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Let K be a quadratic imaginary field. Let Π (resp. Π ′) be a regular algebraic cuspidal 
representation of GLn(AK ) (resp. GLn−1(AK )), which is moreover cohomological and 
conjugate self-dual. When Π is a cyclic automorphic induction of a Hecke character χ
over a CM field, we show relations between automorphic periods of Π defined by Harris 
and those of χ . Consequently, we refine a formula given by Grobner and Harris for critical 
values of the Rankin–Selberg L-function L(s, Π × Π ′). This completes the proof of an 
automorphic version of Deligne’s conjecture in certain cases.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit K un corps quadratique imaginaire. Soit Π (resp. Π ′) une représentation cuspidale 
régulière algébrique de GLn(AK ) (resp. GLn−1(AK )), qui est, de plus, cohomologique et 
auto-duale. Si Π est une induction automorphe cyclique d’un caractère de Hecke χ sur 
un corps CM, on montre les relations entre les périodes automorphes de Π définies par 
Harris et celles de χ . Par conséquent, on affine une formule de Grobner et Harris pour les 
valeurs critiques de L(s, Π × Π ′), L étant la fonction de Rankin–Selberg. Cela complète la 
démonstration d’une version automorphe de la conjecture de Deligne dans certains cas.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

In [7], M. Harris has defined complex invariants, called automorphic periods, for certain automorphic representations 
over a quadratic imaginary field. We believe that these periods are functorial. In this note, we treat the case when the 
representation is a cyclic automorphic induction of a Hecke character over a CM field. More precisely, let K be a quadratic 
imaginary field and F ⊃ K be a CM field that is cyclic over K . Let χ be certain Hecke character of F and Π(χ) be the 
automorphic induction of χ with respect to F/K . We show the relations between automorphic periods of Π(χ) and CM 
periods of χ . Our main result is Theorem 3.2 below.

These relations allow us to simplify a formula obtained by Grobner and Harris on the critical values for the Rankin–
Selberg L-function of Π ×Π ′ where Π and Π ′ are certain automorphic representations of GLn(AK ) and GLn−1(AK ) (cf. [5]). 
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We first refine the formula in the case when Π and Π ′ are both induced from characters and then to more general cases. 
We see finally that our result is compatible with Deligne’s conjecture.

1. Notation and conventions

Let Q be an algebraic closure of Q in C.
Let K ⊂ Q be a quadratic imaginary field and n be an integer of at least 2. Let εK be the Artin character of AQ associated 

with the extension K/Q. We fix ψ an algebraic Hecke character of K with infinity type z1z0 such that ψψc = ‖ · ‖AK . The 
existence follows from Lemma 4.1.4 in [3].

Let F + (resp. F ′+) be a totally real field of degree n (resp. n − 1) over Q. We set F = K F + (resp. F ′ = K F ′+) a CM field. 
We put L = F ⊗K F ′ . It is easy to see that L is a CM field of degree n(n − 1) over K .

Let ι ∈ GQ := Gal(Q/Q) be the complex conjugation. We may consider it as an element of Gal(F/F +) or Gal(F ′/F ′+). For 
z ∈ C, we write z̄ for its complex conjugation. For any number field E , let ΣE be the set of complex embeddings of E . For 
σ ∈ ΣF , we define σ̄ := ι ◦ σ the complex conjugation of σ .

Let Φ be a subset of ΣF . We say that Φ is a CM type of F if Φ ∪ ιΦ = ΣF and Φ ∩ ιΦ = ∅. Let {σ1, σ2, · · · , σn} be the 
elements of ΣF which are the identity on K . We know that {σ1, σ2, · · · , σn} is a CM type of F .

Let χ be a Hecke character of F with infinity-type χ∞(z) = ∏n
i=1 σi(z)ai σ̄i(z)bi . We suppose that χ is algebraic, i.e. 

ai, bi ∈ Z, which implies that ai + bi = −w(χ) an integer independent of i, and critical, i.e. ai �= bi for all i. We can then 
define Φχ , a unique CM type associated with χ , as follows: for each i, σi ∈ Φχ if ai < bi , otherwise σ̄i ∈ Φχ . In this case, 
we say that χ is compatible with Φχ .

For such χ , one can define E(χ∞) ⊂C, a number field, as in (1.1.2) of [6]. It is the field of definition of 
∑

(aiσi + biσi) ∈
ZΣF . We denote by E(χ) the field generated by the values of χ on AF , f over E(χ∞). It is still a number field. We assume 
that E(χ) contains F for simplicity of notation.

