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It is known that all the vector bundles of the title can be obtained by holomorphic 
induction from representations of a certain parabolic group on finite-dimensional inner 
product spaces. The representations, and the induced bundles, have composition series 
with irreducible factors. We write down an equivariant constant coefficient differential 
operator that intertwines the bundle with the direct sum of its irreducible factors. As an 
application, we show that in the case of the closed unit ball in Cn all homogeneous 
n-tuples of Cowen–Douglas operators are similar to direct sums of certain basic n-tuples.
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r é s u m é

Il est bien connu que les fibrés vectoriels homogènes holomorphes hermitiens peuvent être 
obtenus par induction holomorphe à partir des representations de dimension finie d’un 
certain groupe parabolique. Les représentations, ainsi que les fibrés induits, ont des séries 
de composition à quotients irréductibles. On montre qu’il existe un opérateur différentiel 
invariant à coefficients constants qui entrelace le fibré et la somme directe de ses quotients 
irréductibles. Comme application, on montre que tous les n-tuples d’opérateurs homogènes 
de la classe de Cowen–Douglas associés à la boule dans Cn sont similaires à des sommes 
directes de certains n-tuples fondamentaux.
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1. Holomorphic vector bundles

Let g be a simple non-compact Lie algebra with Cartan decomposition g = k + p such that k is not semi-simple. Then k
is the direct sum of its center and of its semisimple part, k = z + kss, and there is an element ẑ that generates z and ad(ẑ)
is a complex structure on p.

The complexification gC is then the direct sum p+ + kC + p− of the i, 0, −i eigenspaces of ad(ẑ). We let GC denote 
the simply connected Lie group with Lie algebra gC and we let G, KC, K , P±, . . . be the analytic subgroups corresponding 
to gC, kC, k, p±, . . . We denote by G̃ the universal covering group of the group G and by K̃ , K̃ss, . . . its analytic subgroups 
corresponding to k, kss, . . . .

KCP− is a parabolic subgroup of GC . P+KCP− is open dense in GC . The corresponding decomposition g+ g0 g− of any 
g in P+KCP− is unique. The natural map G/K → GC/KCP− is a holomorphic embedding, its image is in the orbit of P+ . 
Applying now exp−1

p+ , we get the Harish–Chandra realization of G/K as a bounded symmetric domain D ⊂ p+ . The action 
of g ∈ G on z ∈ D, written g · z, is then defined by exp(g · z) = (g exp z)+ . We will use the notation k(g, z) = (g exp z)0 and 
exp Y (g, z) = (g exp z)− , so we have

g exp z = (exp(g · z))k(g, z)exp(Y (g, z)).

The G̃-homogeneous Hermitian holomorphic vector bundles (hHhvb) over D are obtained by holomorphic induction 
from representations (ρ, V ) of kC + p− on finite-dimensional inner product spaces V such that ρ(k) is skew Hermitian. We 
write ρ0, ρ− for the restrictions of ρ to kC and p− , respectively. The representation space V is the orthogonal direct sum 
of its subspaces Vλ (λ ∈R) on which ρ0(ẑ) = i λ. It is easy to see that ρ−(Y )Vλ ⊂ Vλ−1 for Y ∈ p− . We also have

ρ−([Z , Y ]) = [ρ0(Z),ρ−(Y )], Z ∈ kC, Y ∈ p−. (1)

We note that if representations ρ0 and ρ− of kC and p− , respectively, are given, then they will together give a represen-
tation of kC + p− if and only if equation (1) holds. We call (ρ, V ) and the induced bundle, indecomposable if it is not the 
orthogonal sum of sub-representations, respectively, sub-bundles. We restrict ourselves to describing these.

Proposition 1.1. Every indecomposable holomorphic homogeneous Hermitian vector bundle E can be written as a tensor product 
Lλ0 ⊗ E ′ , where Lλ0 is the line bundle induced by a character χλ0 and E ′ is the lift to G̃ of a G-homogeneous holomorphic Hermitian 
vector bundle, which is the restriction to G and D of a GC-homogeneous vector bundle induced in the holomorphic category by a 
representation of KCP− .

The proof involves some structural properties of GC , which we omit in this short Announcement.
As shown in [1], P+ × K̃C× P− can be given a structure of complex analytic local group such that (writing π : K̃C → KC) 

id × π × id is the universal local group covering of P+ KCP− . We write G̃ loc for this local group and abbreviate id × π × id
to π . By [1], G̃, K̃CP− , P+ K̃C are closed subgroups of G̃C

loc and G̃ expD ⊂ G̃C

loc. Defining g · z = π(g) · z and Y (g, z) =
Y (π(g), z) we have the decomposition

g exp z = (exp g · z)k̃(g, z)exp Y (g, z), (g ∈ G̃, z ∈D)

in G̃ loc. We write b̃(g, z) = k̃(g, z) exp Y (g, z); then b̃(g, z) satisfies the multiplier identity and b̃(kp−, 0) = kp− for 
kp− ∈ K̃CP− .

