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We consider a diffusion equation with highly oscillatory coefficients that admits a 
homogenized limit. As an alternative to standard corrector problems, we introduce here an 
embedded corrector problem, written as a diffusion equation in the whole space, in which 
the diffusion matrix is uniform outside some ball of radius R . Using that problem, we next 
introduce three approximations of the homogenized coefficients. These approximations, 
which are variants of the standard approximations obtained using truncated (supercell) 
corrector problems, are shown to converge to the homogenized coefficient when R → ∞. 
We also discuss efficient numerical methods to solve the embedded corrector problem.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons une équation de diffusion à coefficients hautement oscillants qui admet 
une limite homogénéisée, et nous introduisons une variante du problème du correcteur 
standard, qui se formalise comme un problème d’inclusion. Celui-ci s’écrit comme une 
équation de diffusion posée dans tout l’espace, dans laquelle la matrice de diffusion 
est uniforme à l’extérieur d’une boule de rayon R . Nous introduisons ensuite trois 
approximations des coefficients homogénéisés, calculées à partir de la solution de ce 
problème. Ces approximations, qui sont des variantes des approximations standard basées 
sur le problème du correcteur tronqué (méthode de supercellule), convergent lorsque 
R → ∞ vers le coefficient homogénéisé. Nous mentionnons également des méthodes de 
résolution numérique efficaces pour ce nouveau problème.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

✩ We thank Paul Cazeaux for fruitful discussions on questions related to this project. The work of FL is partially supported by ONR under Grant 
N00014-12-1-0383 and EOARD under Grant FA8655-13-1-3061.

E-mail addresses: cances@cermics.enpc.fr (É. Cancès), ehrlachv@cermics.enpc.fr (V. Ehrlacher), legoll@lami.enpc.fr (F. Legoll), stamm@ann.jussieu.fr
(B. Stamm).
http://dx.doi.org/10.1016/j.crma.2015.06.019
1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2015.06.019
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:cances@cermics.enpc.fr
mailto:ehrlachv@cermics.enpc.fr
mailto:legoll@lami.enpc.fr
mailto:stamm@ann.jussieu.fr
http://dx.doi.org/10.1016/j.crma.2015.06.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2015.06.019&domain=pdf


802 É. Cancès et al. / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 801–806
1. Introduction

We consider the standard elliptic, highly oscillatory problem

−div [A (·/ε) ∇uε] = f in �, uε = 0 on ∂�, (1)

where � is a smooth bounded domain of Rd and f ∈ L2(�). The coefficient A is a matrix-valued field, and ε is a small 
characteristic length scale. Throughout this Note, we assume that A is symmetric and elliptic, in the sense that there exists 
0 < α ≤ β < ∞ such that A(x) ∈Mα,β for any x ∈ R

d , where

Mα,β :=
{

A ∈ R
d×d, AT = A and, for any ξ ∈R

d, α|ξ |2 ≤ ξT Aξ ≤ β|ξ |2
}

.

It is well known (see, e.g., [2,8,12]) that, under this assumption, problem (1) admits a homogenized limit, i.e. that 
the sequence A(·/ε) G-converges, up to the extraction of a subsequence, to some homogenized matrix-valued field 
A� ∈ L∞(�, Mα,β) when ε → 0 (the notion of G-convergence is recalled in Definition 3.1 below).

Our setting includes in particular the periodic case, where A(x) = Aper(x) for a fixed Zd-periodic function Aper, and the 
random stationary case (see [13,17]), where

A(x) = Asta(x,ω) for some realization ω of a random stationary function Asta. (2)

In these two cases, the whole sequence A(·/ε) G-converges (for almost all ω in the case (2)).
Computing the homogenized coefficient A� is in general a challenging task, even in the cases when a closed form formula 

for A� is available. To motivate our work, consider for instance the random stationary case (2) in a discrete stationary 
setting [1,3] when

∀k ∈ Z
d, Asta(x, τkω) = Asta(x + k,ω) a.e. in x, a.s. in ω,

where (τk)k∈Zd is an ergodic group action on the probability space. In that setting, A� is a constant deterministic matrix, 
given by

∀p ∈R
d, A�p = E

[
1

|Q |
∫
Q

A(x, ·) (p + ∇w p(x, ·)) dx

]
, Q = (0,1)d, (3)

where w p is the unique solution (up to an additive constant) to the so-called corrector problem⎧⎪⎪⎨
⎪⎪⎩

−div
[
A(·,ω)(p + ∇w p(·,ω))

]= 0 almost surely in D′(Rd),

∇w p is stationary, E

[∫
Q

∇w p(x, ·)dx

]
= 0.

