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r é s u m é

Nous étudions l’existence et le défaut d’unicité de fibrations holomorphes en disques 
transverses à une courbe rationnelle dans une surface complexe.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit U une surface complexe contenant une courbe rationnelle lisse C . On s’intéresse à la structure du germe de voisinage 
(U , C). Lorsque C2 ≤ 0, il est bien connu que (U , C) est holomorphiquement équivalent au voisinage de la section nulle 
dans l’espace total du fibré normal NC (see [2,7]) ; on dit alors que (U , C) est linéarisable. On déduit aisément l’existence de 
nombreuses fibrations holomorphes par disques transverse à C dans ce cas. D’un autre côté, lorsque C2 > 0, il y a un gros 
espace de module de germes de tels voisinages (U , C) modulo isomorphismes (voir [3,6]). A contrario, nous montrons qu’il 
y a très peu de fibrations transverses (en général aucune) dans ce cas. Il y a des familles de dimension infinie de voisinages 
sans (resp. avec une unique) fibration pour chaque C2 > 0. Lorsque C2 = +1, il existe aussi des familles de dimension infinie 
de voisinages avec exactement deux fibrations. Notre résultat principal est le suivant.

Théorème A. Soit (U , C) un germe de surface au voisinage d’une courbe rationnelle C (tout est lisse) avec auto-intersection C2 > 0.
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– si (U , C) admet au moins 3 fibrations holomorphes transverses à C , alors C2 = 1 et (U , C) est linéarisable, i.e. holomorphiquement 
équivalent au voisinage d’une droite dans P2.

– si C2 > 1 et (U , C) admet au moins 2 fibrations holomorphes transverses à C , alors C2 = 2 et (U , C) est holomorphiquement 
équivalent au voisinage de la diagonale dans P1 × P

1 .

Un analogue non linéaire de la dualité projective entre les points et les droites de P2 établie par Le Brun (voir [5, 
§1.3, 1.4]) nous fournit une correspondance bi-univoque entre les germes de voisinages (U , C) avec C2 = 1 et les germes 
de structures projectives en (C2, 0) modulo Diff(C2, 0) (tout est holomorphe). Par une structure projective, on entend une 
collection de géodésiques (une courbe passant par chaque point et chaque direction) définie par une connexion affine (i.e. 
une connexion linéaire sur le fibré tangent). De ce point de vue, on a une correspondance bi-univoque entre les fibrations 
transverses à C et les décompositions de la famille de géodésiques comme pinceau de feuilletages (voir, par exemple, [4]), 
ou encore de connexions affines à courbure nulle définissant la structure.

Tous les résultats présentés dans cette note seront détaillés dans [1].

1. Introduction

Let U be a smooth complex surface containing a smooth rational curve C . We want to understand the structure of the 
germ of neighborhood (U , C). When C2 ≤ 0, it is known that (U , C) is holomorphically equivalent to the neighborhood of the 
zero section in the normal bundle NC (see [2,7]). In this case, we say that (U , C) is linearizable, and one can easily deduce 
the existence of many fibrations by discs transverse to C . On the other hand, when C2 > 0, there is a huge moduli space of 
germs of neighborhoods (U , C) (see [3,6]). However, we prove that there are very few (in general there are not) transverse 
fibrations in this latter case. There are infinite dimensional families of neighborhoods without (resp. with a unique) fibration 
for any C2 > 0. When C2 = +1, there also exist infinite dimensional families of neighborhoods with exactly 2 fibrations. Our 
main result is the following.

Theorem 1.1. Let (U , C) be a germ of surface neighborhood of a rational curve C with self-intersection C2 > 0, everything being 
smooth.

– If (U , C) admits at least 3 distinct fibrations by discs transverse to C , then C2 = 1 and (U , C) is linearizable, i.e. holomorphically 
equivalent to the neighborhood of a line in P2.

– If C2 > 1 and (U , C) admits at least 2 distinct fibrations by discs transverse to C , then C2 = 2 and (U , C) is holomorphically 
equivalent to the neighborhood of the diagonal in P1 × P

1 .

