃ j
≤ |k|−1

for k �= 0. Furthermore ‖B j(·)‖ X̃ j
= ‖ · ‖Ỹ j

, so that

‖(B j − ikI)−1‖ X̃ j→Ỹ j
= ‖B j(B j − ikI)−1‖ X̃ j→ X̃ j

= ‖I + ikI(B j − ikI)−1‖ X̃ j→ X̃ j
≤ 2

for k �= 0. It follows that B = B1 ×B2 : D̃r ⊆ X̃r → X̃r satisfies the estimates

‖(B − ikI)−1‖ X̃r→ X̃r
≤ |k|−1, ‖(B − ikI)−1‖ X̃r→D̃r

≤ 2 (22)

for k �= 0.
Finally, note that C : X̃r → X̃r is bounded, whence

‖C(B − ikI)−1‖ X̃r→ X̃r
= O (|k|−1)

as |k| → ∞. Consequently I − C(B − ikI)−1 : X̃r → X̃r is invertible for sufficiently large values of |k| with

‖(I − C(B − ikI)−1)−1‖ ˜ ˜ = O (1) (23)
Xr→Xr
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as |k| → ∞, and the stated result follows from the identity

(L − ikI)−1 = (B − ikI)−1(I − C(B − ikI)−1)−1

and the estimates (22), (23). �
Lemma 4.3. The equation

Lw = −N(w†) (24)

has a unique solution w ∈ D̃� for each w† ∈ D̃� and the formula w† �→ w defines a smooth mapping D̃� → D̃� .

Proof. Equation (24) is equivalent to the equations

u1 − u1xx − 6 sech2(x)u1 = f (w†),

where f (w†) = (3γ1 + γ2) sech(x)(u†
1)

2 + γ2u†
1φ

†
x + γ1(u†

1)
3, and

φx = (u†
1)

2 + 2 sech(x)u1, v1 = 0, ψ = 0.

The result thus follows from Proposition 3.1(i) and the fact that f and (u1, u
†
1) �→ (u†

1)
2 + 2 sech(x)u1 define smooth map-

pings D̃� → L2
e(R) and H1

e (R) × H1
e(R) → H1

e(R). �
5. Transverse linear instability

Finally, we demonstrate the transverse linear instability of the line soliton using the following general result due to 
Godey [5].

Theorem 5.1 (Godey). Consider the differential equation

vτ = T vt + Lv, (25)

in which v(τ , t) belongs to a real Banach space X . Suppose that Y , Z are further real Banach spaces with the properties that

(i) L :Z ⊆X →X and T :Y ⊆X →X are closed linear operators with Z ⊆ Y ,
(ii) the equation is reversible: there exists an involution S ∈ L(X ) ∩ L(Y) ∩ L(Z) with L S v = −S Lv and T S v = −ST v for all 

v ∈Z ,
(iii) L has a pair ±iω0 of isolated purely imaginary eigenvalues with odd algebraic multiplicity.

Under these hypotheses equation (25) has a solution of the form eλt vλ(τ ), where vλ ∈ C1(R, X ) ∩ C(R, Z) is periodic, for each 
sufficiently small positive value of λ; its period tends to 2π/ω0 as λ → 0.

Theorem 1.2 is proved by applying Godey’s theorem to (19), taking X = X , Y = X and Z = D (and of course τ = y and 
S(u1, v1, u2, v2, φ, ψ) = (u1, −v1, u2, −v2, φ, −ψ)). The spectral hypothesis (iii) follows from Corollary 3.3.
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