(4)

The major difficulty to compute A� is the fact that the corrector problem (4) is set over the whole space Rd and cannot be 
reduced to a problem posed over a bounded domain (in contrast to, e.g., periodic homogenization). This is the reason why 
approximation strategies are required, yielding practical approximations of A� . A popular approach, introduced in [4], is to 
approximate A� by A�

N(ω), which, in turn, is defined by

∀p ∈R
d, A�

N(ω)p := 1

|Q N |
∫

Q N

A(x,ω)
(

p + ∇w N
p (x,ω)

)
dx, Q N = (−N, N)d, (5)

where w N
p is the unique solution (up to an additive constant) to the truncated corrector problem

−div
[
A(·,ω)(p + ∇w N

p (·,ω))
]

= 0 almost surely in D′(Rd), w N
p (·,ω) is Q N -periodic. (6)

As shown in [4], A�
N(ω) almost surely converges to A� when N → ∞.

As we have just pointed out, computing the homogenized coefficient A� is in general a challenging task (we have 
taken above the example of the stationary setting, but the same conclusion holds for other settings, including, e.g., the 
quasiperiodic setting). The aim of this Note is to introduce variants of classical formulas (i.e. (5)–(6) in the stationary 
setting) that allow us to compute accurate approximations of the homogenized coefficient A� , and that, in some cases, 
are amenable to efficient numerical implementations through the use of boundary integral formulations. We refer to [14]
for other characterizations of the homogenized matrix, which can also be turned into numerical strategies that are an 
alternative to (5)–(6) to approximate A� in the random stationary setting. See also [9,11] for other numerical strategies to 
approximate (3).

In Section 2, we describe our approach and explain in what sense it is amenable to an efficient implementation. Based 
on that approach, alternative approximations of A� are built in Section 3, where we also collect convergence results. The 
results presented in this Note will be complemented and extended in [5].
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Fig. 1. (Color online.) Left: field A(x). Right: field AR,A(x): beyond the sphere of radius R , the field A(x) is replaced by a uniform coefficient A.

2. Embedded corrector problem

In this section, we introduce an embedded corrector problem (see (7) below), which is key to our approach.
For any R > 0, we denote by B R the open ball of Rd of radius R centered at the origin, and B := B1. Let �R := ∂ B R and 

nR(x) be the normal unitary vector of �R at the point x ∈ �R pointing outwards B R . We introduce the vector spaces

V :=
{

v ∈ L2
loc(R

d), ∇v ∈
(

L2(Rd)
)d
}

and V 0 :=
⎧⎨
⎩v ∈ V ,

∫
B

v = 0

⎫⎬
⎭ .

The space V 0, endowed with the scalar product 〈·, ·〉 defined by ∀v, w ∈ V 0, 〈v, w〉 := ∫
Rd ∇v · ∇w, is a Hilbert space.

For any matrix-valued field A ∈ L∞(Rd, Mα,β), any R > 0, any constant matrix A ∈ Mα,β , and any vector p ∈ R
d , we 

denote by w R,A,A
p the unique solution in V 0 to

−div
(
AR,A(p + ∇w R,A,A

p )
)

= 0 in D′(Rd), (7)

where (see Fig. 1)

AR,A(x) :=
∣∣∣∣A(x) if x ∈ B R ,

A if x ∈R
d \ B R .

In (7), we keep the original coefficient A in the ball B R , and replace it outside B R by a uniform coefficient A.
Assume that the matrix-valued field A ∈ L∞(Rd, Mα,β) satisfies the following:

Assumption 2.1. The rescaled matrix-valued fields AR , defined by AR(x) = A(Rx), form a family (AR )R>0 that G-converges 
to a constant matrix A� ∈Mα,β on B as R tends to infinity.

Under this assumption, the motivation for considering problems of the form (7) is twofold. First, we show in Section 3
below that the solution w R,A,A

p to (7) can be used to define consistent approximations of A� . Second, in some cases, 
problem (7) can be efficiently solved, using a numerical approach directly inspired from that proposed in [6,15]. This is for 
example the case when, in B R ,

A(x) =
∣∣∣∣ Ai

int Id if x ∈ B R ∩ B(xi, ri), 1 ≤ i ≤ I, I ∈N
�,

Aext Id if x ∈ B R \⋃I
i=1 B(xi, ri),

(8)

where Id is the identity matrix of Rd×d , Ai
int, Aext ∈ [α, β] for any 1 ≤ i ≤ I , (xi)1≤i≤I ⊂ B R and (ri)1≤i≤I is some set of 

positive real numbers such that 
⋃I

i=1 B(xi, ri) ⊂ B R and B(xi, ri) ∩ B(x j, r j) = ∅ for all 1 ≤ i �= j ≤ I . We have denoted by 
B(xi, ri) ⊂ R

d the ball of radius ri centered at xi . We refer to [5] for other cases.
The expression (8) corresponds to the case of (possibly stochastic) heterogeneous materials composed of spherical inclu-

sions. The properties of the inclusions (i.e. the coefficients Ai
int), their centers xi and their radii ri may be random, as long 

as A is stationary (see Fig. 1).
In the case (8), problem (7) can be efficiently solved using a boundary integral method (see [5]). Since AR,A is uniform 

in each B(xi, ri), in B R \ ∪i B(xi, ri) and in Rd \ B R , problem (7) can indeed be recast as an integral equation on the spheres 
∂ B(xi, ri) and �R . In the case of random homogenization, the practical consequence is that, for the same number of degrees 
of freedom, we can afford to work on domains B R that are much larger than the truncated domains Q N in (5)–(6). We thus 
expect to obtain better approximations of A� .
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3. New definitions of approximate homogenized matrices

