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r é s u m é

Le but de ce travail est d’établir quelques propriétés des coefficients des polynômes 
chromatiques de certains graphes. Nous donnons une application sur une restriction des 
nombres de Stirling de deuxième espèce.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The object of our investigations is to establish connections between chromatic polynomials of some graphs and special 
(restricted) Stirling numbers of the second kind. We introduce variations of the Stirling numbers of the second kind counting 
the number of partitions with special conditions and we rely these numbers to the chromatic polynomials of special graphs 
and some of their properties. For a given graph G = (V , E) of order n ≥ 1, the expression of the chromatic polynomial in 

the factorial form is P (G, λ) =
n∑

i=χ(G)

αi (G) (λ)i , see [2, Thm. 1.4.1], recall that (λ)i = λ (λ − 1) · · · (λ − i + 1) if i ≥ 1 and 

(λ)0 = 1, αi (G) is the number of ways of partitioning V into i independent sets (i.e., no two vertices in the same set are 
adjacent in G). We denote by χ (G) the chromatic number of G .

This work is motivated by the work of Duncan et al. [3] on Stirling numbers of the second kind for graphs and by the 
work of Mihoubi et al. [9,8] on the 

(
r1, . . . , rp

)
-Stirling numbers of the second kind.

For any graph H , we give some recurrence relations for the coefficients αk (G ∪ H) for some graphs G and some re-
sults on log-concavity and Pólya frequency for sequences related to these coefficients. In the last section, we present an 
application on special (restricted) Stirling numbers of the second kind.
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2. Main results

Let H be any graph of h vertices, h ≥ 1 and (Gn;n ≥ 0) be a sequence of graphs such that the order of Gn is n and G0 is 
the graph with no vertices i.e., P (G0, λ) := 1.

Proposition 2.1. Let n, k be nonnegative integers. Assume that

P (Gn, λ) = (λ − sn−1) P (Gn−1, λ) , n > n0,

for some non-positive integer n0 and real numbers s0, . . . , sn−1 such that s0 = 0.
Assume that n > n0 . If χ (Gn) ≤ k ≤ n we obtain

αk (Gn) = (k − sn−1)αk (Gn−1) + αk−1 (Gn−1) ,

and αk (Gn) = 0 otherwise.

Proof. It is obvious that we have αk (Gn) = 0 if k < χ (Gn) or k > n.
Now, for χ (Gn) ≤ k ≤ n, the result comes, trough a straightforward computation, from the identity (λ − x) (λ)k = (λ)k+1 +

(k − x) (λ)k , which holds for any k ∈ N. �
To give some special cases of Proposition 2.1, let O n be the empty graph (i.e. with no edge) of order n, Kn the complete 

graph of order n and Tn a tree of order n.

Corollary 2.1. Let n, k be integers and

H�
n := �n ∪ H for � = O , K , T .

Assume that n > n�
0 , where nO

0 = nK
0 = nT

0 − 1 = 0.
If χ

(
H�

n

) ≤ k ≤ n + h, we obtain

αk
(

H�
n

) = (
k − s�n−1

)
αk

(
H�

n−1

) + αk−1
(

H�
n−1

)
,

and αk
(

H�
n

) = 0 otherwise, where sO
n = 0, sK

n = n, and sT
n = 1.

Furthermore, χ
(

H O
n

) = χ (H), χ
(

H K
n

) = max (n,χ (H)) and χ
(

H T
n

) = max (χ (Tn) ,χ (H)).

Proof. It suffices to observe that P
(

H�
n , λ

) = (
λ − s�n−1

)
P

(
H�

n−1, λ
)
, n > n�

0 , and apply Proposition 2.1. Notice that the last 
equality and the values of χ

(
H�

n

)
are well-known results (see, e.g., [2, Sect. 2]). �

For the following proposition, let us recall some definitions and results on log-concavity, Pólya frequency and q-log-
convexity. A sequence (un;n ≥ 0) of nonnegative real numbers is called log-concave (LC) if ui−1ui+1 ≤ u2

i for all i > 0, 
and, it is called a Pólya frequency sequence (or a PF sequence) if all minors of the matrix A = (ui− j)i, j≥0 have nonnega-
tive determinants (where uk = 0 if k < 0); for more information, see [5]. A sequence of real polynomials (Pn(q),n ≥ 0) is 
called q-log-convex if the polynomial Pn(q)2 − Pn−1(q)Pn+1(q) has nonnegative coefficients for all n ≥ 1, see [10,11,13]. In 
particular, let (T (n,k) , n,k ≥ 0) be sequence of nonnegative numbers satisfying for n ≥ k ≥ 1 the recurrence

