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Let TCM(d) be the maximum size of the torsion subgroup of an elliptic curve with complex 
multiplication over a degree d number field. We show there is an absolute, effective 
constant C such that TCM(d) ≤ Cd log log d for all d ≥ 3.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit TCM(d) la taille maximale du sous-groupe de torsion d’une courbe elliptique à 
multiplications complexes, définie sur un corps de nombres de degré d. Nous montrons 
qu’il existe C une constante absolue, effective, telle que TCM(d) ≤ Cd log log(d) pour tout 
d ≥ 3.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

For a commutative group G , we denote by G[tors] the torsion subgroup of G .

1. Introduction

The aim of this note is to prove the following result.

Theorem 1. There is an absolute, effective constant C such that for all number fields F of degree d ≥ 3 and all elliptic curves E/F with 
complex multiplication,

#E(F )[tors] ≤ Cd log log d.

It is natural to compare this result with the following one.

Theorem 2. (See Hindry–Silverman [9].) For all number fields F of degree d ≥ 2 and all elliptic curves E/F with j-invariant j(E) ∈OF , 
we have

#E(F )[tors] ≤ 1 977 408d log d.
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Every CM elliptic curve E/F has j(E) ∈OF , and only finitely many j ∈OF are j-invariants of CM elliptic curves E/F . But 
the improvement of log log d over log d is interesting in view of the following result.

Theorem 3. (See Breuer [4].) Let E/F be an elliptic curve over a number field. There exists a constant c(E, F ) > 0, integers 3 ≤ d1 <

d2 < . . . < dn < . . . and number fields Fn ⊃ F with [Fn : F ] = dn such that for all n ∈ Z+ we have

#E(Fn)[tors] ≥
{

c(E, F )dn log log dn if E has CM,

c(E, F )
√

dn log log dn otherwise.

Let TCM(d) be the maximum size of the torsion subgroup of a CM elliptic curve over a degree d number field. Theorems 1
and 3 tell us that TCM(d) has upper order d log log d:

0 < lim sup
d→∞

TCM(d)

d log log d
< ∞.

To our knowledge, this is the first instance of an upper order result for torsion points on a class of abelian varieties over 
number fields of varying degree.

Define T (d) as for TCM(d) but replacing “CM elliptic curve” with “elliptic curve”, and define T¬CM(d) as for TCM(d)

but replacing “CM elliptic curve” with “elliptic curve without CM”. Hindry and Silverman ask whether T¬CM(d) has upper 
order

√
d log log d. If so, the upper order of T (d) would be d log log d [5, Conjecture 1].

2. Proof of the Main Theorem

2.1. Torsion points and ray class containment

Let K be a number field. Let OK be the ring of integers of K , �K the discriminant of K , w K the number of roots of 
unity in K and hK the class number of K . By an “ideal of OK ” we shall always mean a nonzero ideal. For an ideal a of OK , 
we write K (a) for the a-ray class field of K . We also put |a| = #OK /a and

ϕK (a) = #(OK /a)× = |a|
∏
p|a

(
1 − 1

|p|
)

.

An elliptic curve E defined over a field of characteristic 0 has complex multiplication (CM) if End E � Z; then End E is an 
order in an imaginary quadratic field. We say E has O-CM if End E ∼=O and K -CM if End E is an order in K .

Lemma 4. Let K be an imaginary quadratic field and a an ideal of OK . Then

hK ϕK (a)

6
≤ hK ϕK (a)

w K
≤ [K (a) : K ] ≤ hK ϕK (a).

Proof. This follows from [6, Corollary 3.2.4]. �
Theorem 5. Let K be an imaginary quadratic field, F ⊃ K a number field, E/F a K -CM elliptic curve and N ∈ Z+ . If (Z/NZ)2 ↪→ E(F ), 
then F ⊃ K (NOK ) .

