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r é s u m é

On donne une caractérisation numérique du cône kählérien d’une variété analytique 
compacte qui est plongée dans un espace ambiant lisse.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical Nakai–Moishezon ampleness criterion (see, e.g., [8] and references therein) characterizes ample line bundles 
on a projective variety as those that have positive intersection against all subvarieties. This was later extended to R-divisors 
by Campana and Peternell [1]. In a groundbreaking paper, Demailly and Păun [7] proved a vast generalization of this result, 
which holds for all real (1, 1) classes on a compact Kähler manifold. More precisely, they proved that the Kähler cone of a 
compact Kähler manifold is one of the connected components of the positive cone, consisting of classes that have positive 
intersection against all analytic subvarieties. Very recently, a new proof of this theorem was obtained by combining the 
main result of our previous work [3] with a result of Chiose [2].

In this note, we prove an extension of the Demailly–Păun theorem [7] to singular varieties that are embedded in a 
smooth ambient space. A (1, 1) class on the variety is just taken to be the restriction of a (1, 1) class from the ambient 
space, and such a class is Kähler if it is so in a neighborhood of the variety inside the ambient space. This is in fact 
equivalent to the more intrinsic definition of a Kähler class on a compact analytic space as given for example in [12], as 
shown by Păun [9], and this allows us to avoid discussing these more technical notions. With these observations in mind, 
our main theorem is the following:

Theorem 1.1. Let (M, ω) be a smooth (but possibly noncompact and incomplete) Kähler manifold, and E ⊂ M be a compact analytic 
subvariety. Let α be a closed smooth real (1, 1) form on M such that
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∫
V

αk ∧ ωdim V −k > 0, (1.1)

for all positive-dimensional irreducible analytic subvarieties V ⊂ E, and for all 1 � k � dim V . Then there exist an open neighborhood 
U of E in M and a smooth function ϕ : U → R such that α + √−1∂∂ϕ is a Kähler metric on U . If M is an open subset of the regular 
locus of some projective variety, then the inequalities∫

V

αdim V > 0, (1.2)

for all V as above suffice to reach the same conclusion.

This theorem answers a question that was posed to us by R.J. Conlon and H.-J. Hein, in relation to their paper [5] (see 
also [4, 1.3.5]). Applications of this result to the study of the Kähler cone of asymptotically conical Calabi–Yau manifolds 
will appear in a forthcoming revision of [5].

The main tools we use are the Demailly–Păun theorem itself, for smooth compact Kähler manifolds, and our recent 
theorem [3] that shows that the non-Kähler locus of a nef and big class on a compact complex manifold equals the null 
locus of the class. The idea is to work by induction on the dimension on E (as in [7]), and to prove the result by working on 
a resolution of singularities (as in [3]). This way we avoid any technical discussion of currents on singular analytic spaces.

In future work, we hope to address the extension of the Demailly–Păun theorem [7] as well as the main result of our 
previous work [3] to general compact Kähler (reduced and irreducible) analytic spaces.

2. Proof of Theorem 1.1

This section contains the proof of Theorem 1.1.
Clearly we may assume that no component of E is zero-dimensional, since for those the result is trivial.
Let us first assume that E is irreducible and 1-dimensional. Let ν : M̃ → M be an embedded resolution of singularities 

of E ⊂ M , so that M̃ is smooth, connected and Kähler, and the proper transform Ẽ of E is a smooth compact Riemann 
surface. We will also write ν : Ẽ → E for the induced map, so that ν∗α is a smooth closed real (1, 1) form with 

∫
Ẽ ν∗α > 0. 

Therefore the class [ν∗α] on Ẽ is Kähler, and we can find a smooth function ψ on Ẽ such that ν∗α + √−1∂∂ψ > 0 on Ẽ . 
It is elementary to find an open neighborhood Ũ of Ẽ in M̃ and a smooth extension of ψ to Ũ (still denoted by ψ ) such 
that ν∗α + √−1∂∂ψ > 0 on Ũ (see, e.g., [9, Lemme 1, p. 416]). Note that U = ν(Ũ )\Esing is an open neighborhood of Ereg

inside M , but in general it is not the case that ν(Ũ ) is an open neighborhood of E inside M , because it may “pinch off” 
near Esing. Furthermore, even if ν(Ũ ) happens to be an open neighborhood of E , the pushforward function ν∗ψ is not well 
defined wherever different branches of Ẽ come together under the map ν . Therefore, we need to work a bit harder to 
achieve our goal.