T (n,k) = (a1n + a2k + a3) T (n − 1,k) + (b1n + b2k + b3) T (n − 1,k − 1) ,

with T (n,k) = 0 unless 0 ≤ k ≤ n, T (0,0) > 0, a1 ≥ 0, a1 + a2 ≥ 0, a1 + a3 ≥ 0 and b1 ≥ 0, b1 + b2 ≥ 0, b1 + b2 + b3 ≥ 0. It 
is shown in [6, Thm. 2] that, for each fixed n, the sequence (T (n,k) , 0 ≤ k ≤ n) is log-concave. If we have a2b1 ≥ a1b2 and 
a2 (b1 + b2 + b3) ≥ (a1 + a3)b2, this sequence is Pólya frequency [12, Cor. 3] and further, by setting Tn (q) = ∑n

k=0 T (n,k)qk , 
if (a2b1 − a1b2)n + a2b2k + a2b3 − a3b2 ≥ 0 for 0 < k ≤ n, then, the sequence of polynomials (Tn (q) , n ≥ 0) is q-log-convex 
[7, Thm. 4.1].

Proposition 2.2. For n, k ≥ 0, let

U�
n,k = αk+h+n�

0

(
H�

n+n�

0

)
and U�

n (q) =
n∑

k=0

U�
n,kqk.

Then, for � = O , K , the sequence 
(

U�
n,k, 0 ≤ k ≤ n

)
is log-concave and for � = O , K , T , it is Pólya frequency sequence. For � = O , K , 

the sequence of polynomials 
(
U�

n (q)
)

is q-log-convex.
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Proof. We have U O
0,0 = U K

0,0 = αh (H) = 1 and U T
0,0 = αh+1 (T1 ∪ H) = 1. Furthermore, for n ≥ k ≥ 1, Corollary 2.1 implies

U�
n,k = U�

n−1,k−1 + (
k + h + n�

0 − n�
n−1

)
U�

n−1,k.

So, the log-concavity follows from [6, Thm. 2], Pólya frequency follows from [12, Cor. 3] and q-log-convexity follows from 
[7, Thm. 4.1]. �
3. Application to the graph Kr1,...,rp ∪ O n

For any integer p ≥ 2, let Kr1,...,rp be the complete p-partite graph with a p-partition 
(

V 1, . . . , V p
)

such that |V i | = ri ≥ 1, 
i = 1, . . . , p, and K O

r1,...,rp
:= Kr1,...,rp ∪ O n . We set rp := (

r1, . . . , rp
)
, 
∣∣rp

∣∣ := ∑p
i=1 ri and consider the graph Kn,rp = K O

r1,...,rp

with chromatic number χ
(

Kn,rp

) = max (p,1) = p.
Hence, the coefficient αk

(
Kn,rp

)
represents the number of ways of partitioning the set of n + ∣∣rp

∣∣ vertices of Kn,rp into k
nonempty sets, and by the definition of the graph Kn,rp , any two elements x of the i-th block of the subgraph Kr1,...,rp and 
y of the j-th block of Kr1,...,rp , with i �= j, can’t be in the same subset.

Now, we give connection between αk
(

Kn,rp

)
and the Stirling numbers. Let us recall the main properties of these num-

bers.
As it is known, the Stirling number of the second kind 

{n
k

}
and the r-Stirling number of the second kind 

{n
k

}
r count, 

respectively, the number of partitions of an n-set into k nonempty sets and the number of partitions of an n-set into k
nonempty sets such that the r first elements are in different sets [1]. A generalization of these numbers is considered 
below. We start by giving the following definition.

Let R1, . . . , R p be subsets of the set [n] := {1,2, . . . ,n} with |Ri | = ri and Ri ∩ R j = Ø for all i, j = 1, . . . , p, i �= j. The 
K

(
r1, . . . , rp

)
-Stirling number of the second kind, denoted by 

{n
k

}
K

(
rp

) := {n
k

}
K

(
r1,...,rp

) , counts the number of partitions of the 
set [n] into k nonempty subsets such that if x ∈ Ri and y ∈ R j with i �= j, then x and y belong to different subsets of the 
partition.

From this definition, we may state the following:{
n

k

}
K

(
r1,...,rp

) = 0, if n <
∣∣rp

∣∣ or k < p,

{
n

k

}
K

(
r1,...,rp

) =
{

n

k

}
∣∣rp

∣∣ if r1, . . . , rp ∈ {0,1} ,

{
n

k

}
K

(
r1,...,rp

) =
{

n

k

}
K

(
rσ (1),...,rσ (p)

) for all permutations σ on the set [p].

So, by combining the above combinatorial interpretation of αk
(

Kn,rp

)
and the definition of the K

(
r1, . . . , rp

)
-Stirling num-

bers of the second kind, we conclude that αk
(

Kn,rp

) = {n+∣∣rp
∣∣

k

}
K

(
rp

) .

