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The Bessel–Struve transform satisfies some uncertainty principles in a similar way to the 
Euclidean Fourier transform. Beurling’s theorem is obtained for the Bessel–Struve transform 
Fα

B,S .
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r é s u m é

La transformé de Bessel–Struve satisfait quelques principes d’incertitude de manière 
similaire au cas de la transformée de Fourier euclidienne. Le théorème de Beurling est 
obtenu pour la transformée de Bessel–Struve.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

There are many known theorems that state that a function and its classical Fourier transform on R cannot both be 
sharply localized. That it is impossible for a non-zero function and its Fourier transform to be simultaneously small. 
Hardy [5], Miyachi [9], Cowling and Price [3], and Beurling [1] for example interpreted the smallness as sharp pointwise 
estimates for integrable decay of functions. Beurling’s theorem, which was found by Beurling and his proof was published 
much later by Hörmander, says that for any non-trivial function f ∈ L2(R), the product f (x) f̂ (y) is never integrable on R2

with respect to the measure e|x||y|dxdy, where f̂ stands for the Fourier transform of f . A far-reaching generalization of this 
result has been recently proved by Bonami, Demange and Jaming [2]. They proved that

Theorem 1.1. If f ∈ L2(R) satisfies for an integer N∫
R

∫
R

| f (x)||̂ f (y)|
(1 + |x| + |y|)N

e|x||y|dxdy < ∞,

then f is of the form f (x) = P (x)e−bx2
, where P is a polynomial of degree strictly lower than N−1

2 and b is a positive constant.
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Many authors have established the analogous of Beurling’s theorem in other various setting of harmonic analysis (see for 
instance [7,8]). The purpose of this paper is to establish an analogous of Beurling’s theorem for the Bessel–Struve transform. 
The outline of the content of this paper is as follows.

Section 2 is dedicated to some properties and results concerning the Bessel–Struve transform.
Section 3 is devoted to the Beurling’s theorem for the Bessel–Struve transform.

2. Bessel–Struve transform

We consider the Bessel–Struve operator lα , α > − 1
2 , defined on C∞(R) by

lαu(x) = d2u

dx2
(x) + 2α + 1

x

[
du

dx
(x) − du

dx
(0)

]
.

For λ ∈C, the differential equation:{
lαu(x) = λ2u(x)

u(0) = 1, u′(0) = λ�(α+1)√
π�(α+ 3

2 )

(1)

possesses a unique solution denoted �α(λ). This eigenfunction, called the Bessel–Struve kernel, is given by:

�α(λx) = jα(iλx) − ihα(iλx), x ∈R.

jα and hα are respectively the normalized Bessel and Struve functions of index α. These kernels are given as follows:

jα (z) = � (α + 1)

+∞∑
k=0

(−1)k
( z

2

)2k

k!� (k + α + 1)

and

hα (z) = � (α + 1)

+∞∑
k=0

(−1)k
( z

2

)2k+1

�
(

k + 3
2

)
�

(
k + α + 3

2

) .

Let p ∈ [1,+∞], we denote by Lp
α (R) the space of real-valued functions f measurable on R such that

‖ f ‖p,α =
⎛⎝∫

R

| f (x)|p dμα (x)

⎞⎠
1
p

< +∞ if p < +∞

where

dμα (x) = A (x)dx and A (x) = |x|2α+1 ,

‖ f ‖∞,α = ess sup
x∈R

| f (x)| < +∞ if p = ∞.

The kernel �α possesses the following integral representation:

�α(λx) = 2�(α + 1)√
π�(α + 1

2 )

1∫
0

(1 − t2)α− 1
2 eλxtdt, ∀x ∈R, ∀λ ∈C.

The Bessel–Struve kernel �α is related to the exponential function by

∀x ∈R, ∀λ ∈C, �α(λx) = Xα(eλ.)(x),

where Xα is the Bessel–Struve intertwining operator (see [4]).

Definition 1. The Bessel–Struve transform is defined on L1
α(R) by

∀λ ∈R, Fα
B,S( f )(λ) =

∫
R

f (x)�α(−iλx)dμα(x).
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Definition 2. For f ∈ L1
α(R) with bounded support, the integral transform Wα , given by

Wα( f (x)) = 2�(α + 1)√
π�(α + 1

2 )
|x|2α+1

+∞∫
|x|

(y2 − x2)α− 1
2 yf (sgn(x)y)dy, x ∈R\{0}

is called Weyl integral transform associated with the Bessel–Struve operator.

Proposition 1. (See [4].) Wα is a bounded operator from L1
α(R) to L1(R), where L1(R) is the space of Lebesgue-integrable functions.

Proposition 2. (See [4].) We have ∀ f ∈ L1
α(R), Fα

B,S =F ◦ Wα( f ) where F is the classical Fourier transform defined on L1(R) by

F(g)(λ) =
∫
R

g(x)e−iλxdx.

Proposition 3. (See [4].) Let a > 0, the Weyl integral transform verifies

Wα(e−a) = Ce−a

where C = �(α+1)

2
√

πaα+ 1
2

.