Proof. The result is part of classical CM theory when End E = OK is the maximal order in K [15, II.5.6]. We shall reduce 
to that case. There is an OK -CM elliptic curve E ′

/F and a canonical F -rational isogeny ι: E → E ′ [5, Prop. 25]. There is a 
field embedding F ↪→ C such that the base change of ι to C is, up to isomorphisms on the source and target, given by 
C/O →C/OK . If we put

P = 1/N +O ∈ E[N], P ′ = 1/N +OK ∈ E ′[N],
then ι(P ) = P ′ and P ′ generates E ′[N] as an OK -module. By assumption P ∈ E(F ), so ι(P ) = P ′ ∈ E ′(F ). It follows that 
(Z/NZ)2 ↪→ E ′(F )[tors]. �
Remark 6. In fact one can show — e.g., using adelic methods — that for any K -CM elliptic curve E defined over C, the field 
obtained by adjoining to K ( j(E)) the values of the Weber function at the N-torsion points of E contains K (NOK ) .



P.L. Clark, P. Pollack / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 683–688 685
2.2. Squaring the torsion subgroup of a CM elliptic curve

Theorem 7. Let K be an imaginary quadratic field, let F ⊃ K a field extension, and let E/F be a K -CM elliptic curve. Suppose that for 
positive integers a and b we have an injection Z/aZ ×Z/abZ ↪→ E(F ). Then [F (E[ab]) : F ] ≤ b.

Proof. Step 1: Let O = End E . For N ∈ Z+ , let CN = (O/NO)× . Let E[N] = E[N](F ). As an O/NO-module, E[N] is free 
of rank 1. Let gF = Aut(F/F ), and let ρN : gF −→ GL2(Z/NZ) be the mod N Galois representation associated with E/F . 
Because E has O-CM and F ⊃ K , we have

ρN :gF −→ AutO E[N] ∼= GL1(O/NO) ∼= (O/NO)× = CN .

Let � be the discriminant of O. Then e1 = 1, e2 = �+√
�

2 is a Z-basis for O. The induced ring embedding O ↪→ M2(Z) is 

given by αe1 + βe2 �→
[

α β�−β�2

4
β α+β�

]
. So

CN =
{[

α β�−β�2

4
β α + β�

]
| α,β ∈ Z/NZ, and α2 + �αβ +

(
�2 − �

4

)
β2 ∈ (Z/NZ)×

}
.

From this we easily deduce the following useful facts:

(i) CN contains the homotheties 
{[

α 0
0 α

]
| α ∈ (Z/NZ)×

}
.

(ii) For all primes p and all A, B ≥ 1, the natural reduction map C p A+B → C p A is surjective and its kernel has size p2B .

Step 2: Primary decomposition reduces us to the case a = p A , b = pB with A ≥ 0 and B ≥ 1. By induction it suffices to treat 
the case B = 1: i.e., we assume E(F ) contains full p A -torsion and a point of order p A+1 and show [F (E[p A+1]) : F ] ≤ p.

Case A = 0:

• If 
(

�
p

)
= 1, then C p is conjugate to 

{[
α 0
0 β

]
| α,β ∈ F×

p

}
. If α �= 1 (resp. β �= 1) the only fixed points (x, y) ∈ F2

p of 
[

α 0
0 β

]

have x = 0 (resp. y = 0). Because E(F ) contains a point of order p we must either have α = 1 for all 
[

α 0
0 β

]
∈ ρp(gF ) or 

β = 1 for all 
[

α 0
0 β

]
∈ ρp(gF ). Either way, #ρp(gF ) | p − 1.

• If 
(

�
p

)
= −1, then C p acts simply transitively on E[p] \ {0}, so if we have one F -rational point of order p then E[p] ⊂

E(F ), so #ρp(gF ) = 1.

• If 
(

�
p

)
= 0, then C p is conjugate to 

{[
α β

0 α

]
| α ∈ F×

p , β ∈ Fp

}
[3, §4.2]. Since E(F ) has a point of order p, every element 

of ρp(gF ) has 1 as an eigenvalue and thus ρp(gF ) ⊂
{[

1 β

0 1

]
| β ∈ Fp

}
, so has order dividing p.