For the rest of the paper, assume that r1 ≥ 1, . . . , rp ≥ 1.
So, for H := Kr1,...,rp in the first identity of Corollary 2.1, we obtain:

Corollary 3.1. Let n, k be integers such that p ≤ k ≤ n and n ≥ ∣∣rp
∣∣. Then{

n

k

}
K

(
rp

) = k

{
n − 1

k

}
K

(
rp

) +
{

n − 1

k − 1

}
K

(
rp

), n ≥ k ≥ 1.

Proposition 3.1. Let B 
(
λ; Kn,rp

) := ∑
k≥0

{n+∣∣rp
∣∣

k

}
K

(
rp

)λk. Then, we have

B
(
λ; Kn,rp

) = λexp (−λ)
d

dλ

(
exp (λ) B

(
λ; Kn−1,rp

))
, n ≥ 1,

B
(
λ; K0,rp

) = Br1 (λ) · · · Brp (λ) ,

where Bn (λ) = ∑n
j=0

{n
j

}
λ j is the classical Bell polynomial.

Proof. From Corollary 3.1 the polynomial B 
(
λ; Kn,rp

)
can be written as

B
(
λ; Kn,rp

) = ∑
k≥1 k

{n+∣∣rp
∣∣−1

k

}
K

(
rp

)λk + ∑
k≥1

{n+∣∣rp
∣∣−1

k−1

}
K

(
rp

)λk

which is exactly λ d
dλ

(
B

(
λ; Kn−1,rp

)) + λB 
(
λ; Kn−1,rp

) = λ exp (−λ) d
dλ

(
exp (λ) B

(
λ; Kn−1,rp

))
.

The second identity follows from [2, Lemma 4.4.1]. �
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Corollary 3.2. For n ≥ ∣∣rp
∣∣, the numbers 

{n
k

}
K

(
rp

) , k = p, p + 1, . . . , n, are log-concave.

Proof. We prove the result by induction on n. For n = 0, since the polynomial Br (λ), r ≥ 1, has only real and non-positive 
roots (see for example [12]), so that the polynomial B 

(
λ; K0,rp

) = Br1 (λ) · · · Brp (λ). For n ≥ 1, assume that the polynomial 
B 

(
λ; Kn−1,rp

)
has only real and non-positive roots. From Proposition 3.1, the function fn (λ) := exp (λ) B 

(
λ; Kn,rp

)
satisfies 

fn (λ) = λ d
dλ

fn−1 (λ). Since the polynomial B 
(
λ; Kn−1,rp

)
is of degree n − 1 + ∣∣rp

∣∣, then, by the induction hypothesis, it has 
n − 1 + ∣∣rp

∣∣ real non-positive roots (the zero root is of multiplicity p). Apply Rolle’s Theorem to fn−1 (λ) to deduce that 
fn (λ) has 

(
n − 2 + ∣∣rp

∣∣) + 1 = n − 1 + ∣∣rp
∣∣ real roots (the zero root is of multiplicity p) and the missing one must be real 

and negative. After that, apply Newton’s inequality [4, p. 52] to complete the proof. �
Proposition 2.2 states that we have

Corollary 3.3. For 0 ≤ k ≤ n let Wn,k = {n+|rp |
k+|rp |

}
K

(
rp

) . Then, the sequence 
(
Wn,k, 0 ≤ k ≤ n

)
is a Pólya frequency sequence.

Other interesting applications can be obtained by investigating the graphs

Gn,rp := (
Kr1 ∪ · · · ∪ Krp

)O
n

and Tn,rp := (
Tr1 ∪ · · · ∪ Trp

)O
n

.

Applying our results on the graph Gn,rp gives the 
(
r1, . . . , rp

)
-Stirling numbers of the second kind introduced by Mihoubi 

et al. in [9,8]. For more details, let r1, . . . , rp be positive integers and set

R1 := {1, . . . , r1} , R2 := {r1 + 1, . . . , r1 + r2} , . . . , R p := {
r1 + · · · rp−1 + 1, . . . , r1 + · · · + rp

}
.

We note that αk
(
Gn,rp

)
counts the number of partitions of the set 

[
n + ∣∣rp

∣∣] into k nonempty subsets such that the elements 
of each of the p sets R1, . . . , R p are in distinct subsets.

We also note that αk
(
Tn,rp

)
can be interpreted in terms of the Stirling numbers. Indeed, if for all i = 1, . . . , p, the tree 

Ti is a path of ri vertices, the coefficient αk
(
Tn,rp

)
represents the number of ways of partitioning the set of n + ∣∣rp

∣∣ vertices 
of Tn,rp into k independent sets. In terms of Stirling numbers, the coefficient αk

(
Tn,rp

)
counts the number of partitions of 

the set 
[
n + ∣∣rp

∣∣] into k non-empty subsets such any two consecutive elements of Ri , i = 1, . . . , p, cannot be in the same 
subset.
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