A non-linear analogue of the projective duality between lines and points in P2 established by Le Brun (see [5, §1.3, 1.4]) 
provides a one-to-one correspondence between germs of neighborhoods (U , C) with C2 = 1 and germs of projective struc-
ture at (C2, 0) up to Diff(C2, 0) (everything is holomorphic). By a projective structure, we mean a collection of geodesics 
(one curve for each point+direction) defined by an affine connection (i.e. a linear connection on the tangent bundle). From 
this point of view, there is a one-to-one correspondence between fibrations transverse to C and decompositions of the pro-
jective structure as a pencil of foliations (see for instance [4]), or equivalently affine connections with vanishing curvature.

2. Normal form

Let us fix a coordinate x : C
∼→ C ∪{∞} and decompose it as C = V 0 ∪ V∞ , where V i are disks around x = i with i = 0, ∞

overlapping on a neighborhood of the circle {|x| = 1}. It is easy to see that a germ of surface (U , C) can always be obtained 
by gluing two open sets U0 = V 0 × Dε and U∞ = V∞ × Dε , with coordinates (xi, yi) by some analytic diffeomorphism of 
the form

(x∞, y∞) = �(x0, y0) =
⎛
⎝x−1

0 +
∑
n≥1

an(x0)yn
0,

∑
n≥1

bn(x0)yn
0

⎞
⎠ ,

which we shall call the cocycle of the germ (U , C). In restriction to C , we have x = x0 = 1/x∞ . Of course, different cocycles 
could give rise to isomorphic germs of surface. In this sense, it is shown in [6] that we can always arrive to an almost 
unique normal form. In the special case C2 = 1, we obtain the slightly more precise statement below.

Theorem 2.1. Let (U , C) be a germ of surface with C2 = 1. Then, we can choose the corresponding cocycle in the following normal 
form

� =
⎛
⎝1

x
+

∑
n≥4

(

n−1∑
k=3

ak,n

xk
)yn,

y

x
+

∑
n≥3

(

n−1∑
k=2

bk,n

xk
)yn

⎞
⎠ .
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Moreover, �i = (x + ∑
ai

n(x)yn, 
∑

bi
n(x)yn), i = 0, ∞, are such that �∞ ◦ � ◦ �0 is still in normal form (with possibly different 

coefficients) if, and only if, there are constants α, β, γ ∈ C and θ ∈C
∗ such that

a0
1 = θ(αx + β),a0

2 = α2θ2x + γ ,a0
3 = α3θ3x + (γ αθ + αθ3b2,3),

a0
n = αnθnx +

(
γ (θα)n−2 + θn

(
n−2∑
k=1

(
n − 2

k − 1

)
αkb2,n−k+1

))
,n ≥ 4,

a∞
1 = βx + α,a∞

2 = β2x + γ

θ2
,

a∞
n = βnx +

(
(n − 1)

βn−2γ

θ2
− (n − 2)αβn−1 −

n−2∑
k=1

kβkbn−k,n−k+1

)
,n ≥ 3,

b0
n = θnαn−1, b∞

n = βn−1

θ
,n ≥ 1.

The proof of this statement (which will be needed to prove the main result) will be detailed in [1]. Let us just mention 
that normalizing coordinates (x0, y0) (resp. (x∞, y∞)) are obtained after blowing-up ∞ ∈ C (resp. 0 ∈ C ) by the identifica-
tion of the new germ of neighborhood (with C2 = 0) with the product C ×Dε . The normal form follows from a good choice 
of these trivializations.

Remark 1. When in addition U admits a fibration transverse to C , then there exists a normal form compatible with the 
fibration in the sense that akn = 0 for every k, n (with notation of Theorem 2.1) and the fibration is given by {x = const.}.

Remark 2. The classification of germs (U , C) with C2 = k > 1 reduces to the case C2 = 1 since the unique cyclic k-fold cover 
π : Ũ → U ramifying over C is such that C̃2 = 1, where C̃ = π−1(C).

Remark 3. When C2 = 1, the fourth infinitesimal neighborhood C(4) = Spec
(
OU
I5

)
(where I ⊂ OU is the ideal sheaf defin-

ing C ) always admits a transverse fibration: the cocycle can always be normalized to ( 1
x , y

x + · · ·) up to order 4. The first 
obstruction for having a transverse fibration appears in order five.