Case A ≥ 1: By (ii), K = ker C p A+1 → C p A has size p2. Since (Z/p AZ)2 ↪→ E(F ), we have ρp A+1(gF ) ⊂ K. Since E(F ) has a 

point of order p A+1, by (i) the homothety 
[

1+p A 0

0 1+p A

]
lies in K\ρp A+1 (gF ). Therefore ρp A+1(gF ) �K, so #ρp A+1(gF ) | p. �

2.3. Uniform bound for Euler’s function in imaginary quadratic fields

Let a be an ideal in an imaginary quadratic field K . To apply the results of Section 2.1, we require a lower bound on 
ϕK (a)

|a| . For fixed K , it is straightforward to adapt a classical argument of Landau (see the proof of [10, Theorem 328, p. 352]). 
Replacing Landau’s use of Mertens’ Theorem with Rosen’s number field analogue [13], one obtains the following result: let 
γ denote the Euler–Mascheroni constant, and let χ(·) = (

�K· ) be the quadratic Dirichlet character associated with K . Then

lim inf|a|→∞
ϕK (a)

|a|/ log log |a| = e−γ · L(1,χ)−1.

Alas, this result is not sufficient for our purposes. There are two sources of difficulty. First, the right-hand side depends 
on K , and can in fact be arbitrarily small (see [2, (4′)]). Second, it only addresses limiting behavior as |a| → ∞. However, 
looking back at Lemma 4 we see that a lower bound on hK

ϕK (a)
|a| would suffice. The factor of hK allows us to prove a totally 

uniform lower bound.

Theorem 8. There is a positive, effective absolute constant C such that, for all imaginary quadratic fields K and all nonzero ideals a
of OK with |a| ≥ 3, we have
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ϕK (a) ≥ C

hK
· |a|

log log |a| .

Lemma 9. For a fundamental quadratic discriminant � < 0, let K = Q(
√

�), and let χ(·) = (
�
· ). There is an effective constant C > 0

such that for all x ≥ 2,

∏
p≤x

(
1 − χ(p)

p

)
≥ C

hK
. (1)

Proof. By the quadratic class number formula, hK � L(1, χ)
√|�| [7, eq. (15), p. 49]. Writing L(1, χ) = ∏

p(1 − χ(p)/p)−1

and rearranging, we see (1) holds iff
∏
p>x

(
1 − χ(p)

p

)
� √|�|, (2)

with an effective and absolute implied constant. By Mertens’ Theorem [10, Theorem 429, p. 466], the factors on the left-hand 
side of (2) indexed by p ≤ exp(

√|�|) make a contribution of O (
√|�|). Put y = max{x, exp(

√|�|)}; it suffices to show that ∏
p>y (1 − χ(p)/p) � 1. Taking logarithms, this will follow if we prove that 

∑
p>y χ(p)/p = O (1). For t ≥ exp(

√|�|), the 
explicit formula gives S(t) := ∑

p≤t χ(p) log p = −tβ/β + O (t/ log t), where the main term is present only if L(s, χ) has a 
Siegel zero β . (Cf. [7, eq. (8), p. 123].) We will assume the Siegel zero exists; otherwise the argument is similar but simpler. 
By partial summation,

∑
p>y

χ(p)

p
= − S(y)

y log y
+

∞∫
y

S(t)

t2(log t)2
(1 + log t)dt

� 1 +
∞∫

y

tβ

t2 log t
dt.

Haneke, Goldfeld–Schinzel, and Pintz have each shown that β ≤ 1 − c/
√|�|, where the constant c > 0 is absolute and 

effective [8,11,12]. Using this to bound tβ , and keeping in mind that y ≥ exp(
√|�|), we see that the final integral is at most

∞∫

exp(
√|�|)

exp(−c log t/
√|�|)

t log t
dt.