With any Ψ ⊂ ΣF such that Ψ ∩ ιΨ = ∅, one can associate a non-zero complex number pF (χ, Ψ ) that is well defined 
modulo E(χ)× (cf. the appendix of [9]). We call it a CM period. Sometimes we write p(χ, Ψ ) instead of pF (χ, Ψ ) if there 
is no ambiguity concerning the base field F .

The special values of an L-function for a Hecke character over a CM field can be interpreted in terms of CM periods. The 
following theorem is proved by Blasius. We state it as in Proposition 1.8.1 in [6] where ω should be replaced by ω̌ := ω−1,c

(for this erratum, see the notation and conventions part on page 82 in [7]).

Theorem 1.1. Let χ be as before. We denote D F + the absolute discriminant of F +. For m a critical value of χ in the sense of Deligne, 
we have(

L
(
χσ ,m

))
σ∈ΣE(χ)

∼E(χ) D1/2
F + (2π i)mn(p

(
χ̌σ ,Φχσ

))
σ∈ΣE(χ)

.

We now introduce the notation ∼E(χ) in the previous theorem. Let E be a finite extension of K . We identify CΣE with 
E ⊗ C by the inverse of the map that sends t ⊗ z to (σ (t)z)σ∈ΣE for all t ∈ E and z ∈ C. This is a morphism of algebras 
where the multiplication on the former is the usual multiplication through each coordinates. Similarly, let ΣE;K be the 
subset of ΣE containing embeddings of E into C that are the identity on K . We may identify CΣE;K with E ⊗K C.

Definition 1.1. Let A, B be two elements in E ⊗C (resp. E ⊗K C). We say that A ∼E B (resp. A ∼E;K B) if one of the following 
conditions is satisfied: (i) A = 0, (ii) B = 0 or (iii) A, B ∈ (E ⊗ C)× (resp. (E ⊗K C)×) with AB−1 ∈ E× ⊂ (E ⊗ C)× (resp. 
(E ⊗K C)×).

Note that this relation is symmetric but not transitive unless we know that everything is non-zero.
Let (a(σ ))σ∈G K be some complex numbers such that a(σ ) = a(σ ′) if σ |E = σ ′|E for any σ , σ ′ ∈ G K . For example, for 

E = E(χ) and s a complex number, the values (L(s, χσ ))σ∈G K satisfy the above condition. We can define a(σ ) for σ ∈ ΣE;K
by taking σ̃ , any lift of σ in G K , and defining a(σ ) to be a(σ̃ ). We consider (a(σ ))σ∈ΣE;K as an elements in CΣE;K .

Definition–Lemma 1.1. Let b(σ )σ∈G K be some complex numbers with the same property as a(σ )σ∈G K . We assume b(σ ) �= 0 for all 
σ ∈ G K . We fix σ0 ∈ ΣE;K . We then have (a(σ ))σ∈ΣE;K ∼E;K (b(σ ))σ∈ΣE;K if and only if a(σ0)

b(σ0)
∈ Q and τ (

a(σ0)
b(σ0)

) = a(τσ0)
b(τσ0)

for all 
τ ∈ G K .

In this case, we say a ∼E b equivariant under action of G K . In particular, a(σ )
b(σ )

∈ E for all σ ∈ G K .

At last, we introduce certain notation concerning Hecke characters of K .

Definition 1.2. For η an algebraic Hecke character of K with infinity type za(η) z̄b(η) , we define:

• η̌ = η−1,c a Hecke character of K ,
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• η̃(z) = η(z)/η(z̄) a Hecke character of K ,
• η0 the Hecke character of Q such that ηηc = (η0 ◦ NAK /AQ

)‖ · ‖a(η)+b(η) ,
• η(2) = η2/η0 ◦ NAK /AQ

.

2. Unitary similitude group and base change

In this section, we recall a result on the base change of representations for similitude unitary groups. Let G be a con-
nected quasi-split reductive group over Q and G ′ = ResK/QG K . Roughly speaking, the base change is a correspondence 
from certain automorphic representations of G(AQ) to certain automorphic representations of G ′(AQ) = G(AK ). We refer to 
Section 26 of [1] for more details.

Over a local field, this correspondence can be defined concretely for unramified representations (cf. [12]) and is in fact a 
map from the set of unramified representations of G to that of G ′ . This allows us to give a precise definition for global base 
change. For π an admissible irreducible representation of G(AQ), we say Π , a representation of G(AK ), is a (weak) base 
change of π if for all v , a finite place of Q at which π is unramified and G is quasi-split, and for all w , a place of K over 
v , Πw is the base change of πv . In this case, we say that Π descends to π by base change.