Assume that the matrix field A satisfies Assumption 2.1. We wish to use solutions to (7) to construct a family (A�,R )R>0
that converges to the homogenized matrix A� as R tends to infinity.

In the subsequent Sections 3.1, 3.2 and 3.3, we respectively present three possible choices leading to converging approx-
imations, namely (12), (13), and (15). We refer to [5] for the proof of the results stated below. To introduce these choices, 
we note that the solution w R,A,A

p to (7) is equivalently the unique solution to the optimization problem

w R,A,A
p = argmin

v∈V 0

J R,A,A
p (v),

where

J R,A,A
p (v) := 1

2|B R |
∫
B R

(p + ∇v)T
A(p + ∇v) + 1

2|B R |
∫

Rd\B R

(∇v)T A∇v − 1

|B R |
∫
�R

(Ap · nR)v. (9)

We set J R,A
p (A) := J R,A,A

p (w R,A,A
p ) = minv∈V 0 J R,A,A

p (v). The linearity of the mapping Rd � p �→ w R,A,A
p ∈ V 0 yields that, for 

any A ∈Mα,β , there exists a unique symmetric matrix G R,A(A) ∈R
d×d such that

∀p ∈R
d,

1

2
pTG R,A(A)p = J R,A

p (A). (10)

Note that 
1

2
Tr
(

G R,A(A)
)

=
d∑

i=1

J R,A
ei

(A), where (ei)1≤i≤d is the canonical basis of Rd . The following expression of J R,A
p (A)

is useful:

J R,A
p (A) = 1

2|B R |
∫
B R

pT
Ap − 1

2|B R |
∫
B R

(
∇w R,A,A

p

)T
A∇w R,A,A

p − 1

2|B R |
∫

Rd\B R

(
∇w R,A,A

p

)T
A∇w R,A,A

p . (11)

Before describing our three approaches, we recall the following classical definition (see [16]):

Definition 3.1 (G-convergence). Let D be an open bounded smooth subdomain of Rd . A family of matrix-valued functions (
A

R
)

R>0 ⊂ L∞(D, Mα,β) is said to G-converge in D to a matrix-valued function A� ∈ L∞(D, Mα,β) if, for all f ∈ H−1(D), 
the family (uR)R>0 of solutions to

−div
(
A

R∇uR
)

= f in D′(D), uR ∈ H1
0(D),

satisfies

uR ⇀
R→+∞ u� weakly in H1

0(D), A
R∇uR ⇀

R→+∞A
�∇u� weakly in L2(D),

where u� is the unique solution to the homogenized equation

−div
(
A

�∇u�
)= f in D′(D), u� ∈ H1

0(D).

3.1. First alternative definition: minimizing the scattering energy

To gain some intuition, we first recast (7) as

−div
[(

A + χB R (A− A)
)(

p + ∇w R,A,A
p

)]
= 0 in D′(Rd),

where χB R is the characteristic function of B R . Thus, in this problem, the quantity A − A can be seen as a local perturbation 
to the homogeneous exterior medium characterized by the diffusion coefficient A. In turn, w R,A,A

p can be seen as the 
perturbation of an incident plane wave with wavevector p induced by the defect located in B R . This is somehow reminiscent 
of the classical Eshelby problem [10]. A first idea is to choose a constant exterior matrix such that the scattering energy of 
the perturbation of the wave is as small as possible. We have the following result (recall that G R,A is defined by (10)):

Lemma 3.2. For all R > 0 and A ∈ L∞(Rd, Mα,β), the function Mα,β � A �→ Tr
(

G R,A(A)
)

is concave.
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It follows that, for any R > 0, there exists (at least) one matrix AR
1 ∈Mα,β such that

AR
1 = argmax

A∈Mα,β

Tr
(

G R,A(A)
)

. (12)

This matrix AR
1 can be seen as a matrix which minimizes the scattering energy induced by the defect A − A of incident 

plane waves in an infinite medium. Indeed, using (11), we have that

AR
1 = argmin

A∈Mα,β

d∑
i=1

⎛
⎜⎝∫

B R

(
∇w R,A,A

ei

)T
A∇w R,A,A

ei
+
∫

Rd\B R

(
∇w R,A,A

ei

)T
A∇w R,A,A

ei

⎞
⎟⎠ ,

and the matrix AR
1 can thus be seen as a diffusion matrix A of the exterior medium such that the sum of the energies of 

the scattering waves with incident wavevectors ei induced by the defect is minimal.
As shown in Proposition 3.3 below, the approximation AR

1 converges to A� when R → ∞.