Proposition 4. (See [4].) Let a > 0 and let f be a continuous function on R such that

∀x ∈R, | f (x)| ≤ Ce−ax2
(∗)

Then Wα( f ) is of class C1 on R\{0} and verifies

∀x ∈R\{0}, [W 1
2

f ]′(x) = −xf (x)

and

∀α >
1

2
, ∀x ∈R\{0}, [Wα f ]′(x) = −2αxWα−1 f (x).

Proposition 5. (See [4].) For α = k + 1
2 , k ∈ N, let f be a continuous function on R verifying (∗). Then Wα is of class Ck+1 on R\{0}

and we have Vα ◦ Wα( f ) = f where

Vα f (x) = (−1)k+1 22k+1k!
(2k + 1)! (

d

dx2
)k+1( f (x)), x ∈R

∗ and
d

dx2
= 1

2

d

dx
.

Lemma 1. (See [6].) Let g ∈ E(R\{0}), m and k are two integers nonnegative, we have

∀x ∈R
∗, (

d

dx2
)k(xm g(x)) =

k∑
i=0

bk
i xm−2k+i g(i)(x)

where E(R) designates the space of infinitely differentiable functions on R and bk
i are constants depending on i, k and m.

Lemma 2. (See [6].) Let f be in D(R). We have Vα ◦ (Wα( f )) = f .

Theorem 2.1. (See [4].) Let f be a measurable function on R such that

‖ea f ‖p,α < +∞ and ‖ebFα
B,S( f )‖q,α < +∞ (2)

for some constants a > 0, b > 0, 1 ≤ p, q ≤ +∞ and at least one of p and q is finite. We have

1. If ab ≥ 1
4 , then f = 0 a.e.

2. If ab < 1
4 , then for all δ ∈]a, 1

4b [, the functions having the form f (x) = P (x)e−δx2
where P is an even polynomial on R satisfy 

relation (2).
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3. Beurling’s theorem for the Bessel–Struve transform

In this section, we will prove our result main.

Theorem 3.1. Let N, k ∈N, α = k + 1
2 and f ∈ L2

α(R). Then∫
R

∫
R

| f (x)||Fα
B,S( f )(y)|

(1 + |x| + |y|)N
e|x||y||x|2α+1dxdy < ∞ (3)

implies f (x) = P (x)e−rx2
, where r > 0 and P is an even polynomial of degree strictly lower than N−1

2 .

Proof. We start with the following lemma.

Lemma 3. We suppose that f ∈ L2
α(R) satisfies (3), then f ∈ L1

α(R).

Proof. We may suppose that f �= 0 in L2
α(R). (3) and the Fubini theorem imply that for almost every y ∈ R,

|Fα
B,S( f )(y)|

(1 + |y|)N

∫
R

| f (x)|
(1 + |x|)N

e|x||y||x|2α+1dx < ∞.

Since Fα
B,S( f ) �= 0, there exists y0 ∈ R, y0 �= 0 such that Fα

B,S ( f )(y0) �= 0.
Therefore∫

R

| f (x)|
(1 + |x|)N

e|x||y0||x|2α+1dx < ∞.

Since 
e|x||y0|

(1 + |x|)N
� 1 for large |x|, it follows that 

∫
R

| f (x)||x|2α+1dx < ∞. �

This lemma and Proposition 1 imply that Wα( f ) is well defined almost everywhere on R. By Proposition 1 we can find 
a constant C > 0 such that∫

R

|Wα( f )(x)|dx ≤ C

∫
R

| f (x)||x|2α+1dx,

thus ∫
R

∫
R

|Wα( f (x))||Fα
B,S( f )(y)|

(1 + |x| + |y|)N
e|x||y|dxdy ≤ C

∫
R

∫
R

| f (x)||Fα
B,S( f )(y)|

(1 + |x| + |y|)N
e|x||y||x|2α+1dxdy

< ∞.

It follows from Proposition 2 that∫
R

∫
R

|Wα( f (x))||F ◦ Wα( f )(y)|
(1 + |x| + |y|)N

e|x||y|dxdy < ∞.

According to Theorem 1.1, we can deduce that for all x ∈ R, Wα( f )(x) = P (x)e−rx2
, where r > 0 and P is a polynomial of 

degree strictly lower than N−1
2 .

Hence applying Lemma 1, we can find constants bs such that

f (x) = Vα ◦ Wα( f )(x) =
∑

|s|< N−1
2

bsxse−rx2
.

Then it follows from Lemma 3 that 
∫
R

| 
∑

|s|< N−1
2

bsxs|e−rx2 |x|2α+1dx < ∞. Then for some constants a ∈]0, r[, we have 

‖ea f ‖1,α < +∞. On the other hand,

Fα
B,S( f )(y) = F ◦ Wα( f )(y) = F(P (x)e−rx2

) = R(y)e
−y2

4r

where R is a polynomial of degree degP . Then for some constants b ∈]0, 14 r[, we have ‖eb Fα
B,S( f )‖2,α < +∞. According to 

Theorem 2.1, we can deduce that f (x) = P (x)e−rx2
, where P is an even polynomial of degree strictly lower than N−1 . �
2
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