Many examples without transverse fibration. Consider the neighborhood U given by the cocycle

� =
⎛
⎝1

x
+ y5

x3
+

∑
n≥6

(

n−1∑
k=3

ak,n

xk
)yn,

y

x

⎞
⎠

which is already in normal form and suppose that U admits a transverse fibration. Then by Remark 1 there is a normal 
form compatible with the fibration, that is, there exists A = (α, β, γ , θ) ∈ C

3 × C
∗ such that aA

i, j = 0 for every i, j, where 
the notation stands for the coefficients of the normal form after composing with the pair (�0, �∞) associated with A as 
in Theorem 2.1. On the other hand, we can compute aA

3,4 = −(γ − αβθ2)2 and conclude that γ = αβθ2. This leads us to 
aA

3,5 = θ5 �= 0, which is impossible.

Many examples with exactly one transverse fibration. Consider the neighborhood U given by the cocycle

� =
⎛
⎝1

x
,

y

x
+

∑
n≥5

(

n−1∑
k=2

bk,n

xk
)yn

⎞
⎠ ,

with b2
3,5 − b2,5 · b4,5 �= 0, which is in normal form and has a compatible transverse fibration. If there exists another fibra-

tion, then we can find some A = (α, β, γ , θ) ∈ C
3 × C

∗ such that aA
i, j = 0 for every i, j. We can also assume that θ = 1. 

We compute aA
3,4 = −(γ − αβ)2, which implies γ = αβ . Thus aA

3,5 = αb3,5 + βb2,5 = 0 and aA
4,5 = αb4,5 + βb3,5 = 0. By 

hypothesis, the only solution to this system is α = β = 0 that also gives γ = 0. We conclude that A = (0, 0, 0, 1) and the 
fibration coincides with the initial one.

3. Examples with 2 fibrations transverse to C

Consider (U , C) a germ of surface as before and suppose that there are two fibrations G and G′ transverse to C . If they 
are not tangent along C , it is easy to see that their tangency locus is a (smooth) curve transverse to C at one point.
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Theorem 3.1. Let U be a neighborhood of a rational curve C with self-intersection +1 and suppose that there are two fibrations G and 
G′ transverse to C such that tang(G, G′) = C. Then (U , C) is the ramified covering of degree 2 over a neighborhood of the diagonal 
curve � ⊆ V ⊆ P

1 × P
1 with ramification locus � and branching locus C. Moreover, there is no other fibration on U transverse to C.

Idea of proof. Consider the first integrals g, g′ : U → C � P
1 defined by the two fibrations; then the map (g, g′) : U →

P
1 × P

1 is the 2-fold cover. See [1] for details.

Suppose now that T = tang(G, G′) is neither a common fiber of the two fibrations, nor C , and is transverse to G and G′
along C . Take first integrals g, g′ : U → P

1 such that g|C ≡ g′|C = x, where x is the global coordinate of P1, and define

� : U → P
1 × P

1, p �→ (g(p), g′(p)).

Observe that �|C : C → � is an isomorphism, where � is the diagonal curve, and that � is a local biholomorphism out-
side T . It is possible to show that �(T ) has a simple tangency with � at one point and that � is a 2 : 1 covering near 
T , ramifying over �(T ). Changing the first integrals ( f , g) coinciding along C is the same that considering the diagonal 
action of PSL2(C) on (P1 × P

1, �), that is, ϕ �→ (ϕ(x), ϕ(y)). Moreover, every curve with a simple tangency with � can be 
constructed by this process.

Theorem 3.2. The moduli space of neighborhoods (U , C) having two fibrations with a tangency locus T which is neither a common 
fiber nor C , and which is transverse to G and G ’ at C , is in bijection with the space of germs of curves on (P1 × P

1, �) with a simple 
tangency with � modulo the diagonal action of PSL2(C).

4. The case of 3 transverse fibrations

Our goal is to show that the only case having 3 fibrations is the case of the projective plane.