For example, if v is a place of Q split in K , let w be a place of K above v . We know Qv ∼= K w and hence G(Qv ) = G(K w). 
The local base change map is the identity.

Let r, s ∈N such that r + s = n. Fix q1, q2 two places of Q that split in K . Take Dr,s to be a division algebra of dimension 
n2 with center K and endowed with ∗ : Dr,s → Dr,s an involution of second kind. Moreover, we want (Dr,s, ∗) to be 
quasi-split at all finite places that do not equal to q1 or q2, to be a division algebra at one or two places between q1 and q2, 
and to have infinity sign (r, s). The calculation of local invariants of unitary groups in Chapter 2 of [2] shows that such a 
division algebra exists.

We denote U (r, s) the unitary group over Q associated with (Dr,s, ∗) and write GU(r, s) for the similitude group of 
U (r, s). One can show that GU(r, s)K ∼= U (r, s)K × Gm,K . In particular, GU(AK ) ∼= GLn(AK ) × A×

K . For Π a cuspidal repre-
sentation of GLn(AK ) and ξ a Hecke character of K , Π ⊗ ξ defines a cuspidal representation of GU(AK ). Conversely, by 
the tensor product theorem, every irreducible automorphic representation of GU(AK ) can be written in the form Π ⊗ ξ . 
Moreover, Π and ξ are unique up to isomorphisms.

Let us consider now the base change for G = GU(r, s). Theorem 2.1.2 and Theorem 3.1.2 of [10] tell us when Π ⊗ ξ

descends to a representation of G(AQ). In this note, we start with a representation of GLn(AK ). The following lemma will 
be useful (cf. Lemma VI.2.10 of [11]):

Lemma 2.1. Let Π be a conjugate self-dual cuspidal representation of GLn(AK ). We assume that Π is cohomological and supercuspidal 
at places over q1 and q2 . There always exists ξ , a Hecke character of K , such that Π ⊗ ξ descends to a representation of G(AQ).

3. Automorphic period

In this note, a motive M simply means a pure motive for absolute Hodge cycles in the sense of Deligne. We refer the 
reader to [4] for detailed definitions. We recall that an integer m is critical for M if neither L∞(M, s) nor L∞(M̌, 1 − s) has 
a pole at s = m where M̌ is the dual of M . In this case, we say m is critical for M .

The Hodge type of M is defined by the set T = T (M) consisting of pairs (p, q) such that M p,q �= 0. We assume that M
is pure, namely there exists an integer w such that p + q = w for all (p, q) ∈ T (M). In [4], the author has determined the 
critical points in terms of the Hodge type of M .

Let n ≥ 1 be an integer, K be a quadratic imaginary field and Π = Π f ⊗ Π∞ be a regular cohomological cus-
pidal representation of GLn(AK ). We denote V the representation space for Π f . For σ ∈ Aut(C), we define another 
GLn(AK , f )-representation Πσ

f to be V ⊗C,σ C. Let Q(Π) be the subfield of C fixed by {σ ∈ Aut(C) | Πσ
f

∼= Π f }. We call it 
the rationality field of Π . This is in fact a number field and Π f has a rational structure on Q(Π). In other words, there 
exists V , a GLn(AQ, f )-module over Q(Π), such that Π f = V ⊗Q(Π) C as GLn(AQ, f )-module.

Moreover, for all σ ∈ Aut(C), Πσ
f is the finite part of a cuspidal representation of GLn(AK ) which is unique by the strong 

multiplicity one theorem, denoted by Πσ . We know that Πσ is determined by σ |Q(Π) : Q(Π) ↪→ C. Therefore, we may 
define Πσ for any σ ∈ ΣQ (Π) by lifting σ to an element in Aut(C). In particular, we may define Πσ for any σ ∈ Gal(Q/Q)

or σ ∈ ΣE where E is an extension of Q(Π).
When Π is a cohomological and conjugate self-dual, M. Harris has proved that there exists a motive associated with Π

of rank n over K with coefficients in a number field. By restriction of scalars from K to Q, we obtain (cf. [7]) that:

Theorem 3.1. There exists E a finite extension of Q(Π) and M a regular pure motive of rank 2n over Q with coefficients in E such that 
L(s, M, σ) = L(s + 1−n

2 , Πσ ) for all σ : E ↪→C.