Let {p1, . . . , pN} ⊂ Ẽ be the exceptional locus of ν intersected with Ẽ , so that {ν(p1), . . . , ν(pN )} equals the singular set 
of E . For each point p j , we add to ψ a function of the form εθ(z) log |z − p j |, where ε > 0 is small enough, where z =
(z1, . . . , zdim M) are local coordinates for M̃ near p j , and θ is a smooth cutoff function supported in a small neighborhood 
of p j in M̃ , so that we obtain a new function ψ̃ , which is smooth away from the p j ’s and goes to −∞ there, and such that 
ν∗α + √−1∂∂ψ̃ is a Kähler current on Ũ .

Then the smooth function ψ̂ = ν∗ψ̃ on U satisfies α + √−1∂∂ψ̂ > 0, but we are not done yet because U does not 
contain the singular points of E . Let {ν(p1), . . . , ν(pk)} be all the singular points of E (so k � N), and fix charts U j for M
centered at ν(p j) for 1 � j � k, with coordinates so that each U j is the Euclidean ball of radius 2. Call U ′

j the Euclidean 
ball of radius 1 in these coordinates, and let A be the minimum of ψ̂ on the compact set

k⋃
j=1

(∂U ′
j) ∩ U ,

which is a finite number because ψ̂ is smooth there. Choose a large constant B > 0 such that on each U j we have α +
B
√−1∂∂|z|2 > 0. On U ∩ U j , then we have that ψ̂ and B|z|2 + A − B − 1 are both strictly α-plurisubharmonic, with ψ̂

approaching −∞ at the center of the ball U j , and with ψ̂ > B|z|2 + A − B − 1 on a neighborhood of (∂U ′
j) ∩ U . If m̃ax

denotes a regularized maximum function (see, e.g., [6, I.5.18]), then

ψg = m̃ax(ψ̂, B|z|2 + A − B − 1)

is smooth and strictly α-plurisubharmonic on U j ∩ U , it equals ψ̂ in a neighborhood of (∂U ′
j) ∩ U , and it equals B|z|2 +

A − B − 1 as we approach the origin. Therefore the function ψg trivially glues to ψ̂ outside U ′
j , and we can extend it to be 

equal to B|z|2 + A − B − 1 in a small neighborhood of the origin in U j . Repeating this construction for all j, and gluing each 
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of them to ψ̂ , we finally obtain an open neighborhood U of E in M and a smooth function ϕ on U such that α + √−1∂∂ϕ
is a Kähler metric on U , as required.

Next, we assume that E has pure dimension 1, but need not be irreducible anymore. Then, writing E = ∪ j E j with E j
irreducible, we can apply the result to each E j and obtain U j, ϕ j as above, and “glue” them all together using [9, Lemme, 
p. 419], and obtain the desired Kähler potential ϕ on some neighborhood U of E .

We now deal with the general case, by induction on dim E (which is by definition the max of the dimensions of the 
irreducible components of E). The base of the induction is what we have just proved. For the induction step, let dim E = n
and assume the result holds in all dimensions < n. As we just did, it is enough to prove the theorem in the case when E is 
irreducible, since if there are several components then we work on each one separately, and in the end glue the resulting 
metrics as before. So we will assume that E is irreducible. Take ν : M̃ → M to be an embedded resolution of singularities 
of E ⊂ M , obtained as a composition of blowups with smooth centers, so that M̃ is smooth and Kähler, and the proper 
transform Ẽ of E is smooth.