Theorem 4.1. Let (U , C) be a germ of surface containing a rational curve C with C2 = +1. Assume that U admits 3 regular fibrations 
G , G′ and G′′ transverse to C , then (U , C) is isomorphic to the germ (P2, L0), where L0 is a line in P2 .

The detailed proof will be given in [1]; however, we present below a special case in order to show the main ideas. Before 
proving the theorem, we make some considerations. First of all, observe that there are normal forms

� =
(

1

x
,

y

x
+ (

b2,3

x2
)y3 + . . .

)
,�i =

(
1

x
,

y

x
+ (

bi
2,3

x2
)y3 + . . .

)
, i = 1,2,

compatible with G , G′ and G′′ , respectively, that is, in which the fibration is given by {x = const.} (Remark 1). Denote by 
(αi, βi, γi, θi) the parameter corresponding to the pair of biholomorphisms (�0

i , �
∞
i ) taking � into �i (i = 1, 2) given by 

Theorem 2.1. Note that coefficients (ai
j,k, b

i
j,k) of the normal form �i depend of the coefficients b j,k and (αi, βi, γi, θi). We 

clearly have ai
j,k = 0 for i = 1, 2.

By composing � with the change of coordinates associated with (0, 0, 0, θ), which does not affect the fibrations, we can 
assume that b2,3 = 1 or b2,3 = 0. In a similar way, we can also suppose that θ1 = θ2 = 1.

�

(α1,β1,γ1,1) (α2,β2,γ2,1)

�1 �2

We will need the following lemma.

Lemma 4.2. If b2,3 = 0, α1 �= 0, β1 = γ1 = 0, and β2 �= 0, α2 = γ2 = 0, then bij = 0 for every i, j.

Proof of Theorem 4.1. We consider the case tang(G, G′) ∩ C �= tang(G, G′′) ∩ C .
Thus we assume tang(G, G′) ∩ C = {0} and tang(G, G′′) ∩ C = {∞}. This implies, by the form of the pair (�0

i , �
∞
i )

associated with (αi, βi, γi, 1) given in Theorem 2.1, that β1 = α2 = 0. Observe also that if α1 = 0 then G and G′ are tangent 
along C , but Theorem 3.1 implies that this is not the case, thus we can suppose α1 �= 0. Analogously we also assume β2 �= 0.

If b2,3 = 1 we consider the equations

a1
3,4 = a1

3,5 = a1
4,5 = a1

3,6 = a1
4,6 = a1

5,6 = a1
3,7 = a1

4,7 = a1
5,7 = a1

6,7 = 0

a2 = a2 = a2 = a2 = a2 = a2 = a2 = a2 = a2 = a2 = 0
3,4 3,5 4,5 3,6 4,6 5,6 3,7 4,7 5,7 6,7
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and, using a1
i, j , 3 ≤ i < j ≤ 7, a2

3,4, a
2
3,5, a

2
3,6, a

2
3,7, we find

b2,4,b3,4,b2,5,b3,5,b4,5,b2,6,b3,6,b4,6,b5,6,b2,7,b3,7,b4,7,b5,7,b6,7

depending on α1, γ1, β2 and γ2.
We replace them in the remaining equations and use Groebner basis in order to write the ideal

〈a2
4,5,a2

4,6,a2
4,7,a2

5,6,a2
5,7,a2

6,7〉 = 〈γ2,α1β2〉
but this implies that α1β2 = 0, which is not possible.

If b2,3 = 0 with a similar argument we arrive in λ1 = λ2 = 0 and thus we conclude by Lemma 4.2.

We finish by giving the idea for proving the second part of Theorem 1.1. Assume then that C2 = n ≥ 2 and (U , C)

admits two fibrations transverse to C . We can prove that the tangency locus is not C . Now, blowing up the curve C at 
n different points and looking to the tangency locus between the Riccati foliations obtained in the neighborhood of the 
transform of C , which has zero self-intersection, we see that C2 = 2 and the fibrations have empty tangency locus. We just 
take first integrals g, g′ : U → C � P

1 defined by the two fibrations and remark that the map (g, g′) : U → P
1 × P

1 is a 
biholomorphism over a neighborhood of the diagonal curve.

All the results of this note will be detailed and completed in [1].
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