Hence given a representation (ρ, V ) of kC + p− as above, the holomorphically induced bundle has a canonical trivializa-
tion such that the sections are the elements of Hol(D, V ), and G̃ acts via the multiplier

ρ(b̃(g, z)) = ρ0(k̃(g, z))ρ−(exp Y (g, z)).

If f ∈ Hol(D, V ), then we write D f for the derivative: D f (z)X = (D X f )(z) for X ∈ p+ . Thus D f (z) is a C-linear map 
from p+ to V .

Lemma 1.2. For any holomorphic representation τ of K̃C and any g ∈ G̃ , z ∈ D, X ∈ p+ ,

D Xτ
(
k̃(g, z)−1) = −τ

([Y (g, z), X])τ (
k̃(g, z)−1).

Furthermore,

D X Y (g, z) = 1

2

[
Y (g, z), [Y (g, z), X]].

This is proved by refining the arguments of [4, p. 65].
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2. The main results about vector bundles

If in the set-up of Section 1, each subspace Vλ is irreducible under kC; we call the corresponding representations and 
the vector bundles filiform. We consider this case first.

We have seen that every indecomposable filiform representation is a direct sum of subspaces Vλ− j , which we denote 
by V j , carrying an irreducible representation ρ0

j of kC (0 ≤ j ≤ m); furthermore, we have non-zero kC-equivariant maps 
ρ−

j : p− → Hom(V j−1, V j). The space of such maps is 1-dimensional: this is an equivalent restatement of the known fact 
that p− ⊗ V j−1 as a representation of kC is multiplicity free [2, Corollary 4.4]. We denote the orthogonal projection from 
p− ⊗ V j−1 to V j by P j . We define for Y ∈ p−, v ∈ V j−1,

ρ̃ j(Y )v = P j(Y ⊗ v). (2)

Then ρ̃ j has the kC-equivariant property, and it follows that ρ−
j = y jρ̃ j with some y j �= 0. We write y = (y1, . . . , ym)

and denote by E y the induced vector bundle. We observe here that the vector bundle E y is uniquely determined by 
ρ0

0 , P1, . . . , Pm and y, but these data cannot be arbitrarily chosen: the ρ̃ j (1 ≤ j ≤ m) together must give a representa-
tion of the Abelian Lie algebra p− . In terms of P j , this condition amounts to

P j+1
(
Y ′ ⊗ P j(Y ⊗ v)

) = P j+1
(
Y ⊗ P j(Y ′ ⊗ v)

)
(3)

for all Y , Y ′ ∈ p− and v ∈ V j−1.
We denote by ι the identification of (p+)∗ with p− under the Killing form, and, for any vector space W , extend it to a 

map from Hom(p+, W ) to p− ⊗ W , that is, for Y ∈ p−, w ∈ W ,

ι(B(·, Y )w) = Y ⊗ w.

In what follows, n denotes the complex dimension of D.

Lemma 2.1. Given ρ0
j−1, ρ

0
j , as above, there exists a constant c j , independent of λ, such that for all Y ∈ p− , we have

P jιρ
0
j−1([Y , ·]) = (c j − λ− j+1

2n )ρ̃ j(Y ).

Furthermore, there exist constants u, v such that for all 1 ≤ j ≤ m,

c j = u + ( j − 1)v.

This follows from kC-equivariance and some computation. The following two lemmas can be proved by computations 
based on Lemmas 1.2 and 2.1.

Lemma 2.2. For all 1 ≤ j ≤ m − 1, and holomorphic F : D → V j ,

P j+1ιD(z)(ρ0
j (k̃(g, z)−1)F (gz)

)

= −(c j+1 − λ− j
2n )ρ̃ j+1

(
Y (g, z)

)(
ρ0

j (k̃(g, z)−1)F (gz)
) + ρ0

j+1(k̃(g, z)−1)
(
(P j+1ιD F )(gz)

)
,

where D(z) denotes the differentiation with respect to z.

Lemma 2.3. For all 1 ≤ j ≤ m − 1, with the constants c j of Lemma 2.1,

P j+1ιD(z)ρ̃ j(Y (g, z)) = 1

2
(c j − c j+1 − 1

2n )ρ̃ j+1(Y (g, z))ρ̃ j(Y (g, z)).