3.2. Second alternative definition: an equivalent internal homogeneous material

We now introduce a second alternative definition of an approximate homogenized matrix:

AR
2 = G R,A(AR

1 ), (13)

where AR
1 is defined by (12). In view of (10), the above relation can also be written as ∀p ∈ R

d , 1
2 pT AR

2 p = J R,A
p (AR

1 ). 
Using (9), the above definition can formally be recast as∫

B R

(
p + ∇w

R,A,AR
1

p

)T

A

(
p + ∇w

R,A,AR
1

p

)
+
∫

Rd\B R

(
p + ∇w

R,A,AR
1

p

)T

AR
1

(
p + ∇w

R,A,AR
1

p

)

=
∫
B R

pT AR
2 p +

∫
Rd\B R

pT AR
1 p. (14)

The above relation is formal in the sense that both sides of the equation are infinite, but it nevertheless has an interesting 
physical interpretation. The above left-hand side corresponds to the energy of the heterogeneous material, modeled by A in 
B R and AR

1 outside of B R , and where the field p + ∇w
R,A,AR

1
p is solution to the equilibrium equation (7). Since ∇w

R,A,AR
1

p is 
in L2(Rd), its average is thought to vanish, and hence the average field is p. The above right-hand side corresponds to the 
energy of a material, modeled by AR

2 in B R and AR
1 outside of B R , in which the field is uniform and equal to p. The formal 

equation (14) thus “defines” AR
2 by an equality in terms of energies.

The following convergence result can be established:

Proposition 3.3. Assume that the matrix field A satisfies Assumption 2.1. Then, the two families of matrices 
(

AR
1

)
R>0 and 

(
AR

2

)
R>0 , 

respectively defined by (12) and (13), satisfy

AR
1 −→

R→+∞ A� and AR
2 −→

R→+∞ A�.

3.3. Third alternative definition: a self-consistent equation

We eventually introduce a third alternative definition, inspired by the approximation of A� introduced in [7]. Assume 
that, for any R > 0, there exists a matrix AR

3 ∈Mα,β such that

AR
3 = G R,A(AR

3 ). (15)

Such a matrix formally satisfies the self-consistent equation

d∑
i=1

∫
B R

[(
ei + ∇w

R,A,AR
3

ei

)T

A

(
ei + ∇w

R,A,AR
3

ei

)
− eT

i AR
3 ei

]

+
∫

d

[(
ei + ∇w

R,A,AR
3

ei

)T

AR
3

(
ei + ∇w

R,A,AR
3

ei

)
− eT

i AR
3 ei

]
= 0.
R \B R
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This third definition also yields a converging approximation of A�:

Proposition 3.4. Assume that the matrix field A satisfies Assumption 2.1, and that there exists a sequence 
(

ARk
3

)
k∈N ∈ (Mα,β

)N
satisfying

∀k ∈N, ARk
3 = G Rk,A

(
ARk

3

)
for some increasing sequence (Rk)k∈N of positive numbers converging to +∞. Then,

ARk
3 −→

k→+∞
A�.

Note that we do not assume in this Proposition that the fixed-point equation (15) has a solution for all radii R . Proving 
the existence of a matrix AR

3 satisfying (15) in the general case is a delicate question. We however already have the following 
partial result, which addresses the isotropic case.

Proposition 3.5. Let d ≥ 2. Let A ∈ L∞(Rd, Mα,β) be a matrix-valued field satisfying Assumption 2.1. Assume also that the homoge-
nized matrix satisfies A� = a� Id , where Id is the identity matrix of Rd×d.

Then a� ∈ [α, β] and, for any R > 0, there exists aR
3 ∈ [α, β] such that

aR
3 = 1

d
Tr
(

G R,A(aR
3 Id)

)
. (16)

In addition,

aR
3 −→

R→+∞a�.

Note that (16) is weaker than (15), which would read in this case aR
3 Id = G R,A(aR

3 Id). However, this weaker condition is 
sufficient to prove that aR

3 is a converging approximation of a� .
We conclude with the following two remarks. First, in the one-dimensional case, it is possible to obtain explicit expres-

sions for AR
1 , AR

2 and AR
3 (which are uniquely defined by (12), (13) and (15), respectively) and see that they converge to A�

when R → ∞. Second, in the case when A is actually equal to a constant matrix A in B R , then we have AR
1 = AR

2 = A, and 
the unique solution to (15) is AR

3 = A.
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