Then ν∗α is a smooth closed real (1, 1) form on Ẽ , and we claim that its class [ν∗α] on Ẽ is nef. If we assume that M
is an open subset of the regular locus of some projective variety, then this holds because we have 

∫
V (ν∗α)dim V � 0 for all 

positive-dimensional irreducible subvarieties V in Ẽ (using (1.1)), and so [7, Theorem 4.5(ii)] gives that the class [ν∗α] on 
Ẽ is nef. However, in our general setup (where there may be no projective compactification), to use [7, Theorem 4.3(ii)], we 
would have to check instead that∫

V

ν∗αk ∧ ω̃dim V −k � 0,

for all positive-dimensional irreducible subvarieties V ⊂ Ẽ , for some Kähler form ω̃ on Ẽ and for all 1 � k � dim V , and it 
does not seem easy to check this directly. Instead, we argue as follows. We have∫

Ẽ

ν∗(αk ∧ ωdim E−k) > 0,

for 1 � k � dim E , because ν : Ẽ → E is a modification, and using (1.1). Since the class [ν∗ω] is nef on Ẽ , we can find Kähler 
classes on Ẽ arbitrarily close to it, and therefore there exists a Kähler metric ω̃ on Ẽ such that∫

Ẽ

ν∗αk ∧ ω̃dim E−k > 0, (2.1)

for 1 � k � dim E . Now for t � 0 sufficiently large, the class [ν∗α + tω̃] is Kähler on Ẽ . Let t0 be the minimum value of t
such that the class [ν∗α + tω̃] is nef on Ẽ , and suppose for a contradiction that t0 > 0. By definition, the class [ν∗α + t0ω̃]
is not Kähler on Ẽ . Thanks to [7, Theorem 0.1], there exists a positive-dimensional irreducible analytic subvariety V ⊂ Ẽ , 
such that∫

V

(ν∗α + t0ω̃)dim V = 0, (2.2)

since if we had strict positivity for all such V then the class [ν∗α+t0ω̃] would be Kähler. Also V must be properly contained 
in Ẽ , because we have∫

Ẽ

(ν∗α + t0ω̃)dim E > 0,

by (2.1). Then ν(V ) is an irreducible analytic subvariety of E (possibly a point), of dimension strictly less than dim E , and 
with the same positivity property (1.1), so by induction we can find an open neighborhood W of ν(V ) in M and a smooth 
function η on W such that α + √−1∂∂η > 0. Therefore, in the open neighborhood ν−1(W ) of V the smooth function ν∗η
satisfies ν∗α + √−1∂∂(ν∗η) � 0. Since ω̃ is Kähler on Ẽ and t0 > 0, this implies that∫

V

(ν∗α + t0ω̃)dim V > 0,

contradicting (2.2). Therefore we must have t0 � 0, and so the class [ν∗α] is indeed nef on Ẽ .
This proves our claim that the class [ν∗α] is nef on Ẽ , and since∫

(ν∗α)dim E =
∫
E

αdim E > 0,
Ẽ
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by (1.1), we can apply [7, Theorem 2.12] and see that this class is also big, i.e. it contains a Kähler current ν∗α + √−1∂∂ψ , 
which we may assume to have analytic singularities thanks to Demailly’s regularization theorem (see [7, Theorem 3.2]). 
Also, if V �⊂ Exc(ν) ∩ Ẽ , then ν(V ) is an irreducible subvariety of E of the same dimension as V , and ν : V → ν(V ) is 
bimeromorphic and so we have 

∫
V (ν∗α)dim V = ∫

ν(V )
αdim V > 0, thanks to assumption (1.1). This means that the null locus 

of the class [ν∗α] on Ẽ is contained in Exc(ν), and so using [3, Theorem 1.1], we may choose ψ to be smooth on Ẽ\Exc(ν). 
We use [7, Lemma 2.1] to obtain a quasi-plurisubharmonic function with nontrivial analytic singularities along Exc(ν), and 
add a small multiple of it to ψ , to obtain a function ψ̃ that is smooth on Ẽ\Exc(ν) and goes to −∞ along Exc(ν), and such 
that ν∗α + √−1∂∂ψ̃ is a Kähler current on Ẽ with analytic singularities along Exc(ν).

As in the first part of the proof of [3, Theorem 3.2], up to modifying ψ̃ slightly (maintaining its same properties), we can 
find an extension ψ̃ ′ to an open neighborhood Ũ of Ẽ\Exc(ν) in M̃ .