Now let E y be an indecomposable filiform hHhvb as described above. Writing 0 = (0, . . . , 0), E0 makes sense, it is the 
direct sum of irreducible vector bundles in the composition series of E y .

If f ∈ Hol(D, V ), we write f j for the component of f in V j , that is, the projection of f onto V j .

Theorem 2.4. Assume that λ is regular in the sense that

c jk = 1
( j−k)!

j−k∏
i=1

{
u − λ

2n + 2k+i−1
2

(
v + 1

2n

)}−1

is meaningful for 0 ≤ k ≤ j ≤ m. Then the operator � : Hol(D, V ) → Hol(D, V ) given by

(� f j)	 =
⎧⎨
⎩

c	 j y	 · · · y j+1(P	ιD) · · · (P j+1ιD) f j if 	 > j,

f j if 	 = j,

0 if 	 < j

intertwines the actions of G̃ on the trivialized sections of E0 and E y .
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The proof is by induction based on the preceding lemmas.
Next we pass from the filiform case to the general case. Now (ρ0, V 0) is a direct sum of representations (ρ0

j
α
, V α

j ) with 
inequivalent irreducible representations α of kCss, and ρ0

j
α = χλ− j(Im jα ⊗ α). For pairs of (α, β) that are admissible in the 

sense that β ⊂ Adp− ⊗α, we write Pαβ for the corresponding projection and define maps ρ̃αβ for Y ∈ p− . Then

ρ−
j (Y ) = ⊕α,β yαβ

j ⊗ ρ̃αβ(Y )

with yαβ

j ∈ Hom(Cmα , Cmβ ) such that yβγ
j+1 yαβ

j = 0 unless (αβ) and (βγ ) are admissible and the analogue of (3) holds. We 
let Ey denote the bundle holomorphically induced by ρ , and let E0 be the (direct sum) bundle gotten by changing all the 
yαβ to 0. The general version of � is now going to be (for j < 	)

(� f j)	 = ⊕α j ,...,α	
c
α j ,...,α	

	 j

(
y
α	−1α	

	 · · · y
α jα j+1
j+1

) ⊗ (
Pα	−1α	

ιD
) · · · (Pα j j+1ιD

)
f α

j .

For j ≥ 	, it is unchanged.

Theorem 2.5. Suppose that Ey is induced by an indecomposable ρ . Then there exist constants cα j,...,α	

	 j such that � intertwines the 
actions of G̃ on the trivialized sections of E0 and Ey .

We note that if D is the disc in one variable then Theorem 2.5 specializes to Theorem 3.1 of [3].

3. Hilbert spaces of sections

With notations preserved, for general D, we consider first the case where ρ is irreducible. Then automatically ρ0 is 
also irreducible and ρ− = 0. We write ρ0 = χλ ⊗ σ , where σ is an irreducible representation of kss. For every σ , there 
is an (explicitly known) set of λ-s such that the sections of the corresponding holomorphically induced vector bundle 
have a G̃-invariant inner product. This is Harish–Chandra’s holomorphic discrete series and its analytic continuation. In the 
canonical trivialization it gives Hilbert spaces Hρ0 = Hσ ,λ , which are known to have reproducing kernels Kσ ,λ(z, w). If we 
set

K̃(z, w) = k̃(exp −w̄, z),

(where w̄ denotes conjugation with respect to g) we have, slightly extending [4, Chap. II, §5]

Kσ ,λ(z, w) = (χλ ⊗ σ)(K̃(z, w)).

In particular, it is known that the inner product is regular in the sense that all K -types (i.e polynomials) have non-zero 
norm in Hσ ,λ if and only if λ < λσ for a certain known constant λσ .

In the following theorem, we consider a bundle Ey as in Section 2. The corresponding E0 is then a direct sum of 
irreducible bundles as above. Its sections have a G̃-invariant inner product if and only if this is true for each summand. In 
this case, we have a Hilbert space H0 = ⊕Hρ0

j
.

Theorem 3.1. The sections of Ey have a G̃-invariant regular inner-product if and only if the same is true for E0. In this case, the map 
� is a unitary isomorphism of H0 onto the Hilbert space Hy of sections of Ey . The space Hy (as well as H0) has a reproducing kernel.

For the proof one observes that � has an inverse of the same form (only the constants c jk change). � being a holomor-
phic differential operator, the image of H0 is also a Hilbert space of holomorphic functions with a reproducing kernel. One 
can verify that this is the sought after Hy .