A change of variables transforms the integral into 
∫ ∞

1 exp(−cu)u−1 du, which converges. Assembling our estimates com-
pletes the proof. �
Proof of Theorem 8. Write ϕK (a) = |a| ∏p|a(1 − 1/|p|), and notice that the factors are increasing in |p|. So if z ≥ 2 is such 
that 

∏
|p|≤z |p| ≥ |a|, then

ϕK (a)

|a| ≥
∏

|p|≤z

(
1 − 1

|p|
)

. (3)

We first establish a lower bound on the right-hand side, as a function of z, and then we prove the theorem by making a 
convenient choice of z. We partition the prime ideals with |p| ≤ z according to the splitting behavior of the rational prime p
lying below p. Noting that p ≤ |p|, Mertens’ Theorem and Lemma 9 yield

∏
|p|≤z

(
1 − 1

|p|
)

≥
∏
p≤z

(
1 − 1

p

)(
1 − (

�
p )

p

)

� (log z)−1
∏
p≤z

(
1 − (

�
p )

p

)
� (log z)−1 · h−1

K . (4)

With C ′ a large absolute constant to be described momentarily, we set

z = (C ′ log |a|)2. (5)

We must check that 
∏

|p|≤z |p| ≥ |a|. The Prime Number Theorem implies
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∏
|p|≤z

|p| ≥
∏

p≤z1/2

p ≥
∏

p≤C ′ log |a|
p ≥ |a|,

provided that C ′ was chosen appropriately. Combining (3), (4), and (5) gives

ϕK (a) � |a| · (log z)−1 · h−1
K � h−1

K · |a| · log(log(|a|))−1. �
2.4. Proof of Theorem 1

Let F be a number field of degree d ≥ 3, and let E/F be a K -CM elliptic curve. We may assume #E(F )[tors] ≥ 3. We have 
E(FK)[tors] ∼= Z/aZ ×Z/abZ for positive integers a and b. Theorem 5 gives FK ⊃ K (aOK ) . Along with Lemma 4, we get

2d ≥ [FK : Q] ≥ [K (aOK ) : Q] ≥ hK ϕK (aOK )

3
.

By Theorem 7, there is an extension L/FK with (Z/abZ)2 ↪→ E(L) and [L : FK] ≤ b. Applying Theorem 5 and Lemma 4 as 
above we get L ⊃ K (abOK ) and

[L : Q] ≥ [K (abOK ) : Q] ≥ hK ϕK (abOK )

3
,

so

d = [F : Q] ≥ [FK : Q]
2

= [L : Q]
2[L : FK] ≥ [L : Q]

2b
≥ hK ϕK (abOK )

6b
. (6)

Multiplying (6) through by (ab)2 = |abOK | and rearranging, we get

#E(FK)[tors] = a2b ≤ 6
d

hK

|abOK |
ϕK (abOK )

. (7)

By Theorem 8 we have

|abOK |
ϕK (abOK )

� hK log log |abOK | ≤ hK log log(a2b)2 � hK log log #E(FK)[tors]. (8)

Combining (7) and (8) gives

#E(FK)[tors] � d log log #E(FK)[tors]
and thus

#E(F )[tors] ≤ #E(FK)[tors] � d log log d.

3. Related work

Let E be a K -CM elliptic curve defined over a number field F , and let P ∈ E(F )[tors]. Silverberg showed [14, Corollary 
6.1] that if F ⊃ K then ϕ(#〈P 〉) ≤ 3[F : Q]. It follows that if F �⊃ K then ϕ(#〈P 〉) ≤ 6[F : Q]. Later Aoki showed [1, Proposi-
tion 8.1] that if F �⊃ K then ϕ(#〈P 〉) ≤ 2[F : Q]. Silverberg’s and Aoki’s bounds are the real truth: there are points of order 6
when F =Q and of order 7 when F = K = Q(

√−3).
These results give an O (d log log d) bound on the exponent of E(F )[tors] and thus imply #E(F )[tors] = O ((d log log d)2), 

which was later superseded by Theorem 2. If F �⊃ K , then E(F )[tors] has a cyclic subgroup of index at most 2. Thus the 
work of Silverberg and Aoki yields Theorem 1 when F �⊃ K , in fact in the more explicit form

#E(F )[tors] ≤ (4 eγ + o(1))d log log d, as d → ∞.
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