Harris has also defined automorphic periods P (s)(Π) for certain integers 0 ≤ s ≤ n, which is a complex number defined 
up to multiplication by an element in E× . If Π is supercuspidal at each places over q1 and q2, the automorphic period can 
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be defined for every 0 ≤ s ≤ n. More precisely, P (s) is defined when there exists ξ , a Hecke character of K , such that Π ⊗ ξ

descends to a representation of GUn−s,s(AQ). With the supercuspidal condition, we know that this is true by Lemma 2.1. 
We assume this condition on Π throughout this note. Harris proved that special values of the automorphic L-function can 
be interpreted in terms of automorphic periods:

Theorem 3.2. Let Π be as before with its infinity type (zai z−ai )1≤i≤n. Let η be an algebraic Hecke character of K with infinity type 
η∞(z) = za z̄b such that for all 1 ≤ i ≤ n, b − a �= 2ai .

Write ηc = β̃α. Here α, β are Hecke characters of K with α∞(z) = zκ and β∞(z) = z−k, κ, k ∈ Z. Define s = s(ηc, Π∨) =
#{i | a − b + 2ai < 0}.

For m ∈ Z critical for M(Π) ⊗ M(η) and satisfies m ≥ n−κ
2 = n−a−b

2 , we have:

L
(
m, M(Π) ⊗ M(η)

) ∼E(Π)E(β)E(α) (2π i)(m− n−1
2 )nG(εK )[

n
2 ] P (s)(Π)

[
(2π i)κG(α0)

]s[
(2π i)k p

(
β̌(2)α̌,1

)]n−2s

equivariant under action of G K . Here G(α0) refers to a Gauss sum of α0.

Proposition 3.1. Let Π be as in Theorem 3.2. For any fixed integer 0 ≤ s ≤ n, there exists an algebraic Hecke character η and an 
integer m as in Theorem 3.2 such that s(ηc, Π∨) = s and L(m, M(Π) ⊗ M(η)) �= 0.

In [5], the authors gave an interpretation of special values of L-function for GLn × GLn−1 over K . Let Π and Π ′ be two 
cuspidal representations of GLn(AK ) and GLn−1(AK ) that satisfy the conditions in Theorem 3.2 and some regular conditions 
(cf. loc. cit.). We have:

Theorem 3.3. Let m be a non-negative integer. If m + n − 1 is critical for M(Π) ⊗ M(Π ′), then

L

(
m + 1

2
,Π × Π ′

)
∼E(Π)E(Π ′) p

(
m,Π∞,Π ′∞

)
Z(Π∞)Z

(
Π ′∞

) n−1∏
j=1

P ( j)(Π)

n−2∏
k=1

P (k)
(
Π ′)

equivariant under action of G K .
Here p(m, Π∞, Π ′∞) is a complex number depending only on m, Π∞ and Π ′∞ (cf. Proposition 6.4 of loc. cit.); Z(Π∞) (resp. 

Z(Π ′∞)) is a complex number depending only on Π∞ (resp. Π ′∞) (cf. Theorem 6.7 of loc. cit.).

4. Period relations for automorphic induction of Hecke characters

In this section, we consider the representation induced from Hecke characters. Let χ be a regular algebraic conjugate 
self-dual Hecke character of F . Here conjugate self-dual means χ−1 = χ c .

We make the hypothesis that:

Hypothesis 4.1. For any v a place of K over q1 and q2, χv �= χτ
v for all τ ∈ Gal(F v/K v) non trivial.

Under this hypothesis, Π(χ), the automorphic induction of χ from GL1(AF ) to GLn(AK ), is supercuspidal at all places 
over q1 and q2 (cf. Proposition 2.4 of [8]).

Definition–Lemma 4.1. Let χ be as above. We define Πχ := Π(χ) if the degree of F over K is odd; Πχ := Π(χ) ⊗ ‖ · ‖− 1
2

AK
ψ

otherwise where ψ is a Hecke character of K defined in Section 1.
We have that Πχ is a regular algebraic cuspidal which satisfies all the conditions in Theorem 3.2.

Up to finite extension, we may assume E(Πχ) = E(χ). We define Φs,χ , a CM type of F as follows: for each i such that 
ai is one of the s smallest numbers in {ai, 1 ≤ i ≤ n}, we have σi ∈ Φs,χ ; otherwise σ̄i ∈ Φs,χ .