Theorem 3.2. Suppose D is the unit ball in Cn. Let σ0, σ1 be irreducible representations of kCss such that σ1 ⊂ Adp− ⊗σ0 and let 
P be the corresponding projection. Then if λ < λσ0 , we have λ − 1 < λσ1 and P ιD is a bounded linear transformation from Hσ0,λ

to Hσ1,λ−1 .

By the theory of reproducing kernels, for this it is enough to prove that (D(z) and D(w) denote the differentiation with 
respect to the variable z and w respectively)

C Kσ1,λ−1(z, w) − (P ιD(z))Kσ0,λ(z, w)(P ιD(w))∗

is positive definite for some C > 0. (In general, we say that a kernel K taking values in Hom(V , V ) is positive definite if, for 
any z1, . . . , zn in D and v1, . . . , vn in V ,

n∑
j,k=1

〈K (z j, zk)vk, v j〉 ≥ 0

holds.)
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Remark 3.3. When D is the unit ball in Cn , the spaces H0 and Hy are equal as sets. This follows from Theorem 3.2 and 
the closed graph theorem.

4. Homogeneous Cowen–Douglas tuples

For any bounded domain D ⊆ C
n , the n-tuple T = (T1, . . . , Tn) of bounded linear operators on a Hilbert space H is said 

to be homogeneous (relative to the holomorphic automorphism group Aut(D)) if the joint (Taylor) spectrum of T is in D
and for every g in Aut(D), the n-tuple g(T ) = g(T1, . . . , Tn) is unitarily equivalent to T .

Another important class of n-tuples of commuting operators associated with the domain D ⊆ C
n is the extended Cowen–

Douglas class B′
k(D). Its elements are n-tuples of bounded operators that can be realized as adjoints of the multiplications 

M j by the coordinate functions on some Hilbert space of holomorphic Ck- valued functions on D possessing a reproducing 
kernel K and containing all Ck- valued polynomials as a dense set. (The strict Cowen–Douglas class Bk(D) as originally 
defined consists of the n-tuples of bounded operators (T1, . . . , Tn) that can be realized like this and in addition satisfy the 
condition that ⊕(T j − z j) mapping the Hilbert space into the n-fold direct sum with itself has closed range.)

We wish to investigate, for bounded symmetric domains D, the homogeneous n-tuples in B′
k(D). For the case of the 

unit disc, there is a complete description and classification of these in [3]. (In that case, it turns out that the homogeneous 
operators in B′

k(D) are the same as in Bk(D).)

Theorem 4.1. For any bounded symmetric D, an n-tuple T in B′
k(D) is homogeneous if and only if the corresponding holomorphic 

Hermitian vector bundle is homogeneous under G̃.

The proof (not entirely trivial) is the same as in [3, Theorem 2.1].
For a bounded symmetric D, we call a n-tuple T in B′

k(D) and its corresponding bundle E basic if E is induced by an 
irreducible ρ . From the results of Section 3, E is basic if and only if it is induced by some χλ ⊗ σ with λ < σλ .

Theorem 4.2. If D is the unit ball in Cn, all homogeneous n-tuples in B′
k(D) are similar to direct sums of basic homogeneous n-tuples.

The proof is based on Remark 3.3. The similarity arises as the identity map between H0 to Hy , which clearly intertwines 
the operators M j on the respective Hilbert spaces.

References

[1] R.A. Herb, J.A. Wolf, Wave packets for the relative discrete series. I. The holomorphic case, J. Funct. Anal. 73 (1987) 1–37.
[2] H.P. Jakobsen, The last possible place of unitarity for certain highest weight modules, Math. Ann. 256 (1981) 439–447.
[3] A. Korányi, G. Misra, A classification of homogeneous operators in the Cowen–Douglas class, Adv. Math. 226 (2011) 5338–5360.
[4] I. Satake, Algebraic Structures of Symmetric Domains, Princeton University Press, Princeton, NJ, USA, 1980.

http://refhub.elsevier.com/S1631-073X(15)00306-4/bib4857s1
http://refhub.elsevier.com/S1631-073X(15)00306-4/bib4A616Bs1
http://refhub.elsevier.com/S1631-073X(15)00306-4/bib4B4Ds1
http://refhub.elsevier.com/S1631-073X(15)00306-4/bib53s1

	Homogeneous Hermitian holomorphic vector bundles and the Cowen-Douglas class over bounded symmetric domains
	1 Holomorphic vector bundles
	2 The main results about vector bundles
	3 Hilbert spaces of sections
	4 Homogeneous Cowen-Douglas tuples
	References