Here are some details for this construction (see [3] for full details). By a resolution of singularity arguments, we construct 
a modification μ : M̂ → M̃ , which is a composition of blowups with smooth centers, such that μ(Exc(μ)) is equal to Exc(ν), 
such that the proper transform Ê of Ẽ is smooth, and the pullback under μ of the ideal sheaf on Ẽ , which defines the 
singularities of the Kähler current ν∗α + √−1∂∂ψ̃ is a principal ideal, supported along a simple normal crossings divisor, 
which is the restriction to Ê of a simple normal crossings divisor on M̂ (which is equal to Exc(μ)), which has normal 
crossings with Ê . We then cover Ê by finitely many coordinate charts {W j} for M̂ . To the pullback μ∗ψ̃ we add a small 
multiple of 

√−1∂∂ log |s|2h , where s defines Exc(μ) (and h is chosen suitably), to obtain a strictly μ∗ν∗α-plurisubharmonic 
function � on Ê , with analytic singularities as before (in particular, smooth away from Exc(μ)). For each j, we then extend 
�|W j∩Ê to a function ψ j on W j in an elementary fashion, still preserving strict μ∗ν∗α-plurisubharmonicity. Then we use 
a gluing procedure inspired by a classical method of Richberg [10] (see, e.g., [11, Lemma 3.3]), but with the extra difficulty 
that now the functions ψ j have poles. Nevertheless, arguing exactly as in [3, Proof of Theorem 3.2], we can obtain an open 
neighborhood U1 of Ê in M̂ and a strictly μ∗ν∗α-plurisubharmonic function �̃ on U1, which restricts to � on Ê , and is 
smooth on Ê\Exc(μ).

Here we highlight that since Ê is a complex submanifold of a complex manifold, constructing this extension �̃ on an 
open neighborhood U1 of Ê would be standard by Richberg [10] if � were smooth (or even just continuous) on Ê . On the 
other hand, if the singularities of � were completely arbitrary, then such an extension would not be possible in general. 
The key property that saves us here is that the singular locus of � is the intersection with Ê of a simple normal crossings 
divisor, Exc(μ), in the ambient space M̂ .

Then we take Ũ = μ(U1), and ψ̃ ′ = μ∗�̃ , which are as required. In particular, Ũ is an open neighborhood of Ẽ\Exc(ν)

in M̃ , and ψ̃ ′ is strictly ν∗α-plurisubharmonic, and it is smooth on Ũ\Exc(ν).
On the open set U = ν(Ũ )\Esing (which is a neighborhood of Ereg in M), we have the smooth function ψ̂ = ν∗ψ̃ ′ with 

α+√−1∂∂(ν∗ψ̃ ′) a smooth Kähler metric there, and with ν∗ψ̃ ′ approaching −∞ along Esing. Now Esing is a subvariety of M
of dimension strictly less than n, with the same positivity property (1.1), so by induction we can find an open neighborhood 
W of Esing in M and a smooth function ϕ̂ on W with α + √−1∂∂ϕ̂ > 0 on W . We may also assume that ϕ̂ is defined on 
a slightly larger open set, so that it is smooth up to ∂W .

If we let A be the minimum of ψ̂ on the compact set (∂W ) ∩ U and B be the maximum of ϕ̂ on the same set, then 
ψ̂ > ϕ̂ + A − B − 1 holds on a neighborhood of (∂W ) ∩ U . Then

ψg = m̃ax(ψ̂, ϕ̂ + A − B − 1)

is smooth and strictly α-plurisubharmonic on U ∩ W , equal to ψ̂ near (∂W ) ∩ U , and equal to ϕ̂ + A − B −1 as we approach 
Esing. Therefore ψg trivially glues to ψ̂ outside W , and we can extend it to be equal to ϕ̂ + A − B − 1 in a neighborhood of 
Esing. In this way, we obtain an open neighborhood U of E in M and a smooth function ϕ on U such that α + √−1∂∂ϕ is 
a Kähler metric on U , as required.

Lastly, the statement in the projective case follows from the Kähler one exactly as in [7], by choosing ω to be the 
curvature form of a very ample line bundle L on the projective variety which contains M as an open subset, and observing 
that ∫

V

αk ∧ ωdim V −k =
∫

V ∩H1∩···∩Hdim V −k

αk,

for generic members H1, . . . , Hdim V −k of the linear system |L|, so that V ∩ H1 ∩ · · · ∩ Hdim V −k is an irreducible subvariety 
of dimension k.
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