Theorem 4.1. Let n be an integer. Let F = F +K with F + a totally real field of degree n over Q and K a quadratic imaginary field. 
Assume that F is cyclic over K . Let χ be a regular conjugate self-dual algebraic Hecke character of F satisfying Hypothesis 4.1. We have 
that the automorphic period of Π = Πχ satisfies:

P (s)(Π) ∼E(χ) D1/2
F + G(εK )−[ n

2 ]p(χ̌ ,Φs,χ ) if n is odd

P (s)(Π) ∼E(χ)E(ψ) D1/2
F + (2π i)−

n
2 G(εK )−[ n

2 ]p(χ̌ ,Φs,χ )p(ψ)s p
(
ψc)n−s

if n is even

equivariant under action of G K .
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This is the main result of this note. The idea is simple. We fix 0 ≤ s ≤ n an integer. We take η and m as in Proposition 3.1. 
When n is odd, we have L(m, Πχ ⊗ η) = L(m, χ ⊗ η ◦ NAF /AK ) by automorphic induction and with both sides non-zero. We 
may simplify the left-hand side of this equation by Theorem 3.2 and the right-hand side by Blasius’ result. The CM periods 
of η that appeared in both sides unsurprisingly coincide, and we then deduce the above result.

5. Application: simplification of Archimedean local factors

We can now refine the Archimedean local factors in Theorem 3.3 first in the case where Π and Π ′ come from a Hecke 
character and then for general Π and Π ′ .

We take χ and χ ′ two algebraic regular conjugate self-dual Hecke characters of F and F ′ that satisfy Hypothesis 4.1 and 
some regular conditions. We may apply Theorem 3.3 to Πχ × Π ′

χ . Our main result (Theorem 4.1) allows us to replace the 
automorphic periods by CM periods and we get:

p
(
m,Π∞,Π ′∞

)
Z(Π∞)Z

(
Π ′∞

) ∼K E(χ∞)E(χ ′∞) (2π i)(m+ 1
2 )n(n−1)

provided that L(m + 1
2 , Π × Π ′) does not vanish. This is always true when m > 0 since in this case, m is in the absolutely 

convergent range.
Note that the above result concerns only the infinity type. The following lemma allows us to generalize it.

Lemma 5.1. If Π is an algebraic cuspidal representation of GLn(K ), then there exists χ an algebraic Hecke character of F that satisfies 
Hypothesis 4.1 such that Π∞ ∼= Πχ,∞ . Furthermore, if Π is conjugate self-dual, we may have in addition that χ is conjugate self-dual.

Note that an extra condition on the non-vanishing of the L-function will be needed when m = 0:

Hypothesis 5.1. For Π and Π ′ conjugate self-dual algebraic cuspidal representations of GLn(AK ) and GLn−1(AK ), there exists 
Hecke characters χ and χ ′ of F and F ′ such that χ and χ ′ are as in the previous lemma and L( 1

2 , Πχ × Πχ ′ ) �= 0.

Theorem 5.1. Let Π and Π ′ be cuspidal representations of GLn(AK ) which are very regular, cohomological, conjugate self-dual, su-
percuspidal at places over at least two places of Q that split in K .

Let m ≥ 0 be an integer such that m + n − 1 is critical for M(Π) ⊗ M(Π ′). If m = 0, we assume moreover Hypothesis 5.1.
We then have the following equation equivariant under action of G K :

p
(
m,Π∞,Π ′∞

)
Z(Π∞)Z

(
Π ′∞

) ∼K E(Π∞)E(Π ′∞) (2π i)(m+ 1
2 )n(n−1).

Consequently, we have, equivariant under action of G K ,

L

(
m + 1

2
,Π × Π ′

)
∼E(Π)E(Π ′) (2π i)(m+ 1

2 )n(n−1)

n−1∏
j=1

P ( j)(Π)

n−2∏
k=1

P (k)
(
Π ′).

Remark 5.1. The above result is compatible with the Deligne conjecture and M. Harris’ calculation on the Deligne period.
Recall that the Deligne conjecture predicts

L
(
n − 1 + m, M(Π) ⊗ M

(
Π ′)) ∼ c+(

M(Π) ⊗ M
(
Π ′)(n − 1 + m)

)
where c+(·) is Deligne’s period defined in [4].

Eq. (4.12) of [5] gives

c+(
M(Π) ⊗ M

(
Π ′)(n − 1 + m)

) ∼ (2π i)(m+ 1
2 )n(n−1)

n−1∏
j=1

P≤ j(Π)

n−2∏
k=1

P≤k
(
Π ′)

(see Chapter 4 of [5] for the notion). From the discussion after Theorem 4.27 in [5], we see that P (s) ∼ P≤s in our case.
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